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STRONG CONVERGENCE OF PATHS FOR
NONEXPANSIVE SEMIGROUPS IN BANACH SPACES

SHIN MIN KANG, SUN YOUNG CHO AND YOUNG CHEL KwWUN*

ABSTRACT. Let FE be a uniformly convex Banach space with a uni-
formly Gateaux differentiable norm, C' be a nonempty closed convex
subset of £ and f : C — C be a fixed bounded continuous strong
pseudocontraction with the coefficient o € (0,1). Let {At}o<t<1
be a net of positive real numbers such that lim;_,0 A+ = oo and
S ={T(s) : 0 < s < oo} be a nonexpansive semigroup on C' such
that F'(S) # 0, where F(S) denotes the set of fixed points of the
semigroup. Then sequence {z:} defined by z: = ¢f(z¢) + (1 —
t))\% 0>‘t T(s)xtds converges strongly as t — 0 to Z € F(5), which
solves the following variational inequality ((f — I)Z,p — ) < 0 for
all p € F(S).

1. Introduction and preliminaries

Let E be a Banach space with the dual E*. We denote by J the
normalized duality mapping from E to 2F° defined by

Jr={f" € E*: (z, f*) = |z]* = || F*II*},

where (-,-) denotes the generalized duality pairing. Let Up = {x €

E : ||z|| = 1}. FE is said to be Gadteauz differentiable if the limit

limy_.q w exists for all z,y € Ug. In this case, F is said to be

smooth. In a smooth Banach space, the normalized duality mapping
is single valued. In the work, we use j to denote the single valued
normalized duality mapping. The norm of E is said to be uniformly
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Gateaux differentiable if for each y € Ug, the limit is attained uniformly
for each z € Ug.

E is said to be uniformly convex if for any e € (0,2] there exists
0 > 0 such that, for all z,y € Ug,

|z —y|| > € implies |z +y| <2(1—9).

It is known that a uniformly convex Banach space is reflexive and
strictly convex.

Let C' be a nonempty closed convex subset of E and T : C — C
be a nonlinear mapping. A point z € C' is said to be a fized point of
T if Tx = z. Denote by F(T) the set of fixed points of T'; that is,
F(T)={x € C:Tx = z}. Recall the following definitions.

(1) T is said to be contractive if there exists a constant a € (0, 1)
such that
[Tz =Tyl < allz—yll, Vr,yed;

(2) T is said to be strongly pseudocontractive if there exists a con-
stant a € (0,1) and j(z —y) € J(z — y) such that

<Ta:—Ty,j(a:—y)> SO‘Hx_yH27 Vx,yEC’;
(3) T is said to be nonezpansive if

[Tz =Tyl <z —yll, Vo,yeC.

One classical way to study nonexpansive mappings is to use contrac-
tions to approximate a nonexpansive mapping; see [3,8-10,14]. More
precisely, take t € (0,1) and define a contraction T} : C' — C by

(1.1) Tix=tu+ (1 —t)Tz, xz¢€C,

where u € C' is a fixed point. Banach’s contraction mapping principle
guarantees that T; has a unique fixed point z; in C. In the case that
T enjoys a nonempty fixed point set, Browder [3] proved that if F is a
Hilbert space, then {z;} does converges strongly to the fixed point of T
that is nearest to u. Reich [10] extended Browder’s result to the setting
of Banach space and proved that if E is a uniformly smooth Banach
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space, then {z;} converges strongly to a fixed point of 7" and the limit
defines the unique sunny nonexpansive retraction from C onto F(T').

Viscosity approximation method which was introduced by Moudafi
[7] has been considered by many authors. In 2004, Xu [14] studied the
following continuous scheme

(1.2) xy =tf(xe) + (1 — t)Txy,

where t € (0,1), f is a contraction with the coefficient a € (0,1) and
T is a nonexpansive self-mapping on C. He showed that {x;} defined
by (1.2) converges strongly to a fixed point = of the mapping 7', which
also solves the following variational inequality

(f(x) —z,j(y —x)) <0, VyeF(T).

Recall that a family S = {T'(s) : 0 < s < oo} of mappings from
C into itself is called a nonexpansive semigroup on C' if it satisfies the
following conditions:

(c1) T(0)x = z for all x € C;

(c2) T(s+t)x =T (s)T(t)x for all x € C and s,t > 0;

(e3) |[T(s)x —T(s)y|| < ||l —y|| for all z,y € C and s > 0;
(c4) for all z € C, s+ T'(s)x is continuous.

In this paper, we use F(S) to denote the set of fixed points of S, that
is, F'(S) = No<s<coo F(T(s)). We know that F'(S) # 0 if C is bounded;
see [2]. -

Recently, Plubtieng and Punpaeng [8] studied the problem of con-
vergence of paths for nonexpansive semigroups in Hilbert spaces. To
be more precise, they proved the following result.

THEOREM PP. Let C' be a nonempty closed convex subset of a
real Hilbert space and S = {T'(s) : 0 < s < oo} be a nonexpansive
semigroup on C' such that F(S) # 0. Let {\;} be a net of positive real
numbers such that lim; .o \; = oo. Then for a contraction f : C' — C
with coefficient « € (0,1), the sequence {x;} defined by

At
xy =tf(zy) + (1 — t))\it/o T(s)xds,
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converges strongly to &, where ¥ is the unique solution in F'(S) of the
variational inequality

(I—-f)z,z—2) <0, VzelF(9).

The purpose of this paper is to establish a general Banach version of
Theorem PP. In order to prove our main result, we need the following
lemmas.

LeMMA 1.1. ([1,5,11]) Let D be a nonempty bounded closed convex
subset of a uniformly convex Banach Space E and S = {T'(t) : 0 <t <
o0} be a nonexpansive semigroup on D. Then, for any 0 < h < oo,

1

¢ t
lim sup %/ T(s)xds —T(h);/ T(s)xds|| = 0.
0 0

t—o00 zeD

A function w : RT™ — R* is said to belong to I' if it satisfies the
following conditions:

(1) w(0) = 0;

(2) r>0= w(r)>0;

(3)t<s=w(t) <w(s).

LEMMA 1.2. ([13]) Let E be a uniformly convex Banach space.
Then, for any R > 0, there exists wr € I' such that

z,y € Brl0], 27 € J(z), y* € J(y)
= (z—y,2" —y") > wr(llz —ylDllz -yl

where Bgr[0] = {z : ||z|| < R}.

LEMMA 1.3. ([6]) Let E be a Banach space, C' be a nonempty closed
convex subset of E and T : C — C' be a continuous strong pseudocon-
traction. Then T has a unique fixed point in C.

Next, let us recall the definition of means. Let S be a nonempty
set and B(S) the Banach space of all bounded real valued functions
on S with the supremum norm. Let X be a subspace of B(S) and p
an element in X*, where X* denotes the dual space of X. Then we
denote by u(f) the value of p at f € X. If e(s) = 1 for all s € S,
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sometimes p(e) will be denoted by p(1). When X contains constants,
a linear functional p on X is said to be a mean on X if ||u|| = p(1) = 1.
From [13], we see that p is a mean on X if and only if

inf f(s) < pu(f) < sup f(s), Vf € X,
s€s seSs

Set A = (0,1), let B(A) denote the Banach space of all bounded real
value functions on A with supremum norm and let X be a subspace of
B(A).

LEMMA 1.4. ([13]) Let C' be a nonempty closed convex subset of a
Banach space E. Suppose that the norm of F is uniformly Gateaux
differentiable. Let {x;} be a bounded set in E and z € C. Let u; be
a mean on X. Then pllz; — z||*> = minyec ||z: — y||? if and only if
pe{y — 2z, J(xy — z)) <0 for ally € C.

2. Main results

THEOREM 2.1. Let E be a uniformly convex Banach space with a
uniformly Gateaux differentiable norm, C' be a nonempty closed convex
subset of E and f : C' — C be a fixed bounded continuous strong
pseudocontraction with the coefficient a € (0,1). Let {\:}o<t<1 be a
net of positive real numbers such that lim;_,o \y = co and S = {T'(s) :
0 < s < oo} be a nonexpansive semigroup on C such that F(S) # (.
Then {x;} defined by

1

(2.1) 2y = tf(m) + (1 —t))\—t/o " T(s)zeds,

where t € (0,1) converges strongly ast — 0 to & € F(S), which solves
the following variational inequality

(f()—z,j(p—x)) <0, VpeF(S).

Proof. For t € (0,1), define a mapping th :C — C by

At
T/ 2z =tf(z)+ (1 —t)%/o T(s)zds.
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Then th : C — (' is a continuous strong pseudocontraction for each
t € (0,1). Indeed, for each x,y € C, we have

(T z— Ty, j(x —y))

=t(f(z) = f(y),i(z —y))
1 At 1 >\t

p-0(5 [ Teeds - 5 [T Teds - 0)

At Jo At Jo

<talz —yl* + (1 —t)]x -yl

=[1—t(1 - )z —y[*

From Lemma 1.3, we see that th has a unique fixed point x; in C for

each t € (0,1). Hence (2.1) is well defined.
Next, we show that {z;} is bounded. Taking p € F(S), we have

lz¢ — pl|* = (z¢ — p, j(ze — p))
= t(f(2t) — p, j(xe — p))

+(1- t)<Ait /OM T(s)xeds = p, j(= —p>>

= t(f(z) — f(p),j(xe — p)) + t{f(p) — p,j(xt — p))
F- t><§t / " T(s)aeds — p, e —p>>

< tallz — p|I” + t{f (p) — p, j(z: — p))
=0l [ T6)rds ol - o

<1 —t(1 = )|z — plI? + t(f(p) — p,j(z: — ).

It follows that

(22) I = pl? < T2 (7(p) ~ p. (e — ).

This implies that

1

|z¢ — pl| < Eﬂf(p) —pl.
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This shows that {z;} is bounded. On the other hand, for each 7 > 0,
we have

1T (7)ze — 24|

< HT( oo — T(T)(Ai /O " T(s)xtds)‘

t

H < T(s):z;tds) - Ait /0 N D (s)ads

H s)xids — x4
(2.3)
< Ty — )\—t T( )J)tdS
At
H ( T(s)xtds) — )\it/o T(s)xds
= —Hf(%s) - ﬂftH

1
+ HT(T)<)\% /OM T(S)xtds) - )\it/:t T(s)weds||.

Letting zg € F(S) and M = {z € C: ||z — zo|| < 12| f(20) — 20|}, we
see that M is a nonempty bounded closed convex subset of C' which is
T(s)-invariant for each s € [0,00) and contains {z;}. From Lemma 1.1
and passing to lim;_, in (2.3), we can obtain that, for all 7 > 0,

(2.4) T(T)xy —xy — 0 ast— 0.

Define h(z) = p¢|x; — z||? for all x € C, where u; is a mean. Then
h(z) is a continuous, convex and h(x) — oo as ||z| — co. We see that
h attains its infinimum over C' (see, e.g., [11,13]). Set

D= {a: eC: hiz) = ;ggh(y)}.

Then D is a nonempty bounded closed convex subset of C. We see
that D is singleton. Indeed, suppose that £,z € D and = # Z. From
Lemma 1.2, we see that

(we —Z) — (2t — @), j(xt — &) — j(zt — 2))
> wr(|E — 3|7 — 7|, Yo<t<L.
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It follows that

On the other hand, we see from Lemma 1.4 that

(2.6) pl — 2, j(xe — 7)) <0
and
(2.7) pe(@ — , j(z — )) < 0.

Adding up (2.6) and (2.7), we arrive at
(T — 2, (e — ) — jlay — &) < 0.

This contradicts (2.5). This shows that Z = #. Next, we denote the
single element in D by Z. It follows from (2.4) that

WT(7)(2)) = pellze — T(7)(@)]”
= || T(7) () = T()(2)]”
< el — 53H2
= h(z), VY7 >0.

This implies that £ = T'(7)(z) for all 7 > 0, that is, £ € F'(5).
On the other hand, we see from Lemma 1.4 that

pely — 2, j(xy —2)) <0, Vyedl.
By taking y = f(Z), we obtain that
(2.8) pe(f(2) — 2, j (2 — 2)) < 0.
Combining (2.2) with (2.8), we arrive at
pillze — 7| = 0.

This implies that there exists a subnet {x;_} of {z;} such that z; — Z.
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Notice that

At
21— @) = (1—1) (A%/o T(8)asds — f(a:t)).
For any p € F(5), we see that

(x¢ — (), j(2t — D))

=(1- vt)<)\i /OM T(s)xids = p, j(2 _p)>

+ (1 =) p— ¢, j(xe — p)) + (1 = O)(ze — f(21), (e — P))
< (X =t){xe — f(24), 5 (2 — p)),

which implies that

(2.9) (xr = f(@),j(2: —p)) <0, VpeT(S).
In particular, we have

(2.10) (z1, = f(2e,), J(2e, —p)) <0, VpeT(S).
It follows that

(2.11) (r—f(2),j(—p)) <0, VpeT(S)

Assume that there exists another subnet {z,} of {;} such that z;, —
z € F(5). From (2.11), we arrive at

(2.12) (z - f(2),j(z - 1)) <O0.

In view of (2.9), we see that

(2.13) (w5 — f(me,),7(2, — 7)) 0.
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It follows that

(2.14) (& — f(2),(& - 2)) < 0.

Adding up (2.12) and (2.14), we obtain that

(T —f(z) -2+ f(2),5(T - 2)) <O

This implies that
Iz - 2]* < aflz — 2>

Note that o € (0,1). We see that £ = #. This shows that {z;}
converges strongly to & € F(S), which is the unique solution to the
variational inequality

(f(x)—z,jlp—1)) <0, VpeF(S5).
This completes the proof. O

REMARK 2.2. The viscosity approximation method considered in
Theorem 2.1 is different from Moudafi’s and Chen et al.’s. In [7],
Moudafi considered f as a contraction. In [4], Chen et al. considered
f as a Lipschitz strong pseudocontraction. In this work, we consider f
as a continuous strong pseudocontraction.

REMARK 2.3. Theorem 2.1 which includes the corresponding results
announced in Chen and Song [5], Shioji and Takahashi [12] and Xu
[14] as special cases mainly improves Theorem PP (Theorem 3.1 of
Plubtieng and Punpaeng [8]) in the following aspects.

(1) Extend the space from Hilbert spaces to uniformly convex Ba-
nach spaces;

(2) Extend the mapping f from the class of contractions to the class
continuous strong pseudocontractions.
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