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ON SEQUENCE SPACES DEFINED BY THE DOMAIN OF

TRIBONACCI MATRIX IN c0 AND c

Taja Yaying∗,† and Merve İlkhan Kara

Abstract. In this article we introduce tribonacci sequence spaces c0(T ) and c(T )
derived by the domain of a newly defined regular tribonacci matrix T. We give some
topological properties, inclusion relations, obtain the Schauder basis and determine
α−, β− and γ− duals of the spaces c0(T ) and c(T ). We characterize certain matrix
classes (c0(T ), Y ) and (c(T ), Y ), where Y is any of the spaces c0, c or `∞. Finally,
using Hausdorff measure of non-compactness we characterize certain class of compact
operators on the space c0(T ).

1. Introduction

Throughout the paper N = {0, 1, 2, 3, . . .} and w is the space of all real valued
sequences. By `∞, c0 and c, we mean the spaces all bounded, null and convergent
sequences, respectively. Also by `p, cs, cs0 and bs, we mean the spaces of absolutely
p-summable, convergent, null and bounded series, respectively, where 1 ≤ p <∞. We
write φ for the space of all sequences that terminate in zero. Moreover, we denote
the space of all sequences of bounded variation by bv. A Banach space X is said to
be a BK-space if it has continuous coordinates. The spaces `∞, c0 and c are BK-
spaces with norm ‖x‖`∞ = supk |xk| . Here and henceforth, for simplicity in notation,
the summation without limit runs from 0 to ∞. Also, we shall use the notation
e = (1, 1, 1, . . .) and e(k) to be the sequence whose only non-zero term is 1 in the kth

place for each k ∈ N.
Let X and Y be two sequence spaces and let A = (ank) be an infinite matrix of real

entries. We write An to denote sequence in the nth row of the matrix A. We say that
a matrix A defines a matrix mapping from X to Y if for every sequence x = (xk), the
A−transform of x i.e. Ax = {(Ax)n}∞n=0 ∈ Y where

(1) (Ax)n =
∑
k

ankxk, n ∈ N.
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By (X, Y ), we denote the class of all matrices A from X to Y. Thus A ∈ (X, Y ) if and
only if the series on the right hand side of the equation (1) converges for each n ∈ N
and x ∈ X such that Ax ∈ Y for all x ∈ X.

The sequence space XA defined by

(2) XA = {x = (xk) ∈ w : Ax ∈ X} ,
is called the domain of matrix A in the space X. Several authors in the literature have
constructed sequence spaces using the domain of some special matrices. For instance,
one may refer to these nice papers [2, 4, 22, 29, 32, 43]. For some recent publications
dealing with the sequence spaces derived by the domain of some special triangular
matrices, one may see [11,18,19,21,38,39,46–51].

1.1. Compact operators and Hausdorff measure of non-compactness. Through-
out the paper, B(X) will denote unit sphere in X. Let X and Y be two Banach
spaces, then by B(X, Y ) we denote the class of all bounded linear operators L :
X → Y. B(X, Y ) itself is a Banach space with the operator norm defined by ‖L‖ =

sup
x∈B(X)

‖Lx‖ . We denote

(3) ‖a‖∗X = sup
x∈B(X)

∣∣∣∣∣∑
k

akxk

∣∣∣∣∣
for a ∈ w, provided that the series on the right hand side is finite which is the case
whenever X is a BK space and a ∈ Xβ [44]. Also L is said to be compact if the
domain of L is all of X and for every bounded sequence (xk) in X, the sequence
((Lx)k) has a convergent subsequence in Y. We denote the class of all such operators
by C(X, Y ).

The Hausdorff measure of noncompactness of a bounded set Q in a metric space
X is defined by

χ(Q) = inf {ε > 0 : Q ⊂ ∪nl=0B(xl, rl), xl ∈ X, rl < ε(l = 0, 1, 2, . . . , n), n ∈ N} ,
where B(xl, rl) is the open ball centered at xl and radius rl for each l = 0, 1, 2, . . . , n.
One may refer to [31] and the references mentioned therein for more details on Haus-
dorff measure of non-compactness.

The Hausdorff measure of non-compactness of an operator L, denoted by ‖L‖χ ,
is defined by ‖L‖χ = χ(L(B(X))) , and the necessary and sufficient condition for

the operator L to be compact is that ‖L‖χ = 0. Using this relation several authors
in the recent times have characterized compact operators using Hausdorff measure
of non-compactness between BK spaces. For some relevant papers, one may see
[18–20,30,33,34].

1.2. Some definitions and notations. The following definitions are fundamental
in our investigation:

Definition 1.1. [44] A matrix A = (ank)n,k∈N is said to be regular if and only if
the following conditions hold:

(a) There exists M > 0 such that for every n ∈ N, the inequality
∑

k |ank| ≤ M
holds.

(b) lim
n→∞

ank = 0 for every k ∈ N.
(c) lim

n→∞

∑
k ank = 1.
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Definition 1.2. A sequence x = (xk) of a normed space (X, ‖·‖) is called a
Schauder basis if for every u ∈ X there exists a unique sequence of scalars (ak) such
that

lim
n→∞

∥∥∥∥∥u−
n∑
k=0

akxk

∥∥∥∥∥ = 0.

Definition 1.3. The α−, β− and γ−duals of the subset X ⊂ w are defined by

Xα = {a = (ak) ∈ w : ax = (akxk) ∈ `1 for all x ∈ X},
Xβ = {a = (ak) ∈ w : ax = (akxk) ∈ cs for all x ∈ X},
Xγ = {a = (ak) ∈ w : ax = (akxk) ∈ bs for all x ∈ X},

respectively.

2. Tribonacci sequence spaces c0(T ) and c(T )

The studies on tribonacci numbers was first initiated by a 14 year old student,
Mark Feinberg [16] in 1963. Define the sequence (tn)n∈N of tribonacci numbers given
by third order recurrence relation

tn = tn−1 + tn−2 + tn−3, n ≥ 3 with t0 = t1 = 1 and t2 = 2.

Thus, the first few numbers of tribonacci sequence are 1, 1, 2, 4, 7, 13, 24, . . .. Some
basic properties of tribonacci sequence are:

lim
n→∞

tn
tn+1

= 0.54368901 . . . ,

n∑
k=0

tk =
tn+2 + tn − 1

2
, n ≥ 0,

lim
n→∞

tn+1

tn
= 1.83929 (approx.).

Binet’s formula for tribonacci sequence is given in [41]. For some nice papers related
to tribonacci sequence, one may refer to [7–9,12,16,17,26,37,40,41,45].

Now, we define the infinite matrix T = (tnk) given by

tnk =

{
2tk

tn+2+tn−1 (0 ≤ k ≤ n),

0 (k > n).

Equivalently

T =



1 0 0 0 . . .
1
2

1
2

0 0 0 . . .
1
4

1
4

1
2

0 0 . . .
1
8

1
8

1
4

1
2

0 . . .
1
15

1
15

2
15

4
15

7
15

. . .
...

...
...

...
...

. . .

 .
Clearly, Definition 1.1 implies that the matrix T is regular. Quite recently Yaying
and Hazarika [47] studied the domain of the matrix T in the space `p and introduced
the sequence spaces `p(T ) for 1 ≤ p ≤ ∞.
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Now, we introduce the tribonacci sequence spaces c0(T ) and c(T ) as the set of all
sequences whose T−transform are in the spaces c0 and c, respectively, that is

c0(T ) = {x = (xk) ∈ w : Tx ∈ c0} and c(T ) = {x = (xk) ∈ w : Tx ∈ c}.

Using the notation (2), the above sequence spaces may be redefined as

(4) c0(T ) = (c0)T and c(T ) = (c)T .

Define the sequence y = (yn) which will be frequently used as the T−transform of
the sequence x = (xk) by

(5) yn = (Tx)n =
n∑
k=0

2tk
tn+2 + tn − 1

xk, n ∈ N.

We also use the convention that any term with negative subscripts, eg. x−1 or t−1
shall be considered as naught. We begin with the following theorem:

Theorem 2.1. The spaces c0(T ) and c(T ) are BK-spaces with the norm defined
by

(6) ‖x‖c0(T ) = ‖x‖c(T ) = sup
n∈N
|(Tx)n| .

Proof. The sequence spaces c0 and c are BK spaces with their natural norms.
Since equation (4) holds and T is a triangular matrix, therefore Theorem 4.3.12 of
Wilansky [44] yields the fact that c0(T ) and c(T ) are BK-spaces with the given
norm.

Theorem 2.2. The sequence spaces c0(T ) and c(T ) are linearly isomorphic to c0
and c, respectively.

Proof. We prove the theorem for the space c0(T ). Using the notion (5), we define
the mapping Φ : c0(T ) → c0 by x 7→ y = Φx = Tx. Clearly Φ is linear and x = 0
whenever Φx = 0. Thus, Φ is injective.
Furthermore, let y = (yk) ∈ c0 and define the sequence x = (xk) by

(7) xk =
k∑

j=k−1

(−1)k−j
tj+2 + tj − 1

2tk
yj, (k ∈ N).

Then

lim
k→∞

(Tx)k = lim
k→∞

k∑
j=0

2tj
tk+2 + tk − 1

xj

= lim
k→∞

k∑
j=0

2tj
tk+2 + tk − 1

j∑
i=j−1

(−1)j−i
tj+2 + tj − 1

2tj
yj

= lim
k→∞

yk = 0.

Thus, x ∈ c0(T ). Hence, Φ is surjective and norm preserving. Thus, c0(T ) ∼= c0.

Now, we give certain inclusion relations regarding the space X(T ), where X = {c0, c}.

Theorem 2.3. The inclusions c0 ⊂ c0(T ) and c ⊂ c(T ) strictly hold.
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Proof. Since the matrix T is regular, therefore the inclusions are obvious. To prove
the strictness part, we consider the sequence x = (1, 0, 1, 0 . . .). Then, we have

(Tx)n =
n∑
k=0

2tk
tn+2 − tn + 1

xk =
2

tn+2 + tn − 1
{t0 + t2 + . . .+ tn}, (n ∈ N)

which converges. Thus, x ∈ c(T ) \ c. Similarly, one can prove the other case.

Theorem 2.4. The inclusion c0(T ) ⊂ c(T ) strictly holds.

Proof. It is clear that the inclusion c0(T ) ⊂ c(T ) holds. To prove the strictness
part, we consider the sequence x = (xk) given by xk = 1 for all k. Then, we have

(Tx)n =
n∑
k=0

2tk
tn+2 + tn − 1

= 1 for all n.

Thus, Tx ∈ c but not in c0. This implies that x ∈ c(T ) \ c0(T ). This establishes the
result.

We conclude this section by constructing a sequence of points of the spaces c0(T )
and c(T ) which forms Schauder basis for that spaces. The mapping Φ : c0(T ) → c0
defined in the proof of Theorem 2.2 is an isomorphism, therefore the inverse image of
the basis

{
e(k)
}
k∈N of the space c0 forms the basis of new space c0(T ). Thus, we have

the following result:

Theorem 2.5. Define the sequence b(k) = (b
(k)
n ) for every fixed k ∈ N by

(8) b(k)n =

{
(−1)n−k tk+2+tk−1

2tn
(n− 1 ≤ k ≤ n),

0 (0 ≤ k < n− 1 or k > n).

Then

(a) the sequence
{
b(k)
}
k∈N is a basis for the space c0(T ) and every x ∈ c0(T ) has a

unique representation of the form

x =
∑
k

αkb
(k)

where αk = (Tx)k for each k ∈ N.
(b) the sequence {e, b(0), b(1), . . .} is a basis for the space c(T ) and every x ∈ c(T )

has a unique representation of the form

x = le+
∑
k

(αk − l)b(k),

where αk = (Tx)k for all k ∈ N and l = lim
k→∞

(Tx)k.

Corollary 2.6. The sequence spaces c0(T ) and c(T ) are seperable spaces.

Proof. The result is immediate from Theorem 2.1 and Theorem 2.5.
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3. α−, β− and γ− duals

In this section we obtain α−, β− and γ− duals of the spaces c0(T ) and c(T ). Before
proceeding, we recall certain results due to Stielglitz and Tietz [42] which are essential
for our investigation. Throughout N will denote the collection of all finite subsets of
N.

Lemma 3.1. A = (ank) ∈ (c0, `1) = (c, `1) if and only if

sup
N∈N

∑
k

∣∣∣∣∣∑
n∈N

ank

∣∣∣∣∣ <∞.
Lemma 3.2. A = (ank) ∈ (c0, c) if and only if

(9) sup
n

(∑
k

|ank|

)
<∞;

(10) lim
n→∞

ank exists for all k ∈ N.

Lemma 3.3. A = (ank) ∈ (c, c) if and only if (9) and (10) hold, and lim
n→∞

∑
k ank exists.

Lemma 3.4. A = (ank) ∈ (c0, `∞) = (c, `∞) if and only if (9) holds.

Theorem 3.5. Define the set α1 by

α1 =

{
a = (ak) ∈ w : sup

K∈F

∑
k

∣∣∣∣∣∑
n∈K

unk

∣∣∣∣∣ <∞
}
,

where the matrix U = (unk) is defined by

unk =

{
(−1)n−k tk+2+tk−1

2tn
an (n− 1 ≤ k ≤ n),

0 (k > n or 0 ≤ k < n− 1),

for all n, k ∈ N. Then,

[c0(T )]α = [c(T )]α = α1.

Proof. Let a = (ak) ∈ w and x = (xk) is as defined in (7), then we have

anxn =
n∑

k=n−1

(−1)n−k
tk+2 + tk − 1

2tn
anyk

= (Uy)n, for each n ∈ N.(11)

Thus, we deduce from (11) that ax = (anxn) ∈ `1 whenever x ∈ c0(T ) or c(T ) if only
if Uy ∈ `1 whenever y ∈ c0 or c. This yields that (an) ∈ [c0(T )]α or [c(T )]α if and only
if U ∈ (c0, `1) = (c, `1).
Thus, by using Lemma 3.1, we can conclude that

[c0(T )]α = [c(T )]α = α1.
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Theorem 3.6. Define the sets α2, α3 and α4 by

α2 =

{
a = (ak) ∈ w :

∑
k

∣∣∣∣∆(aktk
)(

tk+2 + tk − 1

2

)∣∣∣∣ <∞
}

;

α3 =

{
a = (ak) ∈ w : sup

k

∣∣∣∣tk+2 + tk − 1

2tk
ak

∣∣∣∣ <∞} ;

and

α4 =

{
a = (ak) ∈ w : lim

k

tk+2 + tk − 1

2tk
ak exists

}
;

where ∆
(
ak
tk

)(
tk+2+tk−1

2

)
=
(
ak
tk
− ak+1

tk+1

)(
tk+2+tk−1

2

)
.

Then, [c0(T )]β = α2 ∩ α3 and [c(T )]β = α2 ∩ α4.

Proof. Let a = (ak) ∈ w and x = (xk) is as defined in (7). Then, we have

n∑
k=0

akxk =
n∑
k=0

ak

(
k∑

j=k−1

(−1)k−j
tj+2 + tj − 1

2tk
yj

)

=
n−1∑
k=0

(
ak
tk
− ak+1

tk+1

)(
tk+2 + tk − 1

2

)
yk +

tn+2 + tn − 1

2tn
anyn

=
n−1∑
k=0

∆

(
ak
tk

)(
tk+2 + tk − 1

2

)
yk +

tn+2 + tn − 1

2tn
anyn(12)

= (V y)n, for each n ∈ N,(13)

where the matrix V = (vnk) is defined by

vnk =


∆
(
ak
tk

)(
tk+2+tk−1

2

)
(k < n),

tn+2+tn−1
2tn

(k = n),

0 (k > 0).

Clearly the columns of the matrix V are convergent, since

(14) lim
n→∞

vnk = ∆

(
ak
tk

)(
tk+2 + tk − 1

2

)
.

Thus, we deduce from (13) that ax = (akxk) ∈ cs whenever x = (xk) ∈ c0(T ) if only

if V y ∈ c whenever y = (yk) ∈ c0. This implies that a = (ak) ∈ [c0(T )]β if and only if
V ∈ (c0, c).

Thus, using (12), (14) and Lemma 3.2, we get that∑
k

∣∣∣∣∆(aktk
)(

tk+2 + tk − 1

2

)∣∣∣∣ <∞ and sup
k

∣∣∣∣tk+2 + tk − 1

2tk

∣∣∣∣ <∞.
Therefore [c0(T )]β = α2 ∩ α3.

Similarly, we can obtain the β-dual of the space c(T ) by using Lemma 3.3 and
equation (14).

Theorem 3.7. [c0(T )]γ = [c(T )]γ = α2 ∩ α3.
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Proof. The result can be obtained analogously to the previous theorem by using
Lemma 3.4.

4. Certain matrix transformations on the sequence spaces c0(T ) and c(T )

In this section, we characterize the matrix classes (c0(T ), Y ) and (c(T ), Y ) where
Y is any of the spaces `∞, c and c0. For brevity, we write,

(15) ãnk =

(
ank
tk
− an,k+1

tk+1

)(
tk+2 + tk − 1

2

)
for all n, k ∈ N. Further, let x, y ∈ w be connected by the relation y = Tx. Then, we
have by (12)

(16)
m∑
k=0

ankxk =
m−1∑
k=0

ãnkyk +
tm+2 + tm − 1

2tm
anmym (n,m ∈ N).

Now let us consider following conditions before we proceed:

sup
n

(∑
k

|ãnk|

)
<∞,(17) (

tk+2 + tk − 1

2tk
ank

)∞
k=0

∈ `∞ for every n ∈ N,(18) (
tk+2 + tk − 1

2tk
ank

)∞
k=0

∈ c for every n ∈ N,(19)

sup
n

∣∣∣∣∣∑
k

ank

∣∣∣∣∣ <∞,(20)

lim
n→∞

(∑
k

ank

)
= a, for all n, k ∈ N,(21)

lim
n→∞

(∑
k

ank

)
= 0, for all n, k ∈ N,(22)

lim
n→∞

ãnk = ãk; k ∈ N,(23)

lim
n→∞

ãnk = 0; k ∈ N.(24)

Now using the results in [42] and Theorem 3.6 together with (16), we deduce the
following results:

Theorem 4.1. (a) A = (ank) ∈ (c0(T )), `∞) if and only if (17) and (18) hold.
(b) A = (ank) ∈ (c0(T ), c0) if and only if (17), (18), and (24) hold.
(c) A = (ank) ∈ (c0(T ), c) if and only if (17), (18) and (23) hold.

Theorem 4.2. (a) A = (ank) ∈ (c(T ), `∞) if and only if (17), (19) and (20) hold.
(b) A = (ank) ∈ (c(T ), c0) if and only if (17), (19), (22) and (24) hold.
(c) A = (ank) ∈ (c(T ), c) if and only if (17), (19), (21) and (23) hold.

The following lemma gives the necessary and sufficient conditions for matrix map-
pings between any two sequence spaces:
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Lemma 4.3. [5, Lemma 5.3] Let X and Y be any two sequence spaces. Let A be
an infinite matrix and B be a triangle. Then A ∈ (X, YB) if and only if BA ∈ (X, Y ).

Now, combining Lemma 4.3 with Theorem 4.1 and Theorem 4.2 and choosing B
as one of the special matrices, Fibonacci matrix F [10, 13], Euler matrix Er [2, 4, 32]
and Riesz matrix Rt [3, 29], we deduce the following corollaries:

Corollary 4.4. Define the matrix D = (dnk) by dnk =
∑n

j=0
fj+1

fn+3−1cjk for all

n, k ∈ N. Then, we have

(a) C = (cnk) ∈ (c(T ), `∞(F )) if and only if (17), (19) and (20) hold with dnk instead
of ank.

(b) C = (cnk) ∈ (c(T ), c0(F )) if and only if (17), (19), (22) and (24) hold with dnk
instead of ank.

(c) C = (cnk) ∈ (c(T ), c(F )) if and only if (17), (19), (21) and (23) hold with dnk
instead of ank.

Corollary 4.5. Define the matrix D = (dnk) by dnk =
∑n

j=0

(
n
j

)
(1 − r)n−jrjcjk

for all n, k ∈ N. Then, we have

(a) C = (cnk) ∈ (c(T ), er∞) if and only if (17), (19) and (20) hold with dnk instead
of ank.

(b) C = (cnk) ∈ (c(T ), er0) if and only if (17), (19), (22) and (24) hold with dnk
instead of ank.

(c) C = (cnk) ∈ (c(T ), erc) if and only if (17), (19), (21) and (23) hold with dnk
instead of ank.

Corollary 4.6. Define the matrix D = (dnk) by dnk = 1
Tn

∑n
j=0 tjcjk for all

n, k ∈ N. Then, we have

(a) C = (cnk) ∈ (c(T ), rt∞) if and only if (17), (19) and (20) hold with dnk instead
of ank.

(b) C = (cnk) ∈ (c(T ), rt0) if and only if (17), (19), (22) and (24) hold with dnk
instead of ank.

(c) C = (cnk) ∈ (c(T ), rtc) if and only if (17), (19), (21) and (23) hold with dnk
instead of ank.

5. Hausdorff measure of non-compactness

In this section, we obtain necessary and sufficient condition for an operator to be
compact from c0(T ) to Y ∈ {c0, c, `∞, `1, cs0, cs, bs, bv} using Hausdorff measure of
non-compactness. First, we recall certain results and notations that are essential for
our investigation.

Lemma 5.1. `β∞ = cβ = cβ0 = `1. Further, for X ∈ {`∞, c, c0}, then ‖x‖∗X = ‖x‖`1 .

Lemma 5.2. [44, Theorem 4.2.8] Let X and Y be any two BK−spaces. Then
we have (X, Y ) ⊂ B(X, Y ), that is, every A ∈ (X, Y ) defines a linear operator
LA ∈ B(X, Y ), where LAx = Ax for all x ∈ X.

Lemma 5.3. [31, Theorem 1.23] Let X ⊃ φ be a BK space. If A ∈ (X, Y ) then

‖LA‖ = ‖A‖(X,Y ) = sup
n
‖An‖∗X <∞.
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Lemma 5.4. [31, Theorem 2.15] Let Q be a bounded subset in c0 and Pr : c0 → c0
is the operator defined by Pr(x0, x1, x2 . . .) = (x0, x1, x2 . . . , xr, 0, 0, . . .) for all x =
(xk) ∈ c0, then

χ(Q) = lim
r→∞

(
sup
x∈Q
‖(I − Pr)(x)‖

)
,

where I is the identity operator on c0.

Lemma 5.5. [33, Theorem 3.7] Let X ⊃ φ be a BK−space. Then, the following
statements hold:

(a) If A ∈ (X, c0), then ‖LA‖χ = lim sup
n→∞

‖An‖∗X and LA is compact if and only if

lim
n→∞

‖An‖∗X = 0.

(b) If X has AK and A ∈ (X, c), then

1

2
lim sup
n→∞

‖An − a‖∗X ≤ ‖LA‖χ ≤ lim sup
n→∞

‖An − a‖∗X

and LA is compact if and only if lim
n→∞

‖An − a‖∗X = 0, where a = (ak) with

ak = lim
n→∞

ank for all k ∈ N.
(c) IfA ∈ (X, `∞), then 0 ≤ ‖LA‖χ ≤ lim sup

n→∞
‖An‖∗X and LA is compact if lim

n→∞
‖An‖∗X =

0.

In the rest of the paper, Nr is the subcollection of N consisting of subsets of N
with elements that are greater than r.

Lemma 5.6. [33, Theorem 3.11] Let X ⊃ φ be a BK−space. If A ∈ (X, `1), then

lim
r→∞

(
sup
N∈Nr

∥∥∥∥∥∑
n∈N

An

∥∥∥∥∥
∗

X

)
≤ ‖LA‖χ ≤ 4 · lim

r→∞

(
sup
N∈Nr

∥∥∥∥∥∑
n∈N

An

∥∥∥∥∥
∗

X

)

and LA is compact if and only if lim
r→∞

(
sup
N∈Nr

∥∥∥∥∑
n∈N

An

∥∥∥∥∗
X

)
= 0.

Lemma 5.7. [33, Theorem 4.4, Corollary 4.5] Let X ⊃ φ be a BK−space and let

‖A‖[n]bs =

∥∥∥∥∥
n∑

m=0

Am

∥∥∥∥∥
∗

X

.

Then, the following statements hold:

(a) If A ∈ (X, cs0), then ‖LA‖χ = lim sup
n→∞

‖A‖[n](X,bs) and LA is compact if and only

if lim
n→∞

‖A‖[n](X,bs) = 0.

(b) If X has AK and A ∈ (X, cs), then

1

2
lim sup
n→∞

∥∥∥∥∥
n∑

m=0

Am − ã

∥∥∥∥∥
∗

X

≤ ‖LA‖χ ≤ lim sup
n→∞

∥∥∥∥∥
n∑

m=0

Am − ã

∥∥∥∥∥
∗

X

and LA is compact if and only if lim
n→∞

‖
∑n

m=0Am − ã‖
∗
X

= 0, where ã = (ãk)

with ãk = lim
n→∞

∑n
m=0 amk for all k ∈ N.
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(c) If A ∈ (X, bs), then 0 ≤ ‖LA‖χ ≤ lim sup
n→∞

‖A‖[n](X,bs) and LA is compact if

lim
n→∞

‖A‖[n](X,bs) = 0.

Lemma 5.8. [33, Theorem 4.4, Corollary 4.6] Let X ⊃ φ be a BK−space and let

‖A‖(n)bv = sup
N∈Nr

∥∥∥∥∥∑
n∈N

An − An−1

∥∥∥∥∥
∗

X

.

Then if A ∈ (X, bv), then

lim
r→∞
‖A‖(r)bv ≤ ‖LA‖χ ≤ 4 · lim

r→∞
‖A‖(r)bv

and LA is compact if and only if lim
r→∞
‖A‖(r)bv = 0.

Lemma 5.9. Let X be a sequence space and A = (ank) and Ã = (ãnk) be related
by (15). If A ∈ (c0(T ), X), then Ã ∈ (c0, X) and Ax = Ãy for all x ∈ c0(T ).

Theorem 5.10. The following statements hold:

(a) if A ∈ (c0(T ), c0), then

‖LA‖χ = lim sup
n→∞

∑
k

|ãnk| .

(b) If A ∈ (c0(T ), c), then

1

2
lim sup
n→∞

∑
k

|ãnk − αk| ≤ ‖LA‖χ ≤ lim sup
n→∞

∑
k

|ãnk − αk| ,

where α = (αk) and αk = lim
n→∞

ãnk for each k ∈ N.
(c) If A ∈ (c0(T ), `∞), then

0 ≤ ‖LA‖χ ≤ lim sup
n→∞

∑
k

|ãnk| .

(d) if Ω ∈ (c0(T ), `1), then

lim
r→∞
‖A‖[r](c0(T ),`1)

≤ ‖LA‖χ ≤ 4 lim
r→∞
‖A‖[r](c0(T ),`1)

,

where ‖A‖[r](c0(T ),`1)
= supN∈Nr

∑
k

∣∣∑
n∈N ãnk

∣∣ , r ∈ N.
(e) if A ∈ (c0(T ), cs0), then

‖LA‖χ = lim sup
n→∞

(∑
k

∣∣∣∣∣
n∑

m=0

ãmk

∣∣∣∣∣
)
.

(f) if A ∈ (c0(T ), cs), then

1

2
lim sup
n→∞

(∑
k

∣∣∣∣∣
n∑

m=0

ω̃mk − α̃k

∣∣∣∣∣
)
≤ ‖LA‖χ ≤ lim sup

n→∞

(∑
k

∣∣∣∣∣
n∑

m=0

ãmk − α̃k

∣∣∣∣∣
)
,

where α̃ = (α̃k) with α̃k = limn→∞ (
∑n

m=0 ãmk) for each k ∈ N.
(g) If A ∈ (c0(T ), bs), then

0 ≤ ‖LA‖χ ≤ lim sup
n→∞

(∑
k

∣∣∣∣∣
n∑

m=0

ãmk

∣∣∣∣∣
)
.
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(h) Ω ∈ (c0(T ), bv), then

lim
r→∞
‖A‖(r)(c0(T ),bv)

≤ ‖LA‖χ ≤ 4 lim
r→∞
‖A‖(r)(c0(T ),bv)

,

where ‖A‖(r)(c0(T ),bv)
= supN∈Nr

∑
k

∣∣∑
n∈N ãnk − ãn−1,k

∣∣ , r ∈ N.

Proof. (a) Let A ∈ (c0(T ), c0) . One can notice that

‖An‖∗c0(T ) =
∥∥∥Ãn∥∥∥∗

c0
=
∥∥∥Ãn∥∥∥

`1
=
∑
k

|ãnk|

for n ∈ N. Hence using Part (a) of Lemma 5.5, we conclude that

‖LA‖χ = lim sup
n→∞

(∑
k

|ãnk|

)
.

(b) Observe that

(25)
∥∥∥Ãn − αk∥∥∥∗

c0
=
∥∥∥Ãn − αk∥∥∥

`1
=
∑
k

|ãnk − αk|

for each n ∈ N. Now, let A ∈ (c0(T ), c), then from Lemma 5.9, we have Ã ∈
(c0, c). Applying Part (b) of Lemma 5.5, we deduce that

1

2
lim sup
n→∞

∥∥∥Ãn − α∥∥∥∗
c0
≤ ‖LA‖χ ≤ lim sup

n→∞

∥∥∥Ãn − α∥∥∥∗
c0
,

which on using (25) gives us

1

2
lim sup
n→∞

∑
k

|ãnk − αk| ≤ ‖LA‖χ ≤ lim sup
n→∞

∑
k

|ãnk − αk|

which is the desired result.
(c) This is similar to the proof of Part (a) with Part (b) except that we employ Part

(c) of Lemma 5.5 instead of Part (a) of Lemma 5.5.
(d) Observe that

(26)

∥∥∥∥∥∑
n∈N

Ãn

∥∥∥∥∥
∗

c0

=

∥∥∥∥∥∑
n∈N

Ãn

∥∥∥∥∥
`1

=
∑
k

∣∣∣∣∣∑
n∈N

ãnk

∣∣∣∣∣ .
Let A ∈ (c0(T ), `1) then by Lemma 5.9, we get that Ã ∈ (c0, `1) . Hence, by
applying Lemma 5.6, we get

lim
r→∞

 sup
N∈Nr

∥∥∥∥∥∑
n∈N

Ãn

∥∥∥∥∥
∗

c0

 ≤ ‖LA‖χ ≤ 4 · lim
r→∞

 sup
N∈Nr

∥∥∥∥∥∑
n∈N

Ãn

∥∥∥∥∥
∗

c0


which further reduces on using (26) to

lim
r→∞
‖A‖[r](c0(T ),`1)

≤ ‖LA‖χ ≤ 4 lim
r→∞
‖Ω‖[r](c0(T ),`1)

,

as desired.
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(e) It is clear that∥∥∥∥∥
n∑

m=0

Am

∥∥∥∥∥
∗

c0(T )

=

∥∥∥∥∥
n∑

m=0

Ãm

∥∥∥∥∥
∗

c0

=

∥∥∥∥∥
n∑

m=0

Ãm

∥∥∥∥∥
`1

=
∑
k

∣∣∣∣∣
n∑

m=0

ãmk

∣∣∣∣∣ .
Hence by using Part (a) Lemma 5.7, we get

‖LA‖χ = lim sup
n→∞

(∑
k

∣∣∣∣∣
n∑

m=0

ãmk

∣∣∣∣∣
)
.

(f) We have

(27)

∥∥∥∥∥
n∑

m=0

Ãm − α̃

∥∥∥∥∥
∗

c0

=

∥∥∥∥∥
n∑

m=0

Ãm − α̃

∣∣∣∣∣
`1

=
∑
k

∣∣∣∣∣
n∑

m=0

ãmk − α̃k

∣∣∣∣∣
for each n ∈ N. Now, let A ∈ (c0(T ), cs), then by Lemma 5.9, we have Ã ∈ (c0 :
cs). Thus by applying Part (b) of Lemma 5.7, we deduce that

1

2
lim sup
n→∞

∥∥∥∥∥
n∑

m=0

Ãm − α̃k

∥∥∥∥∥
∗

c0

≤ ‖LA‖χ ≤ lim sup
n→∞

∥∥∥∥∥
n∑

m=0

Ãm − α̃k

∥∥∥∥∥
∗

c0

,

which on using (27) gives us

1

2
lim sup
n→∞

(∑
k

∣∣∣∣∣
n∑

m=0

ãmk − α̃k

∣∣∣∣∣
)
≤ ‖LA‖χ ≤ lim sup

n→∞

(∑
k

∣∣∣∣∣
n∑

m=0

ãmk − α̃k

∣∣∣∣∣
)
,

as desired.
(g) This is similar to Part (e) except that we employ Part (c) of Lemma 5.7 instead

of Part (a) of Lemma 5.7.
(h) We have

(28)

∥∥∥∥∥∑
n∈N

(
Ãn − Ãn−1

)∥∥∥∥∥
∗

c0

=

∥∥∥∥∥∑
n∈N

(
Ãn − Ãn−1

)∥∥∥∥∥
`1

=
∑
k

∣∣∣∣∣∑
n∈N

ãnk − ãn−1,k

∣∣∣∣∣ .
Let A ∈ (c0(T ), bv) then by Lemma 5.9, we get that Ã ∈ (c0, bv) . Hence, by
applying Lemma 5.8, we get

lim
r→∞

 sup
N∈Nr

∥∥∥∥∥∑
n∈N

(
Ãn − Ãn−1

)∥∥∥∥∥
∗

c0

 ≤ ‖LA‖χ ≤ 4· lim
r→∞

 sup
N∈Nr

∥∥∥∥∥∑
n∈N

(
Ãn − Ãn−1

)∥∥∥∥∥
∗

c0


which on using (28) gives us the desired result.

Now, we have the following corollaries:

Corollary 5.11. The following statements hold:

(a) Let A ∈ (c0(T ), c0), then LA is compact if and only if lim
n→∞

∑
k

|ãnk| = 0.

(b) Let A ∈ (c0(T ), c), then LA is compact if and only if lim
n→∞

(
∑

k |ãnk − αk|) = 0.

(c) Let A ∈ (c0(T ), `∞), then LA is compact if lim
n→∞

∑
k |ãnk| = 0.
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(d) Let A ∈ (c0(T ), `1), then LA is compact if and only if

lim
r→∞

(
sup
N∈Nr

(∑
k

∣∣∣∣∣∑
n∈N

ãnk

∣∣∣∣∣
))

= 0.

(e) LetA ∈ (c0(T ), cs0), then LA is compact if and only if lim sup
n→∞

(
∑

k |
∑n

m=0 ãmk|) =

0.
(f) Let A ∈ (c0(T ), cs), then LA is compact if and only if

lim sup
n→∞

(∑
k

∣∣∣∣∣
n∑

m=0

ãmk − α̃

∣∣∣∣∣
)

= 0.

(g) Let A ∈ (c0(T ), bs), then LA is compact if lim sup
n→∞

(
∑

k |
∑n

m=0 ãmk|) = 0.

(h) Let A ∈ (c0(T ), bv), then LA is compact if and only if

lim
r→∞

(
sup
N∈Nr

(∑
k

∣∣∣∣∣∑
n∈N

ãnk − ãn−1,k

∣∣∣∣∣
))

= 0.

6. Conclusion

Tribonacci numbers has been studied by several authors in the past and investigated
tribonacci identities, recurrence relations, generating functions, Binet’s formula for
tribonacci numbers, modified and generalized tribonacci numbers etc. Recently some
authors, for instance, İlkhan et al. [18, 19, 21], Roopaei [39] and Yaying et al. [51]
studied interesting sequence spaces using the domain of Euler totient matrix, Jordan
totient matrix, Copson matrix and q-Cesàro matrix, respectively. Quite recently
Yaying and Hazarika [47] studied the domain of tribonacci matrix in the space `p of
p-absolutely summable sequences. We follow their approach and study the domain
of tribonacci matrix in the spaces c0 and c. We expect that our results might be a
reference for further studies in this field. For further study, one can study the domain
of tribonacci matrix in the Maddox’s spaces, cs, bs, etc.
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[3] B. Altay, F. Başar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast
Asian Bull. Math. 30 (4) (2006), 591-608.
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