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PARA-KENMOTSU METRIC AS A η-RICCI SOLITON

Satyabrota Kundu

Abstract. The purpose of the paper is to study of Para-Kenmotsu metric as a
η-Ricci soliton. The paper is organized as follows:
• If an η-Einstein para-Kenmotsu metric represents an η-Ricci soliton with flow
vector field V , then it is Einstein with constant scalar curvature r = −2n(2n+ 1).
• If a para-Kenmotsu metric g represents an η-Ricci soliton with the flow vector
field V being an infinitesimal paracontact transformation, then V is strict and the
manifold is an Einstein manifold with constant scalar curvature r = −2n(2n+ 1).
• If a para-Kenmotsu metric g represents an η-Ricci soliton with non-zero flow
vector field V being collinear with ξ, then the manifold is an Einstein manifold with
constant scalar curvature r = −2n(2n+ 1).
Finally, we cited few examples to illustrate the results obtained.

1. Introduction

On a Riemannian manifold (M, g) Ricci soliton is defined by the partial differential
equation

£
V
g + 2S + 2λg = 0,

where £
V

denotes the Lie-derivative in the direction of the flow vector field V , S
is the Ricci tensor of g and λ being constant. Ricci soliton is treated as a natural
generalization of Einstein metric (i.e., the Ricci tensor is a constant multiple of the
Riemannian metric g). A Ricci soliton is trivial if V is either zero or killing on M .
A Ricci soliton is said to be shrinking, steady, and expanding, as λ is negative, zero,
and positive, respectively (and there are many examples of each of them [11], [4]).
Otherwise, it will be called indefinite. Many authors have studied Ricci solitons in
many contexts viz on Kähler manifolds [5], on contact manifolds [10], on Sasakian [8],
α-Sasakian [12] and K-contact manifolds [17], on Kenmotsu [13], [9] and f -Kenmotsu
manifolds [7] etc.

In para-contact geometry, Ricci solitons appeared first in the paper of G. Calvaruso
and D. Perrone [2]. Recently, many authors made a rigorous study of Ricci Solitons
in the framework of paracontact manifolds [1], [14] and etc.

Cho and Kimura in [6] made a rigorous study of real hypersurfaces in a complex
space form and generalized the notion of Ricci soliton to η-Ricci soliton, defined on
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(M, g) by

(1.1) S +
1

2
£
V
g + λg + µη ⊗ η = 0,

where λ and µ being constants. Later on Călin and Crasmareanu studied η-Ricci
soliton in the framework of complex space forms [3].

In the present paper, our goal is to study η-Ricci soliton in the context of para-
contact geometry, precisely on a para-Kenmotsu manifold. Our paper is organised
as follows: First, if an η-Einstein para-Kenmotsu metric represents an η-Ricci soliton
with flow vector field V , then it is Einstein with constant scalar curvature. Secondly,
if a para-Kenmotsu metric g represents an η-Ricci soliton with the flow vector field V
being an infinitesimal paracontact transformation, then V is strict and the manifold is
an Einstein manifold with constant scalar curvature and the final result is the study of
a para-Kenmotsu metric g admitting an η-Ricci soliton with non-zero flow vector field
V being collinear with ξ. The concluding section of the paper contains an example of
para-Kenmotsu metric verifying the results obtained in previous section.

2. Preliminaries

A (2n+1)-dimensional smooth manifoldM2n+1 has an almost paracontact structure
(φ, ξ, η) if there exists a (1, 1)-type tensor field φ, a characteristic (Reeb) vector field
ξ and a 1-form η satisfying the following conditions:

φ(ξ) = 0, η ◦ φ = 0(2.1)

η(ξ) = 1, φ2 = I − η ⊗ ξ.(2.2)

The distribution D : p ∈ M → Dp ⊂ Tp(M) : Dp = ker η = {X ∈ Tp(M) : η(X) = 0}
is called paracontact distribution generated by η. Moreover, D is a 2n-dimensional
almost paracomplex distribution. Since g is non-degenerate metric on M and ξ is
non-isotropic, the paracontact distribution D is non-degenerate.

The definition of the almost paracontact structure implies that the endomorphism φ
has rank 2n, φξ = 0 and η◦φ = 0. If a manifold M2n+1 with (φ, ξ, η)-structure admits
a semi-Riemannian metric g satisfying g(φX, φY ) = −g(X, Y ) + η(X)η(Y ) ∀ X, Y ∈
X(M), then M2n+1 has an almost paracontact metric structure and g is called com-
patible metric. Any compatible metric g with a given almost paracontact structure is
of signature (n+ 1, n). Any almost paracontact structure always admits a compatible
metric.

Moreover, if g(X,φY ) = dη(X, Y ) = 1
2
(Xη(Y )−Y η(X)−η[X, Y ]) ∀ X, Y ∈ X(M),

then η is paracontact form and the almost paracontact metric manifold (M2n+1, φ, ξ, η)
is said to be paracontact metric manifold.

A paracontact metric manifold for which ξ is Killing is called a K-paracontact
manifold. A paracontact structure on M2n+1 naturally gives rise to an almost para-
complex structure on the product M2n+1×R. If this almost paracomplex structure is
integrable, then the given paracontact metric manifold is said to be a para-Sasakian.
Equivalently, (see [19]) a paracontact metric manifold is a para-Sasakian if and only
if

(∇
X
φ)Y = −g(X, Y ) + η(X)η(Y ), ∀ X, Y ∈ X(M).
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If for every X, Y ∈ X(M), (∇
X
φ)Y = η(Y )φ(X) + g(X,φY )ξ, then the manifold

M2n+1 is said to be a para-Kenmotsu manifold.
For all X, Y ∈ X(M), the following properties are true for para-Kenmotsu manifold

[19]:

∇
X
ξ = −X + η(X)ξ(2.3)

(∇
X
η)Y = −g(X, Y ) + η(X)η(Y )(2.4)

(£
ξ
g)(X, Y ) = 2

(
− g(X, Y ) + η(X)η(Y )

)
(2.5)

£
ξ
φ = 0, £

ξ
η = 0.(2.6)

Moreover, denoting by R the curvature tensor of g, we have the following [19]:

R(X, Y )ξ = η(X)Y − η(Y )X(2.7)

R(X, ξ)Y = g(X, Y )ξ − η(Y )X,(2.8)

S(X, ξ) = −2nη(X)(2.9)

Qξ = −2nξ,(2.10)

where X, Y ∈ X(M), S is the Ricci tensor and Q being the Ricci operator defined as

(2.11) S(X, Y ) = g(QX, Y ).

Furthermore, for a para-Kenmotsu metric manifold, the following relation is true [15]:

(2.12) (£
ξ
Q)X = (∇

ξ
Q)X = 2QX + 4nX,

for any X ∈ X(M).
A vector field W on a semi-Riemannian manifold (M2n+1, g) is said to be para-

contact or infinitesimal paracontact transformation if it preserves the contact form η,
i.e., there exists a smooth function ρ : M2n+1 → R satisfying

(2.13) £
W
η = ρη.

If the vector field W is strict, then ρ = 0. By virtue of parallelism of the semi-
Riemannian metric g, the commutation formulae (see page 23 of [18]):

(£
W
∇

X
g −∇

W
£
X
g −∇

[W,X]
g)(Y, Z) = −g((£

X
∇)(X, Y ), Z)− g((£

W
∇)(X,Z), Y ),

reduces to

(2.14) (∇
W
£
X
g)(Y, Z) = g((£

W
∇)(X, Y ), Z) + g((£

W
∇)(X,Z), Y ),

for any X, Y, Z ∈ X(M). The following formulae are also known (see [18]):

(£
W
R)(X, Y )Z = (∇

W
£
X
∇)(Y, Z)− (∇

Y
£
W
∇)(X,Z),(2.15)

(£
W
∇)(X, Y ) = £

W
∇

X
Y −∇

X
£
W
Y −∇

[W,X]
Y,(2.16)

for any X, Y, Z ∈ X(M).
An almost paracontact pseudo-Riemannian manifold is called η-Einstein, if its Ricci

tensor has the following form:

(2.17) S(X, Y ) = α1g(X, Y ) + α2η(X)η(Y ),

where α1 and α2 are smooth functions on M and X, Y ∈ X(M). If a para-Sasakian
manifold is η-Einstein and n > 1, then α1 and α2 are constants (see [19]), but for
para-Kenmotsu this fails to hold [19].
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A vector field W on an semi-Riemannian manifold (M2n+1, g) is said to be confor-
mal vector field, if

(2.18) £
W
g = 2ρ̃g,

where ρ̃ is called the conformal coefficient. If conformal coefficient is zero, then the
conformal vector field is Killing vector field.

An infnitesimal automorphism is a vector field such that Lie derivatives along it
of all objects of some tensor structure vanish. For an almost paracontact, metric
structure, the condition that a vector field W is an infinitesimal automorphism is as
follows:

(2.19) £
W
η = £

W
ξ = £

W
g = 0.

3. Main Results

Before we proceed to state and prove the main results of the paper, let us begin
with the following lemma.

Lemma 3.1. If a para-Kenmotsu metric g represents an η-Ricci soliton with the
flow vector field V , then (£

V
R)(X, ξ)ξ = 0 holds for all X ∈ X(M).

Proof. Covariantly differentiating (1.1) along an arbitrary vector fieldW and thereby
using (2.3), we obtain

(∇
W
£
V
g)(X, Y ) = −2(∇

W
S)(X, Y ) + 2µ

{
g(X,W )η(Y ) + g(Y,W )η(X)(3.1)

− 2η(X)η(Y )η(W )
}
,

for all X, Y ∈ X(M). From (2.14) and (3.1), we get

g((£
V
∇)(W,X), Y ) + g((£

V
∇)(W,Y ), X) = −2(∇

W
S)(X, Y ) + 2µ{g(X,W )η(Y )

(3.2)

+ g(Y,W )η(X)− 2η(X)η(Y )η(W )}.
By combinatorial combination, we find

g((£
V
∇)(X, Y ),W ) + g((£

V
∇)(X,W ), Y ) = −2(∇

X
S)(Y,W ) + 2µ{g(Y,X)η(W )

(3.3)

+ g(W,X)η(Y )− 2η(X)η(Y )η(W )}.

g((£
V
∇)(Y,W ), X) + g((£

V
∇)(Y,X),W ) = −2(∇

Y
S)(W,X) + 2µ{g(W,Y )η(X)

(3.4)

+ g(X, Y )η(W )− 2η(X)η(Y )η(W )}.

Adding the last two equations and thereby subtracting (3.2) from the resulting one,
we get

g((£
V
∇)(X, Y ),W ) = −(∇

X
S)(Y,W )− (∇

Y
S)(W,X) + (∇

W
S)(X, Y )(3.5)

+ 2µ(g(X, Y )η(W )− η(X)η(Y )η(W )).

Differentiating covariantly (2.10) along an arbitrary vector field W and using (2.3),
we deduce

(3.6) (∇
W
Q)ξ = QW + 2nW.
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Substituting ξ for Y in (3.5), we obtain

(3.7) (£
V
∇)(X, ξ) = −2(QX + 2nX), by (3.6) and (2.12).

Differentiating covariantly, the foregoing equation, in the direction of an arbitrary
vector field Y , we obtain

(∇
Y

(£
V
∇))(X, ξ) = (£

V
∇)(X, Y )− 2(∇

Y
Q)(X) + 2η(Y )(QX + 2nX).

Similarly,

(∇
X

(£
V
∇))(Y, ξ) = (£

V
∇)(Y,X)− 2(∇

X
Q)(Y ) + 2η(X)(QY + 2nY ).

From last two equations, we get

(£
V
R)(X, Y )ξ = −2((∇

X
Q)Y − (∇

Y
Q)X) + 2(η(X)QY − η(Y )QX)(3.8)

− 4n(η(X)Y − η(Y )X).

Replacing Y = ξ in the foregoing equation yields,

(3.9) (£
V
R)(X, ξ)ξ = 0, by (2.10), (2.12), (3.6).

This finishes the proof.

Lemma 3.2. If a para-Kenmotsu metric g represents an η-Ricci soliton with the
flow vector field V , then the relation between the constants λ and µ is given by
λ+ µ = 2n.

Proof. Putting Y = ξ in (2.7) and then taking its Lie derivative along the flow
vector field V , we obtain

(3.10) (£
V
g)(X, ξ)ξ + 2η(£

V
ξ)X = 0, by (2.8).

Taking Lie derivative of g(ξ, ξ) = 1 in the direction of V and then using (1.1), we get

(3.11) η(£
V
ξ) = λ+ µ− 2n.

Furthermore, an appeal to (1.1) yields

(3.12) (£
V
g)(X, ξ) = 2(2n− λ− µ)η(X).

Feeding (3.11) and (3.12) in (3.10) and thereby contracting the resultant, we obtain

(3.13) λ+ µ = 2n.

This completes the proof.

Now we are going to focus on the main results of the paper.

Theorem 3.1. If an η-Einstein para-Kenmotsu metric represents an η-Ricci soli-
ton with flow vector field V , then it is Einstein with constant scalar curvature r =
−2n(2n+ 1).

Proof. From (2.17), we find

(3.14) r = (2n+ 1)α1 + α2.

Again, putting X = Y = ξ in (2.17) we obtain

(3.15) − 2n = α1 + α2.

Finding α and β from (3.14) and (3.15) and using (2.17), we get

(3.16) QX =
(

1 +
r

2n

)
X −

(
2n+ 1 +

r

2n

)
η(X)ξ.
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Differentiating covariantly, the foregoing equation, in the direction of an arbitrary
vector field Y , we obtain
(3.17)

(∇
Y
Q)X =

Y r

2n
φ2(X)+(2n+1+

r

2n
)(g(X, Y )ξ+η(X)(Y −2η(Y )ξ)), by (2.2), (2.4),

for any X ∈ X(M). From (3.8) and (3.17), we find

(£
V
R)(X, Y )ξ =

1

n
{Y (r)φ2(X)−X(r)φ2(Y )},

for any X, Y ∈ X(M). Putting Y = ξ and using (3.9), we get ξ(r) = 0. On suitable
contraction of (3.6), we find

r = −2n(2n+ 1).

Putting the value of r in (3.16), we obtain the desired result.

By [19], in a 3-dimensional pseudo-Riemannian manifold, we have

R(X, Y )Z = g(Y, Z)QX − g(X,Z)QY + g(QY,Z)X − g(QX,Z)Y(3.18)

− r

2

(
g(Y, Z)X − g(X,Z)Y

)
,

for any X, Y, Z ∈ X(M). Substituting Y, Z with ξ in the foregoing equation and using
(2.10), we obtain

(3.19) QX =
(
1 +

r

2

)
X−

(
3 +

r

2

)
η(X)ξ,

for all X ∈ X(M). Thus, proceeding in the same way as in Theorem 3.1 and applying
Lemma 3.1 we conclude that r = −6. Hence, from (3.19) we have QX = −2X for
any X ∈ X(M). Plugging this in (3.18) implies that (M, g) is of constant negative
curvature −1. Thus, from Theorem 3.1 we obtain the following corollary:

Corollary 3.1. If a 3-dimensional para-Kenmotsu metric g represents an η-Ricci
soliton with the flow vector field V , then it is of constant negative curvature −1.

Theorem 3.2. If a para-Kenmotsu metric g represents an η-Ricci soliton with the
flow vector field V being an infinitesimal paracontact transformation, then V is strict
and the manifold is Einstein with constant scalar curvature r = −2n(2n+ 1).

Proof. Putting Y = ξ in (2.16), we get

(3.20) (£
V
∇)(X, ξ) = (£

V
η)(X)ξ + η(X)(£

V
ξ)−∇

X
£
V
ξ,

for any X ∈ X(M). Taking Lie derivative of η(X) = g(X, ξ) in the direction of V and
using (3.12),(3.13) and (2.13), we find

(3.21) g(X,£
V
ξ) = ρη(X)⇒ £

V
ξ = ρξ, by (2.13).

Moreover, taking X = ξ in the foregoing equation and using (3.11) and (3.13), we
deduce ρ = 0, which proves V is strict. Hence by (2.13), we find £

V
η = 0. This

proves V is also an infinitesimal automorphism (refer to (2.19)). Finally an appeal to
(3.20) yields (£

V
∇)(X, ξ) = 0 for any X ∈ X(M), which further implies the manifold

is Einstein with r = −2n(2n+ 1) (see (3.7)).

Theorem 3.3. If a para-Kenmotsu metric g represents an η-Ricci soliton with
non-zero flow vector field V being collinear with ξ, then the manifold is an Einstein
manifold with constant scalar curvature r = −2n(2n+ 1).
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Proof. By hypothesis, there exists a smooth function f on M2n+1 such that V = fξ.
On covariant differentiation along X(∈ X(M)) gives

(3.22) ∇
X
V = (Xf)ξ − f(X − η(X)ξ), by (2.3).

Combining (1.1) and (3.22), we get

(3.23) 2S(X, Y )+(Xf)η(Y )+(Y f)η(X)−2(f−λ)g(X, Y )+2(f+µ)η(X)η(Y ) = 0.

With X = Y = ξ and using (2.10) in the foregoing equation, we find ξ(f) = 0. Now
for Y = ξ in (3.23), we get X(f) = 0 (refer to (2.9) and (3.13)). This proves the
smooth function f reduces to a constant function. Moreover, (3.23) gives

(3.24) S(X, Y ) = (f − λ)g(X, Y )− (f + µ)η(X)η(Y ).

This proves the manifold is η-Einstein and hence taking advantage of the first theorem
we can say that it is Einstein with constant scalar curvature r = −2n(2n+ 1).

Remark 3.1. If a para-Kenmotsu metric g represents an η-Ricci soliton with flow
vector field V being conformal, then V is killing and the manifold is Einstein with
constant scalar curvature r = −2n(2n+ 1).

4. Example

Example 4.1. We will give an example of a 3-dimensional para-Kenmotsu mani-
fold, which exhibits Theorem 3.3.

Let L be a 3-dimensional real connected Lie group and g be its Lie algebra with a
basis {e1 , e2 , e3} of left invariant vector fields by the following commutators [19]:

[e1 , e2 ] = 0, [e1 , e3 ] = e1 + αe2 , [e2 , e3 ] = αe1 + e2 , α being a constant.

Let g be the Pseudo-Riemannian metric defined by

(4.1)

{
g(e1 , e1) = 1, g(e3 , e3) = 1, −g(e2 , e2) = 1,
g(e1 , e2) = g(e1 , e3) = g(e2 , e3) = 0.

Let ξ = e3 be the vector field associated with the 1-form η. The (1, 1)-tensor field φ
be defined by,

φ(e1) = e2 , φ(e2) = e1 , φ(e3) = 0.(4.2)

Then (L, φ, ξ, η, g) is a 3-dimensional almost paracontact metric manifold. Since the
metric g is left invariant the Koszul equality becomes (refer to [16])

∇e1
e3 = e1 , ∇e1

e2 = 0, ∇e1
e1 = −e3 ,

∇e2
e3 = e2 , ∇e2

e1 = 0, ∇e2
e2 = e3 ,

∇e3
e1 = −αe2 , ∇e3

e2 = −αe1 , ∇e3
e3 = 0.

Also, the Riemannian curvature tensor R is given by,

R(X, Y )Z = ∇
X
∇

Y
Z −∇

Y
∇

X
Z −∇

[X,Y ]
Z.

Then,

R(e1 , e2)e2 = e1 , R(e1 , e3)e3 = −e1 , R(e2 , e1)e1 = −e2 ,
R(e2 , e3)e3 = (α− 1)e1 − e2 , R(e3 , e1)e1 = −e3 , R(e3 , e2)e2 = e3 ,

R(e1 , e2)e3 = 0, R(e2 , e3)e1 = 0, R(e3 , e1)e2 = 0.



452 S. Kundu

Then, the Ricci tensor S is given by

S(e1 , e1) = −2, S(e2 , e2) = 2, S(e3 , e3) = −2,

S(e1 , e2) = 0, S(e1 , e3) = 0, S(e2 , e3) = 0.

Thus it is easy to see that

(4.3) S(X, Y ) = −2g(X, Y ),

which proves the manifold is Einstein. The scalar curvature of the manifold is r = −6.
If we consider the flow vector field V = fξ, for some constant f , then from the well
known formulae (£

V
g)(X, Y ) = g(∇XV, Y ) + g(X,∇Y V ) we get

(4.4) £
V
g = −2fg + 2fη ⊗ η.

So feeding (4.3) and (4.4) in (1.1), we see that the soliton equation is satisfied for
λ = f + 2 and µ = −f i.e. the metric g admits η-Ricci soliton with the flow vector
field V for the constants λ = f + 2 and µ = −f . Moreover, we obtain λ + µ = 2,
which proves (3.13), for n = 1. Furthermore, Theorem 3.3 is also verified.

Acknowledgement: The author gratefully thank to the Referee for the construc-
tive comments and recommendations which definitely help to improve the readability
and quality of the paper.
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