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STUDYING ON A SKEW RULED SURFACE BY USING

THE GEODESIC FRENET TRIHEDRON OF ITS

GENERATOR

Fathi M. Hamdoon∗ and A. K. Omran

Abstract. In this article, we study skew ruled surfaces by using
the geodesic Frenet trihedron of its generator. We obtained some
conditions on this surface to ensure that this ruled surface is flat,
II-flat, minimal, II-minimal and Weingarten surface. Moreover, the
parametric equations of asymptotic and geodesic lines on this ruled
surface are determined and illustrated through example using the
program of mathematica.

1. Introduction

In the surfaces theory, it is well-known that a surface is said to be
“ruled” if it is generated by a continuously moving of a straight line in
the space. Ruled surfaces are one of the simplest objects in geometric
modeling. One important fact about ruled surfaces is that they can be
generated by straight lines. One would never know this from looking
at the surface or its usual equation in terms of x, y, and z coordinates,
but ruled surfaces can be rewritten to highlights the generating lines.
A practical application of ruled surfaces is that they are used in civil
engineering. Since building materials such as wood are straight, they
can be thought of as straight lines. The result is that if engineers are
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planning to construct something with curvature, they can use a ruled
surface since all the lines are straight.

The study of some classes of ruled surfaces with special properties in
Euclidean 3-space such as developable, skew (non-developable), minimal,
II-minimal, and II-flat is one of the principal aims of the classical differ-
ential geometry. This kind of surfaces has an important role and many
applications in different fields, such as Physics, Computer Aided Geo-
metric Design and the study of design problems in spatial mechanism,
etc [12,13]. There are many studies that interested with many properties
of these surfaces in Euclidean space and some characterizations [5, 11].
Furthermore, many geometers have studied some of the differential geo-
metric concepts of the ruled surfaces in Minkowski space [1–3,7–9].

In this paper, we consider a ruled surface for which the tangent of its
base curve given as a linear combination of the Geodesic Frenet trihe-
dron. The condition for skew ruled surfaces to be flat, minimal, II-flat,
II-minimal and Weingarten surfaces are obtained. Moreover, the asymp-
totic and geodesic lines are determined and solved under some conditions
with respect to skew ruled surfaces. Finally, example has been given re-
lated to the subject.

2. Preliminaries

In this section, we briefly review differential geometry of surfaces in
so much as it is related to the developments in the subsequent section.
More details can be found for example in [6, 10,14].

A ruled surface is generated by a one-parameter family of straight
lines and it possesses a parametric representation,

ψ(s, v) = ~α(s) + v~e(s), (2.1)

where ~α(s) represents a space curve which is called the base curve and
~e(s) is a unit vector representing the direction of a straight line and s is

the arc-length along the base curve ~α(s). Let ~n denotes the unit normal
vector field on the surface (2.1) which is given by

~n =
~ψs ∧ ~ψv
|~ψs ∧ ~ψv|

, ~ψs =
∂ψ

∂s
, ~ψv =

∂ψ

∂v
, (2.2)
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where ∧ stand the cross product in Euclidean 3-space. Then the metric
I of the surface (2.1) is defined as

I = g11ds
2 + 2g12dsdv + g22dv

2, (2.3)

with differentiable coefficients

g11 = 〈~ψs, ~ψs〉, g12 = 〈~ψs, ~ψv〉, g22 = 〈~ψv, ~ψv〉, (2.4)

where 〈, 〉 is the Euclidean inner product in Euclidean 3-space. The
discriminate g of the first fundamental form I is given as

g = Det(gij) = g11g22 − (g12)
2. (2.5)

The second fundamental form II of the surface (2.1) is given by

II = h11ds
2 + 2h12dsdv + h22dv

2, (2.6)

with differentiable coefficients

h11 = 〈~ψss, ~n〉, h12 = 〈~ψsv, ~n〉, h22 = 〈~ψvv, ~n〉. (2.7)

The discriminate h of the second fundamental form II is

h = Det(hij) = h11h22 − (h12)
2. (2.8)

For the parametrization of the ruled surface (2.1), we have the mean
curvature H and the Gaussian curvature K as follows

H =
g11h22 − 2g12h12 + g22h11

2g
, K =

h

g
. (2.9)

Using classical notation, we define the second Gaussian curvature KII

by [5]

KII =
1

h2


∣∣∣∣∣∣∣
−h11,22

2 + h12,12 − h22,11

2
h11,1

2 h12.1 − h11,2

2

h12,2 − h22,1

2 h11 h12
h22,2

2 h12 h22

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣

0
h11,2

2
h22,1

2
h11,2

2 h11 h12
h22,1

2 h12 h22

∣∣∣∣∣∣∣
 ,

(2.10)

where, hij,l = ∂hij
∂sl

, and hij,lm = ∂2hij
∂ul∂um

, the indices i, j belong to {1, 2}
and the parameters u1, u2 are s, v, respectively.

Since Brioschis formulas in Euclidean 3-spaces, we are able to define
the second mean curvature HII of the surface (2.1) by replacing the
components of the first fundamental form gij by the components of the
second fundamental form hij respectively in Brioschis formula. Conse-
quently, the second mean curvature HII is given by [4]

HII = H − 1

2
∆
(

ln
√
|K|

)
, (2.11)
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where, ∆ is the Laplacian with respect to the second fundamental form
of the surface (2.1), expressed as

∆ =
1√
|h|

∑
i,j

∂

∂ui

[√
|h| hij ∂

∂uj

]
, (2.12)

where, hij denotes the associated matrix with its inverse hij.

3. Geodesic Frenet trihedron of the ruled surface

For the ruled surface defined by the representation (2.1), the vector
~e(s) traces a general space curve (as s varies) on the surface of unit
sphere s2(1) called spherical indicatrix of the ruled surface. If we denote
the arc length of ~e(s) as s∗, then

s∗ =

∫ b

a

∣∣∣d~e(s)
ds

∣∣∣ds (3.1)

The unit surface normal, ~N , to a ruled surface represented by Eq.(2.1)
is then

~N(s, v) =
(d~α
ds

+ v d~e
ds

) ∧ ~e
[(d~α
ds

+ v d~e
ds

)2 − 〈d~α
ds
, ~e〉2] 12

, (3.2)

The unit normal along a general generator ~l = ~ψ(s0, v) of the ruled
surface approaches a limiting direction as v infinitely decreases. This
direction is called the asymptotic normal direction and is defined as

~g(s)
∣∣∣
s=s0

= ~N(s, v)
∣∣∣ s=s0
v→−∞

=
−d~e
ds
∧ ~e

| d~e
ds
|

∣∣∣
s=s0

. (3.3)

At v increases to +∞, the unit normal rotates through 180◦ about ~l and
ultimately takes the direction −~g. The point at which ~N has rotated
only 90◦ and is perpendicular to ~g is called the striction point (or central

point) on ~l. The direction of ~N at this point is denoted by ~t and called
the central normal of the ruled surface and is given by

~t(s) =
d~e/ds

|d~e/ds|
. (3.4)



Studying on a skew ruled surface by using the geodesic Frenet trihedron 617

The Frenet trihedron on a ruled surface can then be defined by the
dexterous triplet of vectors {~e, ~t, ~g}, where

~e = spherical indicatrix,

~t = central normal = ~e′ =
d~e

ds∗
=

~es
|~es|

, (3.5)

~g = asymptotic normal = ~e ∧ ~e′ =
~e ∧ ~es
|~es|

.

where ~es = d~e
ds

and ′ ≡ d
ds∗

. Differentiating the last two vector fields
with respect to s∗, we arrive at a set of formulas similar to the Frenet
formulas of a space curve, namely

~e′ = ~t,

~t′ = µ~g − ~e, (3.6)

~g′ = µ~t,

where µ = 〈~e,~es∧~ess〉
|~es|3 is the geodesic curvature of spherical indicatrix ~e.

These differentials are called the geodesic Frenet trihedron formulas of
the indicatrix ~e for a ruled surface.

Definition 3.1. The striction point on a ruled surface φ is the foot
of the common normal between two consecutive generators. The set of
striction points defines the striction curve which is given by

~c(s) = ~α(s)− 〈~αs, ~es〉
‖~es‖2

~e(s) (3.7)

If consecutive generators of a ruled surface intersect, then the surface
is said to be developable, otherwise the surface is said to be skew.

In this paper, the striction curve of the ruled surface ψ will be taken
as the base curve. In this case, the parametric equation of the surface
(2.1), can be written as

M : φ(s, v) = ~c(s) + v~e(s), (3.8)

where the tangent of the base curve of M is given by

~c′ = λ1~e+ λ2~t+ λ3~g ∈ span{~e,~t, ~g}, (3.9)
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with 〈~c′ , ~c′〉=1, implies that λ21 + λ22 + λ23 = 1, where λi are constants for
i=1,2,3.
Since the base curve of M is a striction curve, then we get

〈~c′ , ~e′〉 = 〈~c′ ,~t 〉 = 0 (3.10)

Hence, Eq.(3.9) becomes

~c′ = λ1~e+ λ3~g. (3.11)

The distribution parameter of the ruled surface M is defined by

Pe =
det(~c′ , ~e, ~e′)

〈~e′ , ~e′〉
= λ3. (3.12)

Since the ruled surface M defined by Eq. (3.8) is a skew ruled surface,
then λ3 6= 0

4. Skew ruled surfaces

In this section, we study the skew ruled surface (3.8) and get the con-
ditions for the surface M to be minimal, II-minimal, II-flat and Wein-
garten surface. For the skew ruled surface M, using Eqs.(3.6 )and (3.11),
the tangents of the parametric curves of the surface M are given by

~φs = λ1~e+ v~t+ λ3~g, ~φv = ~e. (4.1)

Thus, the first fundamental quantities are given as follows

g11 = 〈φs, φs〉 = 1 + v2, g12 = 〈φs, φv〉 = λ1, g22 = 〈φv, φv〉 = 1.
(4.2)

Hence, the discriminate g of the first fundamental form of M is

g = v2 + λ23. (4.3)

As an immediate result we have the following

Corollary 4.1. The only singular points on the ruled surface M are
along the points of striction curve(v=0) for which Pe=0.

Using Eq. (4.1), one can get the the unit normal vector field of M in
the form

~n(s, v) =
~N

‖ ~N‖
=

λ3~t− v~g√
v2 + λ23

. (4.4)
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Moreover, the principal normal vector ~e2 of M at the base curve(v=0) is

~e2 = ~n(s, 0) = ~t. (4.5)

From Eqs. (3.11) and (4.5), the binormal vector ~e3 of the curve ~c can be
performed as

~e3 = ~e1 ∧ ~e2 = λ1~g − λ3~e. (4.6)

From above, we can get the equations that describe the relation between
Frenet-Frame {~e1, ~e2, ~e3} of the base curve ~c and the geodesic Frenet
trihedron {~e,~t, ~g} of the indicatrix ~e of M in the form ~e1

~e2
~e3

 =

 λ1 0 λ3
0 1 0
−λ3 0 λ1

 ~e
~t
~g

 (4.7)

Using Eqs. (2.3) and (4.2), one can get the first fundamental form of
M in the form

I = (1 + v2)ds2 + 2λ1dsdv + dv2, (4.8)

The second derivatives for the function φ on M are given in the form

~φss = −v~e+ (λ1 − µλ3)~t+ µv~g, ~φsv = ~t, ~φvv = 0. (4.9)

Hence, we can reach the second fundamental quantities by using (2.7)
as follows

h11 =
λ1λ3 − µ(λ23 + v2)√

λ23 + v2
, h12 =

λ3√
λ23 + v2

, h22 = 0, h =
−λ23

λ23 + v2
.

(4.10)
Using Eqs. (2.6) and (4.10), the second fundamental form of M is

II =

(
λ1λ3 − µ (λ23 + v2)

)
ds2 + 2λ3ds dv√

λ23 + v2
. (4.11)

Substituting from Eqs. (4.3) and (4.10) in Eq. (2.9), the Gaussian
curvature K of the ruled surface M is

K =
−λ23

(λ23 + v2)2
(4.12)

Indeed we have the following theorem:

Theorem 4.1. The Gaussian curvature K of the ruled surface M is
non positive and K equal to zero only along the ruling which meet the
striction curve at a sigular point
(Pe = 0, v 6= 0).
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Using Eqs. (4.2) and (4.10), the mean curvature H of the ruled surface
M is given by

H =
−λ1λ3 + µ(λ23 − v2)

2(λ23 + v2)3/2
(4.13)

Hence, we have the following

Theorem 4.2. The ruled surface M is minimal if the spherical indi-
catrix ~e is a geodesic and the base curve is parallel to asymptotic normal
~g.

From Eq.(4.13), if the spherical indicatrix ~e with constant geodesic
curvature, then the mean curvature is a function of the variable v only,
i.e., H = H(v). Thus, using Eqs. (4.12) and (4.13), we have the following

Corollary 4.2. If the spherical indicatrix ~e of M with constant
geodesic curvature, then the surface M is Weingarten surface or, equiv-
alently, the corresponding Jacobian determinant is identically zero, i.e.,

ϕ(K,H) =
∣∣∣∂(K,H)

∂(s, v)

∣∣∣ ≡ 0. (4.14)

Using Eqs.(2.10) and (2.11) , it is easy to see that the second Gaussian
curvature KII and the second mean curvature HII of the ruled surface
M are, respectively

KII =
−λ1λ3(λ23 − v2) + µ(λ23 + v2)

2λ23(λ
2
3 + v2)2

. (4.15)

HII =
1

2

[−λ1λ3 − µ(λ23 + v2)

2(λ23 + v2)3/2
+
µ2(λ23 + v2)3 + λ3µ

′[−λ21λ3(λ23 − 3v2) + v(v2+λ
2
3)]

λ43(λ
2
3 + v2)2

]
.

(4.16)

Corollary 4.3. The ruled surface M is II-flat and II-minimal if
the spherical indicatrix ~e is a geodesic and the base curve is parallel to
asymptotic normal ~g.

4.1. Orthogonal trajectory of the rulings. Let ~γ be a regular curve
on M , then it can be expressed as

~γ(s) = ~c(s) + v(s) ~e(s). (4.17)

If point P displaced orthogonally along the ruling ~e to a neighbouring
point P0, then we have an orthogonal trajectory

~γ: I → φ(s, v)
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The condition that the point P be displaced orthogonally to the ruling
is

〈~γ′ , ~e 〉 = 0. (4.18)

More explicitly,
λ1 + v

′
= 0. (4.19)

Integrating, we have

v = −
∫
λ1ds+ c1, (4.20)

where c1 is an arbitrary real constant. The points on the base curve ~c(s)
from which the arc length is measured may be chosen to make c1 = 0,
then the distance v to a particular orthogonal trajectory is given by

v = −λ1s. (4.21)

As an immediate result we have the following

Corollary 4.4. The distance v along a ruling from the base curve
curve ~c(s) to an orthogonal trajectory ~γ is proportional to the arc length
of the base curve.

5. Curves on skew ruled surfaces

In this section, we introduce the parametric equations which deter-
mine the asymptotic and the geodesic lines on the ruled surface M . Fi-
nally, example is given to show the asymptotic and the geodesic curves
on the skew ruled surfaces under investigation.

5.1. The geodesic torsion. Consider a regular curve ~γ on the the
surface M defined by Eq. (4.17). Since ~n is the unit normal vector field
of the surface M , then the geodesic torsion τg for the curve ~γ is given by

τg =
[~γ′ , ~n, ~n′ ]

|~γ′|
. (5.1)

Taking the derivative of the curve ~γ = ~γ(s) and the unit normal vector
~n = ~n(s, v(s)) with respect to the arc length s∗, respectively, we obtain

~γ′ = (λ1 + v
′
)~e+ v~t+ λ3~g. (5.2)

~n′ =
(−λ23 − λ3v2)~e+ (λ23µv + µv3 − λ3vv

′
)~t+ (λ23µ+ λ3µv

2 + v2v
′
)~g

(λ23 + v2)3/2
.

(5.3)
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Thus, we have

τg =
(λ1 + v

′
)(λ43µ+ λ23µv

2 + λ23µv
2 + µv4) + (λ23 + λ23v

2)(λ23 + v2)

(λ23 + v2)2
[
(λ1 + v′)2 + λ23 + v2

]1/2
(5.4)

Remark 5.1. The geodesic torsion for the base curve ~c (v = 0) on
M is

τg
∣∣
v=0

= λ1µ+ λ3 (5.5)

5.2. The normal curvature. For the curve ~γ on the the surface M
defined by Eq. (4.17), the normal curvature kn is given by

kn =
〈 ~γ′′ , ~n〉
|~γ′|2

. (5.6)

Taking the derivative of Eq. (5.2), we have

~γ′′ = (v
′′ − v)~e+ (λ1 + 2v

′ − λ3µ)~t+ µv~g. (5.7)

Hence, we get

kn =
λ1λ3 + 2λ3v

′ − µ(λ23 + v2)

(λ23 + v2)1/2
[
(λ1 + v′)2 + λ23 + v2

] (5.8)

From Eq. (5.8), the differential equation of the asymptotic lines (kn = 0)
on the surface M is given by

2λ3v
′ − µ(λ23 + v2) + λ1λ3 = 0. (5.9)

In general, the linear differential equation (5.9) can not be solved ana-
lytically. Hence, let us assume that λ1=0 and λ3=1.
Under this assumption, the surface M is a skew and hence, Eq. (5.9)
takes the form

2v
′ − µ(1 + v2) = 0 (5.10)

It is well known that the solution of the Eq. (5.10) is

v = tan(
1

2

∫
µds+ c2), (5.11)

where c2 is an arbitrary constant. From Eqs. (4.17) and (5.11), the
equation of asymptotic line on M is

~γ1(s) = ~c(s) + tan(
1

2

∫
µds+ c2) ~e(s), (5.12)

as shown in figure (1). Then we have the following
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Theorem 5.1. For the skew ruled surface M , if the base curve is
parallel to the asymptotic normal of the spherical indicatrix ~e, then the
asymptotic lines on the ruled surface M is given by Eq. (5.12).

Remark 5.2. The normal curvature for the base curve ~c (v = 0) on
M is

kn
∣∣
v=0

= λ1 − µλ3 (5.13)

5.3. The geodesic curvature. Consider the regular curve ~γ on the
the surface M defined by Eq. (4.17). Since ~n is the unit normal vector
field of the surface M , then the geodesic curvature kg for the curve ~γ is
given by

kg =
[ ~γ′′ , ~γ′ , ~n]

|~γ′|3
. (5.14)

Using Eqs. (4.4), (5.2) and (5.7), we get

kg =
(v
′′ − v)(−v2 − λ23)− (λ1 + v

′
)(−λ1v − 2vv

′
)

(λ23 + v2)1/2
[
(λ1 + v′)2 + λ23 + v2

]3/2 . (5.15)

From Eq. (5.15), the differential equation of the geodesic curves on the
surface M is given by

(λ23 + v2)v
′′ − 2vv′2 − 3λ1vv

′ − (v2 + 1)v = 0. (5.16)

In general, the non-linear differential equation (5.16) can not be solved
analytically. Hence, let us assume that λ1=0 and λ3=1. Under this
assumption, the surface M is a skew and hence, Eq. (5.16) takes the
form

(1 + v2)v
′′ − 2vv′2 − (v2 + 1)v = 0. (5.17)

After some calculations, we can get the following solution for the differ-
ential equation (5.17)

v = ± sinh(s− c4). (5.18)

where c4 is an arbitrary constant. From Eqs. (4.17) and (5.18), the
equation of a geodesic curve on M is

~γ2(s) = ~c(s) + sinh(s− c4) ~e(s), (5.19)

as shown in figure (2). Thus, we have the following

Theorem 5.2. For the skew ruled surface M , if the base curve is
parallel to the asymptotic normal of the spherical indicatrix ~e, then the
geodesic lines on the ruled surface M is given by Eq. (5.19).
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Remark 5.3. The geodesic curvature for the base curve ~c (v = 0) on
the ruled surface M is given by

kg
∣∣
v=0

= 0 (5.20)

Since the geodesic curvature kg and the normal curvature kn of the
base curve satisfy the relation k2 = k2g + k2n, then we have

Corollary 5.1. The curvature k of the base curve ~c of the ruled
surface M is equal the normal curvature kn, i.e.,

k = kn
∣∣
v=0

= λ1 − µλ3. (5.21)

Example 5.3.1. Consider the elliptic hyperboloid of one sheet pa-
rameterized by

φ(s, v) =

√
2

2

(
cos(s)− v sin(s), sin(s) + v cos(s), s+ v

)
, (5.22)

with λ1=0 and λ3=1. Short calculations give us the following

~e =
√
2
2

(
− sin(s), cos(s), 1

)
, ~t =

(
− cos(s),− sin(s), 0

)
and ~g =

√
2
2

(
− sin(s),− cos(s), 1

)
, From Eq. (5.12), it follows that the equation

of asymptotic lines on the surface M is

~γ1(s) =
1√
2

(
−sin(s) tan

(
c+

s

2

)
−cos(s), sin

(
c− s

2

)
sec
(
c+

s

2

)
, tan

(
c+

s

2

)
+s
)
,

(5.23)
(see fig. 1). Also, from Eq. (5.18), it follows that the equation of a

geodesic curve on the surface M is given as

~γ2(s) =
1√
2

(
−cos(s)−

√
sinh(s2) sin(s),

√
sinh(s2) cos(s)−sin(s),

√
sinh(s2)+s

)
,

(5.24)

(see fig. 2).
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asymptotic line

Figure 1. Skew ruled surface M and its asymptotic line.

geodesic line

Figure 2. Skew ruled surface M and its geodesic line.
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