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PARA-KENMOTSU METRIC AS A n-RICCI SOLITON

SATYABROTA KUNDU

ABSTRACT. The purpose of the paper is to study of Para-Kenmotsu metric as a
n-Ricci soliton. The paper is organized as follows:

e If an 7n-Einstein para-Kenmotsu metric represents an 7-Ricci soliton with flow
vector field V', then it is Einstein with constant scalar curvature r = —2n(2n + 1).
e If a para-Kenmotsu metric g represents an 7-Ricci soliton with the flow vector
field V being an infinitesimal paracontact transformation, then V' is strict and the
manifold is an Einstein manifold with constant scalar curvature r = —2n(2n + 1).
e If a para-Kenmotsu metric g represents an 7-Ricci soliton with non-zero flow
vector field V' being collinear with &, then the manifold is an Einstein manifold with
constant scalar curvature r = —2n(2n + 1).

Finally, we cited few examples to illustrate the results obtained.

1. Introduction

On a Riemannian manifold (M, g) Ricci soliton is defined by the partial differential
equation
£,9+25+2\g =0,

where £, denotes the Lie-derivative in the direction of the flow vector field V, S
is the Ricci tensor of g and A\ being constant. Ricci soliton is treated as a natural
generalization of Einstein metric (i.e., the Ricci tensor is a constant multiple of the
Riemannian metric ¢g). A Ricci soliton is trivial if V' is either zero or killing on M.
A Ricci soliton is said to be shrinking, steady, and expanding, as A is negative, zero,
and positive, respectively (and there are many examples of each of them [11], [4]).
Otherwise, it will be called indefinite. Many authors have studied Ricci solitons in
many contexts viz on Kdhler manifolds [5], on contact manifolds [10], on Sasakian [8],
a-Sasakian [12] and K-contact manifolds [17], on Kenmotsu [13], [9] and f-Kenmotsu
manifolds [7] etc.

In para-contact geometry, Ricci solitons appeared first in the paper of G. Calvaruso
and D. Perrone [2]. Recently, many authors made a rigorous study of Ricci Solitons
in the framework of paracontact manifolds [1], [14] and etc.

Cho and Kimura in [6] made a rigorous study of real hypersurfaces in a complex
space form and generalized the notion of Ricci soliton to n-Ricci soliton, defined on
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(M, g) by
1
(1.1) S+§£Vg+)\g+,un®7720,

where A and p being constants. Later on Calin and Crasmareanu studied n-Ricci
soliton in the framework of complex space forms [3].

In the present paper, our goal is to study n-Ricci soliton in the context of para-
contact geometry, precisely on a para-Kenmotsu manifold. Our paper is organised
as follows: First, if an n-Einstein para-Kenmotsu metric represents an n-Ricci soliton
with flow vector field V', then it is Einstein with constant scalar curvature. Secondly,
if a para-Kenmotsu metric g represents an n-Ricci soliton with the flow vector field V/
being an infinitesimal paracontact transformation, then V' is strict and the manifold is
an Einstein manifold with constant scalar curvature and the final result is the study of
a para-Kenmotsu metric g admitting an n-Ricci soliton with non-zero flow vector field
V being collinear with &. The concluding section of the paper contains an example of
para-Kenmotsu metric verifying the results obtained in previous section.

2. Preliminaries

A (2n+1)-dimensional smooth manifold M?"*! has an almost paracontact structure
(¢,&,n) if there exists a (1, 1)-type tensor field ¢, a characteristic (Reeb) vector field
¢ and a 1-form 7 satisfying the following conditions:

(2.1) #(€) =0, nog=0
(2.2) nE) =1 ¢*'=I-n®¢

The distribution D:pe M — D, C T,(M) : D, =kern ={X € T,,(M) : n(X) = 0}
is called paracontact distribution generated by 7. Moreover, D is a 2n-dimensional
almost paracomplex distribution. Since g is non-degenerate metric on M and ¢ is
non-isotropic, the paracontact distribution D is non-degenerate.

The definition of the almost paracontact structure implies that the endomorphism ¢
has rank 2n, ¢¢ = 0 and no¢ = 0. If a manifold M?*"*! with (¢, £, n)-structure admits
a semi-Riemannian metric g satisfying g(¢ X, ¢Y) = —g(X,Y) +n(X)n(Y)V X, Y €
X(M), then M?**! has an almost paracontact metric structure and g is called com-
patible metric. Any compatible metric g with a given almost paracontact structure is
of signature (n+1,n). Any almost paracontact structure always admits a compatible
metric.

Moreover, if g(X, ¢Y) = dn(X,Y) = 3(Xn(Y)-Yn(X)—n[X,Y]) V X, Y € X(M),
then 7 is paracontact form and the almost paracontact metric manifold (M?" . ¢, &, n)
is said to be paracontact metric manifold.

A paracontact metric manifold for which £ is Killing is called a K-paracontact
manifold. A paracontact structure on M?"*! naturally gives rise to an almost para-
complex structure on the product M?"*! x R. If this almost paracomplex structure is
integrable, then the given paracontact metric manifold is said to be a para-Sasakian.
Equivalently, (see [19]) a paracontact metric manifold is a para-Sasakian if and only
if

(V@)Y = —g(X,Y) +0(X)n(Y), VX, Y € X(M).
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If for every X,Y € X(M), (V,0)Y = n(Y)p(X) + g(X, ¢Y)E, then the manifold
M?"+1 is said to be a para-Kenmotsu manifold.

For all X|Y € X(M), the following properties are true for para-Kenmotsu manifold
19]:

[

(2.3) V. &=—-X+nX)E

(2.4) (Vin)Y = —g(X,Y) +n(X)n(Y)

(2.5) (£.9)(X.Y) =2(~ g(X,Y) +n(X)n(Y))

(2.6) L.p=0, £n=0.

Moreover, denoting by R the curvature tensor of g, we have the following [19]:

(2.7) R(X,Y)§ =n(X)Y —n(Y)X

(2.8) R(X,§Y = g(X,Y)§ —n(Y)X,

(2.9) S(X,€) = —2nn(X)

(2.10) Q¢ = —2n&,

where X, Y € X(M), S is the Ricci tensor and @) being the Ricci operator defined as
(2.11) S(X,Y) =9(QX,Y).

Furthermore, for a para-Kenmotsu metric manifold, the following relation is true [15]:
(2.12) (£.Q)X = (V.Q)X =2QX +4nX,

for any X € X(M).

A vector field W on a semi-Riemannian manifold (M?"™! g) is said to be para-
contact or infinitesimal paracontact transformation if it preserves the contact form 7,
i.e., there exists a smooth function p : M?"*! — R satisfying

(2.13) Ly = pn.

If the vector field W is strict, then p = 0. By virtue of parallelism of the semi-
Riemannian metric g, the commutation formulae (see page 23 of [18]):

<£vag - VW£X9 - V[W,X]g>(y7 Z) = _g((£xv)(X7 Y), Z) - g((£wv)(X7 Z),Y),

reduces to

(2.14) (Vi £x9)Y, Z) = g((£,, V)(X,Y), Z) + g((£,, V)(X, Z),Y),
for any X,Y,Z € X(M). The following formulae are also known (see [18]):
(215} ("EWR)(X? Y)Z = (Vw'fxv)(}/v Z) o (VY"EWV)(X7 Z):
(2.16) (£, V)(X,)Y) = £WVXY—VX£WY—V[W,X]Y,

for any XY, Z € X(M).
An almost paracontact pseudo-Riemannian manifold is called n-Einstein, if its Ricci
tensor has the following form:

(2.17) S(X,Y) = a,g(X,Y) + con(X)n(Y),

where a; and as are smooth functions on M and X,Y € X(M). If a para-Sasakian
manifold is n-Einstein and n > 1, then «; and ay are constants (see [19]), but for
para-Kenmotsu this fails to hold [19].
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A vector field W on an semi-Riemannian manifold (M?"*! g) is said to be confor-
mal vector field, if

(2.18) £4,9 =279,

where p is called the conformal coefficient. If conformal coefficient is zero, then the
conformal vector field is Killing vector field.

An infnitesimal automorphism is a vector field such that Lie derivatives along it
of all objects of some tensor structure vanish. For an almost paracontact, metric
structure, the condition that a vector field W is an infinitesimal automorphism is as
follows:

(2.19) Lyn=4~£,6=£,9=0.

3. Main Results

Before we proceed to state and prove the main results of the paper, let us begin
with the following lemma.

LEMMA 3.1. If a para-Kenmotsu metric g represents an n-Ricci soliton with the
flow vector field V', then (£, R)(X,£)¢ = 0 holds for all X € X(M).

Proof. Covariantly differentiating (1.1) along an arbitrary vector field W and thereby
using (2.3), we obtain

(31) (VL 9)(X,Y) = =2(V,, S)(X,Y) + 2u{g(X, W)n(Y) + g(Y, W)n(X)
= 2(X)n(Y)n(W)},
for all X,Y € X(M). From (2.14) and (3.1), we get
(3.2)
g((£, V)W, X),Y) +g((£, V)(W,Y), X) = =2(V, S)(X,Y) + 2p{ g (X, W)n(Y')
+g(Y, W)n(X) = 2n(X)n(Y)n(W)}.
By combinatorial combination, we find
(3.3)
g(£, V)X, Y), W) +g((£, V)(X, W), Y) = =2(V, 5)(Y, W) + 2u{g(Y, X)n(W)
+g(W, X)n(Y) = 2n(X)n(Y )n(W)}.
(3.4)
g((£, V)Y, W), X) +g((£, V)Y, X), W) = =2(V, S)(W, X) + 2u{g(W,Y)n(X)
+9(X, Y )n(W) = 2n(X)n(Y )n(W)}.

Adding the last two equations and thereby subtracting (3.2) from the resulting one,
we get

(3.5)  g((£,V)(X,Y), W) =—(V )Y, W)= (V,S)(W, X) + (V,, S)(X,Y)
+ 2u(g(X, Y )n(W) — n(X)n(Y)n(W)).

Differentiating covariantly (2.10) along an arbitrary vector field W and using (2.3),
we deduce

(3.6) (V,, Q)¢ = QW + 2nW.
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Substituting £ for Y in (3.5), we obtain
(3.7) (£, V)(X,€) = —2(QX +2nX), by (3.6) and (2.12).

Differentiating covariantly, the foregoing equation, in the direction of an arbitrary
vector field Y, we obtain

(V, (£, 9)(X,€) = (£,V)(X,Y) = 2V, Q)(X) + 21(Y)(QX +2nX).
Similarly,

(Vo (£,VDY,€) = (£,V)(Y, X) = 2V, Q)(Y) + 27(X)(QY +2nY).
From last two equations, we get
(38)  (£,RXY)E= -2V, Q)Y — (V,Q)X) +2(n(X)QY — n(Y)QX)

— dn(n(X)Y —n(Y)X).

Replacing Y = £ in the foregoing equation yields,
(3.9) (£,R)(X,£)E =0, by (2.10), (2.12), (3.6).
This finishes the proof. O

LEMMA 3.2. If a para-Kenmotsu metric g represents an n-Ricci soliton with the
flow vector field V', then the relation between the constants A\ and p is given by
A+ @ = 2n.

Proof. Putting Y = ¢ in (2.7) and then taking its Lie derivative along the flow
vector field V', we obtain

(3.10) (£,9) (X, +20(£,6)X =0, by (2.3).

Taking Lie derivative of g(£,&) = 1 in the direction of V' and then using (1.1), we get
(3.11) n(£,€) =X+ p—2n.

Furthermore, an appeal to (1.1) yields

(3.12) (£,9)(X, &) =2(2n — A — p)n(X).

Feeding (3.11) and (3.12) in (3.10) and thereby contracting the resultant, we obtain
(3.13) A+ 1= 2n.

This completes the proof. n

Now we are going to focus on the main results of the paper.

THEOREM 3.1. If an n-Einstein para-Kenmotsu metric represents an n-Ricci soli-
ton with flow vector field V', then it is Einstein with constant scalar curvature r =
—2n(2n +1).

Proof. From (2.17), we find
(3.14) r=02n+1)a; + as.
Again, putting X =Y = ¢ in (2.17) we obtain
(3.15) —2n = a1 + as.
Finding o and § from (3.14) and (3.15) and using (2.17), we get

(3.16) QX = (1+ %) X—(2m+1+ %) N(X)E.
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Differentiating covariantly, the foregoing equation, in the direction of an arbitrary
vector field Y, we obtain
(3.17)

r

(V,Q)X = TEG2(X) 4+ (2n+ 1+ ) (X V)6 +n(X)(Y ~20(V)6). by (22). (24),
for any X € X(M). From (3.8) and (3.17), we find

(£,R)(X,Y)E = (Y () (X) — X ()},

for any X,Y € X(M). Putting Y = £ and using (3.9), we get {(r) = 0. On suitable
contraction of (3.6), we find

r=-—2n(2n+1).
Putting the value of 7 in (3.16), we obtain the desired result. O

By [19], in a 3-dimensional pseudo-Riemannian manifold, we have
(3.18) R(X,Y)Z =g(Y, Z)QX — g(X, Z)QY + g(QY, Z)X — g(QX, Z)Y
T

for any X,Y, Z € X(M). Substituting Y, Z with £ in the foregoing equation and using
(2.10), we obtain

r r
(3.19) QX =(1+ 5)X—(3 + 5)n(X)g,
for all X € X(M). Thus, proceeding in the same way as in Theorem 3.1 and applying
Lemma 3.1 we conclude that » = —6. Hence, from (3.19) we have QX = —2X for
any X € X(M). Plugging this in (3.18) implies that (M, g) is of constant negative
curvature —1. Thus, from Theorem 3.1 we obtain the following corollary:

COROLLARY 3.1. If a 3-dimensional para-Kenmotsu metric g represents an n-Ricci
soliton with the flow vector field V', then it is of constant negative curvature —1.

THEOREM 3.2. If a para-Kenmotsu metric g represents an 1n-Ricci soliton with the
flow vector field V' being an infinitesimal paracontact transformation, then V' is strict

and the manifold is Einstein with constant scalar curvature r = —2n(2n + 1).
Proof. Putting Y = £ in (2.16), we get

for any X € X(M). Taking Lie derivative of n(X) = ¢g(X, §) in the direction of V' and
using (3.12),(3.13) and (2.13), we find

(3.21) 9(X, £,8) = pn(X) = £,6 = p¢, by (2.13).

Moreover, taking X = ¢ in the foregoing equation and using (3.11) and (3.13), we
deduce p = 0, which proves V is strict. Hence by (2.13), we find £, 7 = 0. This
proves V is also an infinitesimal automorphism (refer to (2.19)). Finally an appeal to
(3.20) yields (£,V)(X, ) =0 for any X € X(M), which further implies the manifold
is Einstein with r = —2n(2n + 1) (see (3.7)). O

THEOREM 3.3. If a para-Kenmotsu metric g represents an n-Ricci soliton with
non-zero flow vector field V' being collinear with &, then the manifold is an Einstein
manifold with constant scalar curvature r = —2n(2n + 1).
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Proof. By hypothesis, there exists a smooth function f on M?"*! such that V = f¢.
On covariant differentiation along X (€ X(M)) gives
(3.22) V, V= (Xf)§ = f(X =n(X)E), by (2.3).
Combining (1.1) and (3.22), we get
(3.23) 25(X,Y)+ (X [)n(Y)+ (Y f)n(X) =2(f = A)g(X,Y)+2(f +p)n(X)n(Y) = 0.

With X =Y = ¢ and using (2.10) in the foregoing equation, we find £(f) = 0. Now
for Y = ¢ in (3.23), we get X(f) = 0 (refer to (2.9) and (3.13)). This proves the
smooth function f reduces to a constant function. Moreover, (3.23) gives

(3.24) S(X,Y) = (f = Ng(X,Y) = (f + w)n(X)n(Y).
This proves the manifold is n-Einstein and hence taking advantage of the first theorem
we can say that it is Einstein with constant scalar curvature r = —2n(2n + 1). O

REMARK 3.1. If a para-Kenmotsu metric g represents an n-Ricci soliton with flow
vector field V' being conformal, then V' is killing and the manifold is Einstein with
constant scalar curvature r = —2n(2n + 1).

4. Example

ExaAMPLE 4.1. We will give an example of a 3-dimensional para-Kenmotsu mani-
fold, which exhibits Theorem 3.3.

Let L be a 3-dimensional real connected Lie group and g be its Lie algebra with a
basis {e,,e,,e,} of left invariant vector fields by the following commutators [19]:

le,,e,] =0, le,,e,] =€, +ae,, [e,,e,] =ae, +e,, abeing a constant.
Let g be the Pseudo-Riemannian metric defined by
(41) { 9(61761):17 9(63763):17 _g(62762):17
9(61762) = 9(61763) = 9(62’63) =0.

Let £ = e, be the vector field associated with the 1-form 7. The (1, 1)-tensor field ¢
be defined by,

(4'2) ¢(€1) = €y ¢(62) =€y ¢(63) = 0.

Then (L, $,&,1,g) is a 3-dimensional almost paracontact metric manifold. Since the
metric ¢ is left invariant the Koszul equality becomes (refer to [16])

Ve e, =€y, Ve e, =0, Ve €, = —e,,
Ve, e, =€, Ve, e, =0, Ve, €, = €,
Ve, e, = —ae,, Ve, e, = —ae,, Ve, e, =0.

Also, the Riemannian curvature tensor R is given by,
R(X, Y2 =V /N, Z-N, N, Z-V_ ., Z

XY=

Then,
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Then, the Ricci tensor S is given by

S(e,,e,) = —2, S(e,,e,) =2, S(e,,e,) = —2,
S(e,,e,) =0, S(e,,e;) =0, S(e,,e;) =0.
Thus it is easy to see that
(4.3) S(X,Y) =—-29(X,Y),
which proves the manifold is Einstein. The scalar curvature of the manifold is r = —6.

If we consider the flow vector field V' = f¢, for some constant f, then from the well
known formulae (£,9)(X,Y) = g(VxV,Y) + g(X, VyV) we get

(4.4) £,9==2fg+2fn®n.

So feeding (4.3) and (4.4) in (1.1), we see that the soliton equation is satisfied for
A= f+2and g = —f ie the metric g admits n-Ricci soliton with the flow vector
field V' for the constants A = f + 2 and 4 = —f. Moreover, we obtain A\ + u = 2,
which proves (3.13), for n = 1. Furthermore, Theorem 3.3 is also verified.
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