Korean J. Math.  Vol 28, No 2 (2020)  pp.285-294
DOI: https://doi.org/10.11568/kjm.2020.28.2.285

CIS codes over ${\mathbb F}_4$

Hyun Jin Kim


We study the complementary information set codes (for short, CIS codes) over ${\mathbb F}_4$. They are strongly connected to correlation-immune functions over ${\mathbb F}_4$. Also the class of CIS codes includes the self-dual codes. We find a construction method of CIS codes over ${\mathbb F}_4$ and a criterion for checking equivalence of CIS codes over ${\mathbb F}_4$. We complete the classification of all inequivalent CIS codes of length up to $8$ over ${\mathbb F}_4$.


complementary information set code; self-dual code; equivalence; correlation-immune

Subject classification

94B05; 11T71


the National Research Foundation of Korea

Full Text:



W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput 24 (1997), 235–265. (Google Scholar)

P. Camion, A. Canteaut. Correlation-immune and resilient functions over a finite alphabet and their applications in cryptography, Designs Codes Crypt. 16 (2) (1999), 121–149. (Google Scholar)

P. Camion, C. Carlet, P. Charpin, N. Sendrier. On correlation-immune functions, Lecture Notes in Computer Science, 576 (1992), 86–100. (Google Scholar)

C. Carlet, More correlation-immune and resilient functions over Galois fields and Galois rings, Advances in Cryptology, EUROCRYPT’97, Lecture Note in Computer Sciences, Springer Verlag 1233 (1997), 422-433. (Google Scholar)

C. Carlet, F. Freibert, S. Guilley, M. Kiermaier, J.-L. Kim, P. Sol ́e, Higher-order CIS codes, IEEE Trans. Inform. Theory 60 (9) (2014), 5283–5295. (Google Scholar)

C. Carlet, P. Gaborit, J-L. Kim, P. Sol ́e, A new class of codes for Boolean masking of cryptographic computations, IEEE Trans. Inform. Theory 58 (2012), 6000–6011. (Google Scholar)

K. Gopalakrishnan, D. R. Stinson Three characterizations of non-binary correlation-immune and resilient functions, Designs Codes Crypt. 5 (1995), 241– 251. (Google Scholar)

M. Harada, The existence of a self-dual [70,35,12] code and formally self-dual codes, Finte Fields Appl. 3 (1997), 131–139. (Google Scholar)

M. Harada, A. Munemasa, Classification of self-dual codes of length 36, Adv. Math. Commun. 6 (2012), 229–235. (Google Scholar)

H. J. Kim: https://drive.google.com/file/d/1sVZ-Em5hHFs36-hBLGda0NLqmt8 RThkh/view?usp=sharing. (Google Scholar)

H. J. Kim and Y. Lee, Complementary information set codes over GF(p), Designs Codes Crypt. 81 (2016), 541–555. (Google Scholar)

H. J. Kim and Y. Lee, t-CIS codes over GF (p) and orthogonal arrays, Discrete Applied Mathematics 217 (2017), 601–612. (Google Scholar)

J.-L. Kim, New extremal self-dual codes of lengths 36, 38 and 58, IEEE Trans. Inform. Theory 47 (2001), 386–393. (Google Scholar)

J.-L. Kim and Y. Lee, Euclidean and Hermitian self-dual MDS codes over large finite fields, J. Combin. Theory Ser. A 105 (1) (2004), 79–95. (Google Scholar)

C.P. Schnorr, S. Vaudenay, Black box cryptanalysis of hash networks based on multipermutations, Advances in Cryptology, EUROCRYPT’94, Lecture Note in Computer Science 950, Springer Verlag (1995), 47–57. (Google Scholar)

T. Siegenthaler, Correlation-immunity of non-linear Combining functions for cryptographic applications, IEEE Trans. Inform. Theory 30 (5) (1984), 776–780. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr