ON THE REDUCTION OF AN IWASAWA MODULE

JANGHEON OH

ABSTRACT. A finitely generated torsion module M for $\mathbb{Z}_p[[T,T_2,\cdots,T_d]]$ is pseudonull if M/TM is pseudo-null over $\mathbb{Z}_p[[T_2,\cdots,T_d]]$. This result is used as a tool to prove the generalized Greenberg's conjecture in certain cases. The converse may not be true. In this paper, we give examples of pseudo-null Iwasawa modules whose reduction are not pseudo-null.

1. Introduction

Fix a prime number p and let k be a number field. Suppose that K_d is a \mathbb{Z}_p^d extension of k, so $K_d = \bigcup_{n\geq 0} k_n$ with $k_n \subset k_{n+1}$ and $Gal(k_n/k) \simeq (\mathbb{Z}/p^n\mathbb{Z})^d$. Denote by L_n the p-Hilbert class field of k_n and write $L_{K_d} = \bigcup_{n\geq 0} L_n$. Then let

$$Y_{K_d} = Gal(L_{K_d}/K_d).$$

It is well-known that Y_{K_d} is a finitely generated torsion module for $\Lambda_d = \mathbb{Z}_p[[Gal(K_d/k)]]$. A finitely generated torsion Λ_d -module M is called pseudo-null(written by $M \sim 0$) if M has two relatively prime annihilators in Λ_d . Denote by \tilde{k} the composite of all \mathbb{Z}_p -extensions of k. Generalized Greenberg's conjecture claims that $Y_{\tilde{k}} \sim 0$. In certain cases, generalized Greenberg's conjecture is proved by some authors [1,3]. In those cases, the following theorem is a basic tool to attack the conjecture:

If
$$Y_{K_d}/TY_{K_d} \sim 0$$
 then $Y_{K_d} \sim 0$

Here Y_{K_d}/TY_{K_d} is viewed as a $\mathbb{Z}_p[[Gal(K_{d-1}/k)]]$ -module where $k \subset K_{d-1} \subset K_d$, γ is a topological generator of $Gal(K_d/K_{d-1})$, and $T = \gamma - 1$. In this paper, we give explicit number fields k such that the converse of the above theorem does not hold. In other words, we give examples of k such that

$$Y_{K_d} \sim 0$$
, but $Y_{K_d}/TY_{K_d} \not\sim 0$.

2. Proof of Theorems

Denote by k_c the cyclotomic \mathbb{Z}_p -extension of a number field k. When k is an imaginary quadratic field, a theorem of Minardi assures us to find easily k which we are looking for.

Received May 15, 2020. Revised January 13, 2021. Accepted April 1, 2021.

²⁰¹⁰ Mathematics Subject Classification: 11R23.

Key words and phrases: Iwasawa invariants, generalized Greenberg conjecture, bi-quadratic fields.

[©] The Kangwon-Kyungki Mathematical Society, 2021.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

THEOREM 2.1. Let k be an imaginary quadratic field with the class number h_k not divisible by p. Moreover assume that $\lambda_p(k) \geq 1$ when only one prime of k exists above p or $\lambda_p(k) \geq 2$ when p splits in k. Then the cyclotomic \mathbb{Z}_p -extension k_c satisfies the followings:

$$(1)Y_{\tilde{k}} \sim 0$$
$$(2)Y_{\tilde{k}}/TY_{\tilde{k}} \not\sim 0$$

where γ is a topological generator of $Gal(\tilde{k}/k_c)$.

Proof. By Minardi [3, Proposition 3.A], since $p \not| h_k$, we see that

$$Y_{\tilde{k}} \sim 0$$
.

Note that the fixed field of $TY_{\tilde{k}}$ is the maximal subfield L_0 of $L_{\tilde{k}}$ which is abelian over k_c and $Y_{\tilde{k}}/TY_{\tilde{k}} \simeq Gal(L_0/\tilde{k})$. By the assumption on λ -invariant, $Y_{\tilde{k}}/TY_{\tilde{k}}$ is not finite, i.e., not pseudo-null.

EXAMPLE 1. When $k = \mathbb{Q}(\sqrt{-3})$ and p = 13, $p \nmid h_k$, p splits in k and $\lambda_p = 2$.

Next, we give an example of k with $[k:\mathbb{Q}] > 2$. We state theorems needed for our construction. When k is a real quadratic field, Taya gives a necessary and sufficient condition for triviality of Y_{k_c} .

THEOREM 2.2. (= [4, Theorem 1]) Let d be a square-free integer with $d \equiv 1 \pmod{3}$ and d > 0. Put $k+=\mathbb{Q}(\sqrt{d})$ and $k-=\mathbb{Q}(\sqrt{-3d})$. For the cyclotomic \mathbb{Z}_3 -extension $k+_c$ of k+, denoted by $k+_n$ the n-th layer in $k+_c/k+$ and by $A+_n$ the 3-Sylow subgroup of the ideal class group of $k+_n$. Then $A+_n$ is trivial for all integers $n \geq 0$ if and only if the class number h_{k-} of k- is not divisible by 3.

Fujii proves that generalized Greenberg conjecture holds for certain CM fields.

THEOREM 2.3. (= [1, Theorem1]) Let k be a CM-field of degree greater than or equal to 4. Let p be an odd prime which splits completely in k/\mathbb{Q} . Suppose that Leopoldt's conjecture holds for p and k^+ , $p \nmid h_k$ and that all of Iwasawa invariants of the cyclotomic \mathbb{Z}_p -extension of k^+ are trivial. Then $Y_{\tilde{k}}$ is pseudo-null.

For $i \geq 2$, if $Y_{K_{i+1}} \sim 0$, then $Y_{K_i} \sim 0$ for infinitely many subextensions $K_i \subset K_{i+1}(\text{See [2]})$. Here we need more subtle theorem for our purpose.

THEOREM 2.4. (= [3, Corollary 2 in chapter 4]) Suppose that k is a complex abelian extension of \mathbb{Q} with $[k:\mathbb{Q}] > 2$. If $Y_{\tilde{k}} \sim 0$, then there is an infinite number of \mathbb{Z}_p^2 -extensions K/k with $k_c \subset K$ and $Y_K \sim 0$.

Now, by following idea of Minardi [3], we prove that $k = \mathbb{Q}(\sqrt{7}, \sqrt{-2})$ is the desired number field. From now on p = 3.

THEOREM 2.5. Let $k = \mathbb{Q}(\sqrt{7}, \sqrt{-2})$. Then there exists a \mathbb{Z}_p^2 -extension K_2 of k satisfying the followings:

$$(1)k \subset K_1 \subset K_2$$
$$(2)Y_{K_2} \sim 0$$
$$(3)Y_{K_2}/TY_{K_2} \not\sim 0$$

where γ is a topological generator of $Gal(K_2/K_1)$.

Proof. Note that \tilde{k} is a \mathbb{Z}_p^3 -extension of k. Denote by $k+=\mathbb{Q}(\sqrt{7})$ the maximal real subfield of k. By Theorem 2.2, $A+_n$ is trivial for all integers $n \geq 0$ since the class number $h_{k-} = h_{\mathbb{Q}}(\sqrt{-21})$ is 4. The quadratic subfields of k are $\mathbb{Q}(\sqrt{7}), \mathbb{Q}(\sqrt{-2}), \mathbb{Q}(\sqrt{-14})$. The prime p splits completely in each quadratic subfields of k, hence p splits completely in k The product of class numbers of quadratic subfields is 4, so h_k is not divisible by p. Therefore, by Theorem 2.2 and Theorem 2.3, we see that

$$Y_{\tilde{k}} \sim 0$$

By Theorem 2.4, we can choose a \mathbb{Z}_p^2 -extension K_2/k with $K_1(=k_c) \subset K_2$ and $Y_{K_2} \sim 0$. Since p splits completely in k and primes above p are totally ramified in K_1/k , the extension \tilde{k}/K_1 is unramified everywhere. Therefore the fixed field of TY_{K_2} contains \tilde{k} . So Y_{K_2}/TY_{K_2} is not finite, i.e., not pseudo-null. This completes the proof.

References

- [1] S.Fujii, On Greenberg's generalized conjecture for CM-fields, J.Reine Angew. Math. **731** (2017), 259–278.
- [2] T.Kataoka, A consequence of Greenberg's generalized conjecture on Iwasawa invariants of \mathbb{Z}_p -extensions, Journal of Number Theory 172 (3) (2017), 200–233.
- [3] J.Minardi, Iwasawa modules for \mathbb{Z}_p^d -extensions of algebraic number fields, Ph.D dissertation, University of Washington, 1986.
- [4] H.Taya, Iwasawa Iinvariants and class numbers of quadratic fields for the prime 3, Proc. Amer. Math. Soc. 128 (5) (1999), 1285–1292.

Jangheon Oh

Faculty of Mathematics and Statistics, Sejong University, Seoul 143-747, Korea. *E-mail*: oh@sejong.ac.kr