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A COOLEY-TUKEY MODIFIED ALGORITHM IN FAST

FOURIER TRANSFORM

HwaJoon Kim∗ and Somchai Lekcharoen

Abstract. We would like to propose a Cooley-Tukey modified al-
gorithm in fast Fourier transform(FFT). Of course, this is a kind of
Cooley-Tukey twiddle factor algorithm and we focused on the choice
of integers. The proposed algorithm is better than existing ones in
speeding up the calculation of the FFT.

1. Introduction

The discrete Fourier transform (DFT) is a discretization of Fourier
transform defined in a way to make it accessible to computer calculation,
and fast Fourier transform (FFT) is not a transform at all, but an ef-
ficient algorithm for computing DFT. It has made possible far-reaching
applications of Fourier methods in optics, digital filtering, spectral analy-
sis of signals, and many other important areas of science and engineering
[1]. We would like to begin discussion of DFT/FFT with definition. Let
N is the number of samples, T is period of f and i is unit of imaginary
number. Then the DFT/ inverse DFT of f are

F (
n

NT
) =

N−1∑
k=0

f(kT )e−2πikn/N

and

f(kT ) =
1

N

N−1∑
k=0

F (
n

NT
)e2πikn/N
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respectively, for n = 0, 1, · · · , N − 1. Afterward, let us leave off the scal-
ing factor of T because this will not influence the efficiency of computing
the numbers in the summation, which constitutes the real problem. So,
we are interested in computing sums of the form

A(n) =
N−1∑
k=0

a(k)e−2πikn/N

for n = 0, 1, · · · , N − 1. Consequently, by using of FFT, we can do the
savings in computation time, and this is the idea of FFT. In a word,
FFT reduces the order of the number of operations from N2 to Nlog2N
for a length N = 2n DFT.

Since 1965 [5], FFT usage has rapidly expanded and personal com-
puters fuel an explosion of additional FFT applications [2-9, 13]. Lately,
many applications have been pursued containing nonuniform fast Fourier
transform [11], determination of price of option [4], magnetic resonance
imaging(MRI) [11] and applications related to resolution [7, 8]. Among
these papers, Spilt-Radix algorithm [9] consists of low arithmetric com-
plexity and relatively simple structure is noticeable [12] and closely re-
lated to Cooley-Tukey FFT. The most important thing in this kind of
researches is to find an algorithm which we get the minimal operation
compared with existing ones. Because it is related to practical use such
as the resolution, data transmission and image compression.

We would like to propose a Cooley-Tukey modified FFT in order to
obtain better result in speeding up the calculation of the FFT.

2. Cooley-Tukey modified FFT

We would like to modify Cooley-Tukey algorithm which is a kind of
FFT algorithm, and we shall call to Cooley-Tukey modified FFT(CTMF).
Consider the discrete Fourier transform(DEF)

X(n) =
N−1∑
k=0

x0(k)e
−2πikn/N

for n = 0, 1, · · · , N−1. If we letW = e−2πi/N , then X(n) can be denoted
by

X(n) =
N−1∑
k=0

x0(k)W
kn



A Cooley-Tukey modified algorithm in fast Fourier transform 245

for n = 0, 1, · · · , N − 1. From now on, without repeatedly mentioned
the scope of n again and again, we assume that it takes 0, 1, · · · , N − 1.
First, we would like to deal with the case N = 4.

A. CTMF for N = 4

Let us consider the DEF

X(n) =
N−1∑
k=0

x0(k)W
kn

for W = e−2πi/N , and denote integers n and k as binary numbers. Since
N = 4, k and n take values 0,1,2 and 3 only. Implies, the binary form of
k and n take 00, 01, 10 and 11 only. In simpler expression, it is denoted
by

n = 2n1 + n0, k = 2k1 + k0
where k0, k1, n0 and n1 can take the values of 0 and 1 only.

Thus, DEF can be represented by the form

X(n1, n0) =
1∑

k1=0

1∑
k0=0

x0(n0, k0)W
(2n1+n0)(2k1+k0).

Next, let us change W (2n1+n0)(2k1+k0) to compact form, then we get

W (2n1+n0)(2k1+k0) = W 4n1k1W 2n1k0W 2n0k1W n0k0 = W (2n1+n0)k0 W 2n0k1

because of
W 4n1k1 = (e−8πi/4)n1k1 = (e−2πi)n1k1 = 1.

Hence X(n1, n0) can be denoted as

X(n1, n0) =
1∑

k1=0

[
1∑

k0=0

x0(n0, k0)W
(2n1+n0)k0 ]W 2n0k1 .

Let us put

x1(n1, n0) =
1∑

k0=0

x0(n0, k0)W
(2n1+n0)k0 ,

and enumerating the x1(n1, n0), we have

x1(0, 0) = x0(0, 0) + x0(0, 1)W
0

x1(0, 1) = x0(1, 0) + x0(1, 1)W
1

x1(1, 0) = x0(0, 0) + x0(0, 1)W
2
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x1(1, 1) = x0(1, 0) + x0(1, 1)W
3

where, W 0 is not reduced to 1 in order to develop a generalized result.
Let us rewrite this in matrix notation. Then we get

x1(0, 0)
x1(0, 1)
x1(1, 0)
x1(1, 1)

 =


1 w0 0 0
0 0 1 w1

1 w2 0 0
0 0 1 w3

 =


x0(0, 0)
x0(0, 1)
x0(1, 0)
x0(1, 1)

 .

If we check the number of used operation, it is used 4 additions and
2 multiplications only, whereas the direct method requires 42 complex
multiplications and 4× 3 complex additions. Let us change the topic to
the outer sum.

Replace x1(n1, n0) with x1(k1, n0), if we write the outer summation
of X(n1, n0) as

x2(n0, n1) =
1∑

k1=0

x1(k1, n0)W
2n0k1

and enumerating this equality, we get

x2(0, 0) = x1(0, 0) + x1(1, 0)W
0

x2(0, 1) = x1(0, 0) + x1(1, 0)W
0

x2(1, 0) = x1(0, 1) + x1(1, 1)W
2

x2(1, 1) = x1(0, 1) + x1(1, 1)W
2.

The matrix form is
x2(0, 0)
x2(0, 1)
x2(1, 0)
x2(1, 1)

 =


1 0 w0 0
1 0 w0 0
0 1 0 w2

0 1 0 w2

 =


x1(0, 0)
x1(0, 1)
x1(1, 0)
x1(1, 1)

 ,

and the recursive form is as the following;

x1(n1, n0) =
1∑

k0=0

x0(n0, k0)W
(2n1+n0)k0

x2(n0, n1) =
1∑

k1=0

x1(k1, n0)W
2n0k1 for n1 = k1
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X(n1, n0) = x2(n0, n1).

In the second step, 1 multiplication and 2 additions are used. Hence
CTMF can be denoted by the following recursive form for N = 4;

x1(n1, n0) =
1∑

k0=0

x0(n0, k0)W
(2n1+n0)k0

x2(n0, n1) =
1∑

k1=0

x1(k1, n0)W
2n0k1

X(n1, n0) = x2(n0, n1)

where k0, k1, n0 and n1 are all integer. An alternative form is simply
expressed by

1∑
k1=0

[
1∑

k0=0

x0(n0, k0)W
(2n1+n0)k0 ]W 2n0k1 ,

based on the above equations we checked.

B. The comparison of the number of operations with related algorithms
of FFT for N = 4.

In general, for N = 2r, the FFT algorithm is then simply a procedure
for factoring an N × N matrix into r matrices such that each of the
factored matrices has the special property of minimizing the number of
complex multiplications and additions. If we representing the equation
of example 1 by 4× 4 matrix, we obtain the following result, where W 0

is not reduced to 1 in order to develop a generalized result.

1) Direct evaluation(DE)
It requires 42 complex multiplications and 4 × 3 complex addi-

tion.
2) Cooley-Tukey FFT(CTF)

Cooley-Tukey FFT brings the complexity down toNlog2N oper-
ations. Implies, in the first step, it needs 2 complex multiplications
and 4 complex additions, and the second step is equally needed.
Thus, X(n0, n1) totally requires 4 complex multiplications and 8
complex additions.
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Table 1. The comparison of the number of operations
with related algorithms of FFT for N = 4.

Type DE CTF STF CTTF CTMF
No. multiplications 16 4 6 6 3

No. additions 12 8 8 8 6

3) Sande-Tukey algorithm in FFT(STF)
Sande-Tukey algorithm is a canonic form of the FFT and this

is expressed by

1∑
k0=0

[
1∑

k1=0

x0(k1, k0)W
2n0k1W n0k0 ] W 2n1k0 .

In the first step, it needs 4 complex multiplications and 4 complex
additions, and in the second step, it is needed 2 and 4, respec-
tively. Thus, 6 complex multiplications and 8 complex additions
are totally required.

4) A representative Cooley-Tukey twiddle factor algorithm(CTTF)
The below algorithm is a representative of twiddle form of the

FFT and this is expressed by

1∑
k0=0

[
1∑

k1=0

x0(k1, k0)W
(2k1+k0)n0 ]W 2n1k0

Similar to 3), in the first step it needs 4 complex multiplications
and 4 complex additions, and in the second step, it needs 2 and 4,
respectively. Thus, 6 and 8, respectively.

5) The proposed Cooley-Tukey modified FFT(CTMF)
Similarly to 2), it needs 2 complex multiplications and 4 complex

additions, and in the second step, it needs 1 and 2, respectively. So
totally is needs 3 complex multiplications and 6 complex additions.

Normally, since computing time is proportional to the number of mul-
tiplications, we would like to restrict to the case in computing of the ap-
proximate ratio. For the number of samples is N = 4, the approximate
ratio of direct calculation to CTMF is given by

42/3,

and this is reducer than 4 of FFT.
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If N is a large sampling number, a computational reduction is worthy
of close attention. For example, ifN = 1024 = 210, then the approximate
ratio of direct calculation to FFT is

210 · 210
1
2
· 210 · 10

=
2 · 210

10
=

4 · 28

5
< 28 = 256,

and in case of CTMF, we can obtain more reduced result.

Now that we would like to extend to the case in which CTMF has some
arbitrary factors in FFT. We would like to confine the case N = r1r2
because of easy extension to finite dimension, where r1 and r2 are integer
valued.

Theorem 1. (CTMF for N = r1r2) Cooley-Tukey modified algo-
rithm in FFT can be denoted by the following recursive form for N =
r1r2.

x1(n1, n0) =

r2−1∑
k0=0

x0(n0, k0)w
(n1r1+n0)k0

x2(n0, n1) =

r1−1∑
k1=0

x1(k1, n0)w
r2n0k1

X(n1, n0) = x2(n0, n1).

An alternative form is simply expressed by

r1−1∑
k1=0

[

r2−1∑
k0=0

x0(n0, k0)w
(n1r1+n0)k0 ]wr2n0k1 .

Proof. By letting W = e−2πi/N , then DFT X(n) was denoted by

X(n) =
N−1∑
k=0

x0(k)W
kn

for n = 0, 1, · · · , N − 1. Here, let us denote the n and k as

n = n1r1 + n0

k = k1r2 + k0
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where n0 and k1 take value in [0, r1 − 1], n1 and k0 in [0, r2 − 1] and all
integer. Then we can rewrite DFT

X(n) =
N−1∑
k=0

x0(k)W
kn

as

X(n1, n0) =

r1−1∑
k1=0

r2−1∑
k0=0

x0(n0, k0)W
(n1r1+n0)(k1r2+k0)

where n1 = k1. Since wr1r2 = wN = 1, we get

W (n1r1+n0)(k1r2+k0) = w(n1r1+n0)k0 · wr2n0k1 .

Implies, X(n1, n0) can be expressed by

r1−1∑
k1=0

[

r2−1∑
k0=0

x0(n0, k0)w
(n1r1+n0)k0 ]wr2n0k1

and if we define the intermediate computational steps, then

x1(n1, n0) =

r2−1∑
k0=0

x0(n0, k0)w
(n1r1+n0)k0

x2(n0, n1) =

r1−1∑
k1=0

x1(k1, n0)w
r2n0k1

X(n1, n0) = x2(n0, n1).

Base 4+2 means that we compute as many arrays as possible with the
base-4 algorithm and then compute a base-2 array([1]), but in CTMF,
it has the opposite order.

C. The validity of theorem 1 with Base 4 + 2 algorithm of CTMF for
N = 8

Henceforth, we would like to develop the base 4 + 2 algorithm of
CTMF. To begin with, let us put n = 4n1 + n0 and k = 2k1 + k0 where
n1 = 0, 1, n0 = 0, 1, 2, 3, k1 = 0, 1, 2, 3 and k0 = 0, 1. In DEF

X(n) =
N−1∑
k=0

x0(k)W
kn,
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we have

W nk = W (4n1+n0)(2k1+k0) = W (4n1+n0)k0 W 2n0k1

where W = e−2πi/N . Implies, DEF becomes

X(n1, n0) =
3∑

k1=0

[
1∑

k0=0

x0(n0, k0)W
(4n1+n0)k0 ]W 2n0k1 ,

the base 4 + 2 algorithm of CTMF, and the inner sum of the above
equality becomes

1∑
k0=0

x0(n0, k0)W
(4n1+n0)k0 .

If we give detailed explanation, we get

x1(0, 0) = x0(0, 0) + x0(0, 1)W
0

x1(0, 1) = x0(1, 0) + x0(1, 1)W
1

x1(0, 2) = x0(2, 0) + x0(2, 1)W
2

x1(0, 3) = x0(3, 0) + x0(3, 1)W
3

x1(1, 0) = x0(0, 0) + x0(0, 1)W
4

x1(1, 1) = x0(1, 0) + x0(1, 1)W
5

x1(1, 2) = x0(2, 0) + x0(2, 1)W
6

x1(1, 3) = x0(3, 0) + x0(3, 1)W
7

where, W 0 is not reduced to 1 in order to develop a generalized result.

Replace x1(n1, n0) with x1(k1, n0), and if we write the outer summa-
tion of X(n1, n0) as

x2(n0, n1) =
3∑

k1=0

x1(k1, n0)W
2n0k1

and enumerating this equality, we get

x2(0, 0) = x1(0, 0) + x1(1, 0)W
0 + x1(2, 0)w

0 + x1(3, 0)w
0 = x2(0, 1)

x2(1, 0) = x1(0, 1) + x1(1, 1)W
2 + x1(2, 1)w

4 + x1(3, 1)w
6 = x2(1, 1)

x2(2, 0) = x1(0, 2) + x1(1, 2)W
4 + x1(2, 2)w

0 + x1(3, 2)w
4 = x2(2, 1)

x2(3, 0) = x1(0, 3) + x1(1, 3)W
6 + x1(2, 3)w

4 + x1(3, 3)w
2 = x2(3, 1).
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On the other hand, in theorem 1, let us put r2 = 2 and r1 = 4. Then,
we obtain

X(n1, n0) =
3∑

k1=0

[
1∑

k0=0

x0(n0, k0)W
(4n1+n0)k0 ]W 2n0k1 ,

and this is the same result with the above equation.

3. Conclusion

We have showed that CTMF affords better result compared with ex-
isting algorithms in speeding up the calculation of the FFT. This means
that we can get faster things in the resolution, data transmission and
image compression.
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