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SASAKIAN 3-MANIFOLDS ADMITTING A GRADIENT

RICCI-YAMABE SOLITON

Dibakar Dey

Abstract. The object of the present paper is to characterize Sasakian 3-manifolds
admitting a gradient Ricci-Yamabe soliton. It is shown that a Sasakian 3-manifold
M with constant scalar curvature admitting a proper gradient Ricci-Yamabe soliton
is Einstein and locally isometric to a unit sphere. Also, the potential vector field is
an infinitesimal automorphism of the contact metric structure. In addition, if M is
complete, then it is compact.

1. Introduction

In 1982, the concept of Ricci flow was introduced by Hamilton [11]. The Ricci flow
is an evolution equation for metrics on a Riemannian manifold (Mn, g) given by

∂g

∂t
= −2S,

where g is the Riemannian metric and S denotes the (0, 2)-symmetric Ricci tensor.

The notion of Yamabe flow was proposed by Hamilton [13] in 1989, which is defined
on a Riemannian manifold (Mn, g) as

∂g

∂t
= −rg,

where r is the scalar curvature of the manifold.

In 2019, Güler and Crasmareanu [10] consider a scalar combination of the Ricci
flow and the Yamabe flow and introduced the notion of the Ricci-Yamabe flow on a
Riemannian manifold (Mn, g) as

∂g

∂t
(t) + 2αS(t) + βr(t)g(t) = 0,

where g is the Riemannian metric, S is the (0, 2)-symmetric Ricci tensor, r is the scalar
curvature and α, β are two constants. Since α and β are arbitrary constants, we can
choose the signs of α and β according to our choice. This freedom of choice of the signs
of α and β is very useful in differential geometry and theory of relativity. Recently
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in [1] and [4], the authors used a bi-metric approach of the space-time geometry.
Recently, the notion of η-Ricci-Yamabe soliton [21], Ricci-Yamabe soliton and gradient
Ricci-Yamabe soliton [8] were introduced from the Ricci-Yamabe flow. The Ricci-
Yamabe soliton is defined on a Riemannian manifold as follows:

Definition 1.1. A Riemannian manifold (Mn, g), n > 2 is said to admit a Ricci-
Yamabe soliton (in short, RYS) (g, V, λ, α, β) if

£V g + 2αS = (2λ− βr)g,(1.1)

where λ, α, β ∈ R.

If V is gradient of some smooth function f on M , then the above notion is called a
gradient Ricci-Yamabe solition (in short, GRYS) and then (1.1) reduces to

∇2f + αS = (λ− 1

2
βr)g,(1.2)

where ∇2f is the Hessian of f .

The GRYS is said to be expanding, steady or shrinking according as λ < 0, λ = 0 or
λ > 0 respectively. The above notion generalizes a large class of soliton like equations.
A GRYS is said to be a

• gradient Ricci soliton (see [12]) if α = 1, β = 0.
• gradient Yamabe soliton (see [13] if α = 0, β = 2.
• gradient Einstein soliton (see [6]) if α = 1, β = −1.
• gradient ρ-Einstein soliton (see [7]) if α = 1, β = −2ρ.

The GRYS is said to be proper if α 6= 0, 1.

Sasakian geometry is an odd dimensional analogue of the Kaehler geometry. The
notion of Sasakian manifolds were firstly studied by Sasaki [20]. The Kaehler cone
over a Sasakian Einstein manifolds has application in superstring theory (see [5], [16]).
Since then, Sasakian geometry has been widely studied as it perceived relevance in
string theory. In [18], Sharma showed that a K-contact metric satisfying a gradient
Ricci soliton is Einstein. Further in [19], the author studied a 3-dimensional Sasakian
metric as Yamabe soliton and proved that either the manifold has constant curvature
1 or the potential vector field is an infinitesimal automorphism of the contact metric
structure . In 2019, Venkatesha and Naik [23] studied the notion of the Yamabe soliton
on 3-dimensional contact metric manifolds under certain condition. In [9], Ghosh and
Sharma studied Sasakian 3-metric as a Ricci soliton and identify the Sasakian metric
on the Heisenberg group as a non-trivial solution. Motivated by the above studies, we
consider a proper GRYS in the framework of three dimensional Sasakian manifolds
with constant scalar curvature and proved some related results.

2. Preliminaries

An odd dimensional differentiable manifold M is said to be an almost contact
metric manifold if it admits a structure (φ, ξ, η, g) satisfying

(2.1) φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0

(2.2) g(φX, φY ) = g(X, Y )− η(X)η(Y )
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for any vector fields X, Y on M , where φ is a (1, 1)-tensor field, ξ is a unit vector
field called the Reeb vector field, η is a 1-form defined by η(X) = g(X, ξ) and g is the
Riemannian metric. Using (2.2), we can easily see that

(2.3) g(φX, Y ) = −g(X,φY ).

The fundamental 2-form Φ on an almost contact metric manifold is defined by Φ(X, Y ) =
g(X,φY ) for any vector fields X, Y on M . An almost contact metric manifold with
dη = Φ is called a contact metric manifold. If the Reeb vector field ξ is Killing type,
then a contact metric manifold is called a K-contact manifold and if the structure
(φ, ξ, η, g) is normal, then a contact metric manifold is called Sasakian. Also, an
almost contact metric manifold is Sasakian if and only if

(∇XφY ) = g(X, Y )ξ − η(Y )X(2.4)

for any vector fields X, Y on M . A Sasakian manifold is K-contact but the converse
holds only in dimension 3. It may not be true for higher dimension (see [14]). On a
3-dimensional Sasakian manifold, the following relations are well known:

∇Xξ = −φX,(2.5)

(∇Xη)Y = g(X,φY ),(2.6)

R(X, Y )ξ = η(Y )X − η(X)Y,(2.7)

R(ξ,X)Y = g(X, Y )ξ − η(Y )X,(2.8)

S(X, ξ) = 2η(X), Qξ = 2ξ,(2.9)

where R, Q and S denotes the Riemann curvature tensor, the Ricci operator and
the Ricci tensor respectively which is defined as S(X, Y ) = g(QX, Y ). Since a 3-
dimensional Riemannian manifold is conformally flat, it’s curvature tensor can be
expressed as

R(X, Y )Z = [S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ]

−r
2

[g(Y, Z)X − g(X,Z)Y ],(2.10)

where r is the scalar curvature defined by r =
∑
S(ei, ei) =

∑
g(Qei, ei) for any

orthonormal basis {ei} of the tangent space at any point of M . Now, the Ricci tensor
for a Sasakian 3-manifold can be obtained from here as

S(X, Y ) =
1

2
[(r − 2)g(X, Y ) + (6− r)η(X)η(Y )].(2.11)

For further details on Sasakian geometry, we refer the reader to go through the refer-
ences ( [2], [3], [19]).

3. Gradient Ricci-Yamabe Solitons

We now consider the notion of a proper GRYS in the framework of Sasakian 3-
manifolds with constant scalar curvature. For existence of Sasakian 3-manifolds with
constant scalar curvature, see example in [15]. To prove our first theorem regarding
a GRYS, we need the followings:
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Definition 3.1. ( [22]) A vector fieldX is said to be an infinitesimal automorphism
of the contact metric structure if it leaves all the structure tensors φ, ξ, η, g invariant.

Lemma 3.2. On a Sasakian 3-manifold M with constant scalar curvature, the
following relation holds

(∇ZS)(X, Y )− (∇XS)(Y, Z)− (∇Y S)(X,Z)

= (6− r)[η(Y )g(φX,Z) + η(X)g(φY, Z)].

Proof. Differentiating (2.11) covariantly along any vector field Z, we obtain

(∇ZS)(X, Y ) =
1

2
(6− r)[η(Y )(∇Zη)X + η(X)(∇Zη)Y ].

Using (2.6) in the foregoing equation yields

(∇ZS)(X, Y ) =
1

2
(6− r)[η(Y )g(Z, φX) + η(X)g(Z, φY )].(3.1)

In a similar manner, we obtain

(∇XS)(Y, Z) =
1

2
(6− r)[η(Z)g(X,φY ) + η(Y )g(X,φZ)].(3.2)

(∇Y S)(X,Z) =
1

2
(6− r)[η(Z)g(Y, φX) + η(X)g(Y, φZ)].(3.3)

Using (3.1)-(3.3) and (2.3), we compute

(∇ZS)(X, Y )− (∇XS)(Y, Z)− (∇Y S)(X,Z)

= (6− r)[η(Y )g(φX,Z) + η(X)g(φY, Z)].(3.4)

This comoletes the proof.

Theorem 3.3. Let (g, V, λ, α, β) be a proper GRYS on a Sasakian 3-manifold M
with constant scalar curvature. Then

(1) M is Einstein.
(2) M is locally isometric to a unit sphere.
(3) the potential vector field V is an infinitesimal automorphism of the contact

metric structure.
(4) if M is complete, then it is compact.

Proof. Let V be the gradient of a non-zero smooth function f : M → R, that is,
V = Df , where D is the gradient operator. Then from (1.2), we can write

∇XDf = (λ− 1

2
βr)X − αQX(3.5)

for any vector field X on M . With the help of (3.5), we can easily obtain

R(X, Y )Df = α[(∇YQ)X − (∇XQ)Y ].(3.6)

Substituting X = ξ in (3.6) and then taking inner product with ξ yields

g(R(ξ, Y )Df, ξ) = α[(∇Y S)(ξ, ξ)− (∇ξS)(Y, ξ)].

With the help of (3.2) and (3.3), we can easily see that

g(R(ξ, Y )Df, ξ) = 0.(3.7)

Since g(R(ξ, Y )Df, ξ) = −g(R(ξ, Y )ξ,Df), then using (2.7), we obtain

g(R(ξ, Y )Df, ξ) = (Y f)− (ξf)η(Y ).(3.8)
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Equating (3.7) and (3.8), we have

(Y f)− (ξf)η(Y ) = 0,

which implies

V = Df = (ξf)ξ.(3.9)

This shows that V is pointwise collinear with ξ. For simplicity, we write V = bξ,
where b = (ξf) is some smooth function. Now using (2.3) and (2.5), we obtain

(£V g)(X, Y ) = (£bξg)(X, Y ) = (Xb)η(Y ) + (Y b)η(X).(3.10)

Using (3.10), we get from (1.1)

(Xb)η(Y ) + (Y b)η(X) + 2αS(X, Y ) = (2λ− βr)g(X, Y ).(3.11)

Substituting X = Y = ξ in (3.11) and using (2.9), we obtain

2(ξb) = 2λ− βr − 4α.(3.12)

Let {ei} be an orthonormal basis of the tangent space at any point of M . Now,
substituting X = Y = ei in (3.11) and then summing over i yields

2(ξb) = 3(2λ− βr)− 2αr.(3.13)

Equating (3.12) and (3.13), we get

(2λ− βr − 4α) + α(6− r) = 0.(3.14)

Now from (1.1), we have

(£V g)(X, Y ) + 2αS(X, Y ) = [2λ− βr]g(X, Y ).(3.15)

Differentiating the previous equation covariantly along any vector field Z, we obtain

(∇Z£V g)(X, Y ) = −2α(∇ZS)(X, Y ).(3.16)

Due to Yano [24], the following commutation formula

(£V∇Xg −∇X£V g −∇[V,X]g)(Y, Z) = −g((£V∇)(X, Y ), Z)− g((£V∇)(X,Z), Y ).

leads to

g((£V∇)(X, Y ), Z) =
1

2
(∇X£V g)(Y, Z) +

1

2
(∇Y£V g)(X,Z)

−1

2
(∇Z£V g)(X, Y ).

Using (3.16) in the forgoing formula and then applying lemma 3.2, we obtain

g((£V∇)(X, Y ), Z) = α(6− r)[η(Y )g(φX,Z) + η(X)g(φY, Z)],

which implies

(£V∇)(X, Y ) = α(6− r)[η(Y )φX + η(X)φY ].(3.17)

Putting Y = ξ in (3.17), we get

(£V∇)(X, ξ) = α(6− r)φX.(3.18)

Differentiating (3.18) covariantly along any vector field Z, then using (3.17)-(3.18)
and (2.1)-(2.5) in (3.12), we obtain

(∇Y£V∇)(X, ξ) = α(6− r)[g(X, Y )ξ − 2η(X)Y + η(X)η(Y )ξ].(3.19)
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Now, it is well known that (see [24])

(£VR)(X, Y )Z = (∇X£V∇)(Y, Z)− (∇Y£V∇)(X,Z),

We now use (3.19) in the foregoing equation to obtain

(£VR)(X, ξ)ξ = −2α(6− r)(X − η(X)ξ).(3.20)

Now, substituting Y = ξ in (3.15) and using (2.9), we get

(£V g)(X, ξ) = [2λ− βr − 4α]η(X),

which implies

(£V η)X − g(X,£V ξ) = [2λ− βr − 4α]η(X).(3.21)

Setting X = ξ in (3.21), we obtain

η(£V ξ) = −1

2
[2λ− βr − 4α].(3.22)

From (2.7), we write

R(X, ξ)ξ = X − η(X)ξ.

Lie differentiating the above equation and using (3.21)-(3.22)) and (2.7)-(2.8), we
obtain

(£VR)(X, ξ)ξ = [2λ− βr − 4α](X − η(X)ξ).(3.23)

Equating (3.20) and (3.23), we infer that

(2λ− βr − 4α) + 2α(6− r) = 0.(3.24)

Using (3.14) in (3.24) yields

α(6− r) = 0.(3.25)

Since the GRYS is proper, then α 6= 0 and hence r = 6. Therefore, from (2.11), we
get

S(X, Y ) = 2g(X, Y ),(3.26)

which implies that the manifold M is Einstein. This proves (1).

Now using (3.26) in (2.10), we can easily obtain

R(X, Y )Z = g(Y, Z)X − g(X,Z)Y.(3.27)

This shows that the manifold is of constant curvature 1, that is, locally isometric to
a unit sphere. This proves (2).

Using (3.25) in (3.24), we get

2λ− βr − 4α = 0.(3.28)

Using (3.26) and (3.28) in (3.15), we obtain (£V g)(X, Y ) = 0, for any vector fields
X, Y on M . This proves that V is a Killing vector field or V leaves the metric tensor
invariant. Applying (3.28) in (3.12) yields (ξb) = 0. Using £V g = 0 and (ξb) = 0
in (3.10), we obtain (Xb) = 0, for any vector field X on M , which implies b is a
constant. Therefore, V is a constant multiple of ξ. Now, it can be easily calculated
that £V ξ = 0, that is, V leaves the Reeb vector field invariant. Applying (3.28) and
£V ξ = 0 in (3.21) yields (£V η)X = 0 for any vector field X on M . This shows that
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V leaves η invariant or V is a strict infinitesimal contact transformation. Also, using
(2.5), we can easily obtain £V φ = 0, that is, V leaves φ invariant. Hence, V leaves
the structure (φ, ξ, η, g) invariant. This proves (3).

Since the Ricci curvature r = 6 > 0, then by Myers theorem [17], if M is complete,
then it is necessarily compact. This proves (4).

Remark 3.4. We have obtained r = 6 and 2λ− βr − 4α = 0. These two together
implies λ = 2α+3β. Therefore, the GRYS is expanding, steady or shrinking according
as (2α + 3β) is negative, zero or positive respectively.
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