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SIMPSON’S AND NEWTON’S TYPE QUANTUM INTEGRAL

INEQUALITIES FOR PREINVEX FUNCTIONS

Muhammad Aamir Ali∗, Mujahid Abbas, Mubarra Sehar, and
Ghulam Murtaza

Abstract. In this research, we offer two new quantum integral equalities for re-
cently defined qε2-integral and derivative, the derived equalities then used to prove
quantum integral inequalities of Simpson’s and Newton’s type for preinvex functions.
We also considered the special cases of established results and offer several new and
existing results inside the literature of Simpson’s and Newton’s type inequalities.

1. Introduction

A lot of research work has been carried out in the field of q-analysis, initially ini-
tiated by Euler. It provides a suitable framework to study models in quantum com-
puting q-calculus which appeared as a connection between mathematics and physics.
It has a lot of applications in different mathematical areas such as number theory,
combinatorics, orthogonal polynomials, basic hypergeometric functions, and other
disciplines such as quantum theory, mechanics, and the theory of relativity [18]-
[20], [22], [24]. Apparently, Euler is the founder of this branch of mathematics, where
the parameter q is used in Newton’s work of infinite series. Later, Jackson was the
first to develop q-calculus that is known as ”without limits calculus” in a system-
atic way [18]. In 1908-1909, Jackson defined the general q-integral and q-difference
operator [22]. In 1969, Agarwal [7] described the q-fractional derivative for the first
time . In 1966-1967, Al-Salam [8] introduced a q-analogs of the Riemann-Liouville
fractional integral operator and q-fractional integral operator. In 2004, Rajkovic gave
a definition of the Riemann-type q-integral which was the generalization of Jackson
q-integral. In 2013, Tariboon introduced ε1Dq-difference operator [34].

Many integral inequalities well known in classical analysis such as Hölder inequal-
ity, Simpson’s inequality, Newton’s inequality, Hermite-Hadamard inequality and Os-
trowski inequality, Cauchy-Bunyakovsky-Schwarz, Gruss, Gruss- Cebysev, and other
integral inequalities have been proved and applied in the setup of q-calculus using
classical convexity. Many mathematicians have done studies in q-calculus analysis,
the interested reader can check [1]- [6], [12]- [15], [23], [25], [26], [28]- [30], [32], [35].
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In techniques of numerical integration and numerical estimation, Simpson’s rules
are well-known. T. Simpson (1710-1761) is the developer of this well-known technique.
This method is also considered Kepler’s law because J. Kepler used a similar approx-
imation about 100 years ago. Simpson’s rule includes the three-point Newton-Cotes
quadrature rule, so estimations based on three steps quadratic kernel is sometimes
called as Newton type results. Note that,

1: Simpson’s 1/3 formula is given as

1

ε2 − ε1

∫ ε2

ε1

Φ (µ) dµ ≈ 1

6

[
Φ (ε1) + 4Φ

(
ε1 + ε2

2

)
+ Φ (ε2)

]
.

2: Simpson’s 3/8 formula is given as follows

1

ε2 − ε1

∫ ε2

ε1

Φ (µ) dµ

≈ 1

8

[
Φ (ε1) + 3Φ

(
2ε1 + ε2

3

)
+ 3Φ

(
ε1 + 2ε2

3

)
+ Φ (ε2)

]
.

There are a large number of estimations related to these quadrature rules in the
literature, one of them is the following estimation known as Simpson’s inequality:

Theorem 1. Let Φ : [ε1, ε2] → R be a four times continuously differentiable
function on (ε1, ε2), and ∥∥Φ(4)

∥∥
∞ = sup

µ∈(ε1,ε2)

∣∣Φ(4) (µ)
∣∣ <∞.

Then, we have the following inequality∣∣∣∣13
[

Φ (ε1) + Φ (ε2)

2
+ 2Φ

(
ε1 + ε2

2

)]
− 1

ε2 − ε1

∫ ε2

ε1

Φ (µ) dµ

∣∣∣∣
≤ 1

2880

∥∥Φ(4)
∥∥
∞ (ε2 − ε1)4 .

In recent years, many authors have considered Simpson’s type inequalities for var-
ious classes of functions. Convex analysis provide effective and strong methods for
solving a great number of problems which arise different branches in pure and ap-
plied mathematics. Some mathematicians have worked on Simpson’s and Newton’s
type results for convex mappings. For example, Dragomir et al. [16] presented new
Simpson’s type results and their applications to quadrature formula in numerical in-
tegration. Some Simpson’s type inequalities for s-convex functions are deduced by
Alomari et al. [9]. Afterwards, Sarikaya et al. [33] observed the variants of Simpson’s
type inequalities based on convexity. Noor et al. [27], [31] provided some Newton’s
type inequalities for harmonic convex and p-harmonic convex functions. Furthermore,
some Newton’s type inequalities for functions whose local fractional derivatives are
generalized convex were obtained by Iftikhar et al. [21].

The main objective of this paper is to study Newton’s and Simpson’s type inequal-
ities for preinvex functions by using the notions of quantum calculus.

2. Preliminaries and Definitions of q-Calculus

The basic notions and findings which are needed in the sequel to prove our crucial
results are reviewed in this section. Throughout this paper, we assume that ε1 < ε2
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and 0 < q < 1. Let ω be a nonempty closed set in Rn, Φ : ω → R a continuous
function and η (., .) : ω × ω → Rn be a continuous bifunction.

Definition 1. [15] A set ω is said to be invex set with respect to bifunction η (., .)
if

ε2 + tη (ε1, ε2) ∈ ω, ∀ ε1, ε2 ∈ ω, t ∈ [0, 1] .

The invex set ω is also known as η-connected set.

Definition 2. [15] A mapping Φ is said to be preinvex with respect to an arbitrary
bifunction η (., .) if the following inequality holds:

Φ (ε2 + tη (ε1, ε2)) ≤ tΦ (ε1) + (1− t) Φ (ε2) , ∀ ε1, ε2 ∈ ω, t ∈ [0, 1] .

The function Φ is called preconcave if −Φ is preinvex.

Remark 1. If we set η (ε1, ε2) = ε1 − ε2, then the definition of preinvex functions
reduces to the definition of a convex functions given below;

Φ (ε2 + t (ε1 − ε2)) ≤ tΦ (ε1) + (1− t) Φ (ε2) , ∀ ε1, ε2 ∈ ω, t ∈ [0, 1] .

Now we present some well known concepts and theorems for q- derivative and q-
integral of a function Φ on [ε1, ε2].

Definition 3. [24] For a function Φ : [ε1, ε2] → R, the qε1- derivative of Φ at
µ ∈ [ε1, ε2] is characterized by the expression

(2.1) ε1DqΦ (µ) =
Φ (µ)− Φ (qµ+ (1− q) ε1)

(1− q) (µ− ε1)
, µ 6= ε1.

If µ = ε1, we define ε1Dqf (µ) = limµ→ε1 ε1Dqf (µ) if it exists and it is finite.

Definition 4. [34] Let Φ : [ε1, ε2] → R be a function. Then, the qε1-definite
integral on [ε1, ε2] is defined by

µ∫
ε1

Φ (s) ε1dqs(2.2)

= (1− q) (µ− ε1)
∞∑
n=0

qnΦ (qnµ+ (1− qn) ε1) , µ ∈ [ε1, ε2] .

Remark 2. If ε1 = 0 in (2.2), then
µ∫
0

Φ (s) 0dqs =
µ∫
0

Φ (s) dqs , where
µ∫
0

Φ (s) dqs

is the familiar q-definite integral (see, [24]) on [0, µ] defined by

(2.3)

µ∫
0

Φ (s) 0dqs =

µ∫
0

Φ (s) dqs = (1− q)µ
∞∑
n=0

qnΦ (qnµ) .

Definition 5. If c ∈ (ε1, µ), then the q- definite integral on [c, µ] is expressed as

(2.4)

µ∫
c

Φ (s) ε1dqs =

µ∫
ε1

Φ (s) ε1dqs −
c∫

ε1

Φ (s) ε1dqs .

Alp et al. [10] proved the following q-Hermite-Hadamard inequality:
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Theorem 2. (qε1-Hermite-Hadamard inequality) Let Φ : [ε1, ε2]→ R be a convex
differentiable function on [ε1, ε2] and 0 < q < 1. Then we have

Φ

(
qε1 + ε2

1 + q

)
≤ 1

ε2 − ε1

ε2∫
ε1

Φ (µ) ε1dqµ ≤
qΦ (ε1) + Φ (ε2)

1 + q
.

On the other hand, Bermudo et al. [11] gave the following new definitions of quan-
tum integral and derivative. In the same paper authors proved a new variant of
quantum Hermite-Hadamard type inequality linked with their newly defined quan-
tum integral:

Definition 6. [11] Let Φ : [ε1, ε2] → R be a function. Then, the qε2-definite
integral on [ε1, ε2] is given by

ε2∫
ε1

Φ (µ) ε2dqµ = (1− q) (ε2 − ε1)
∞∑
n=0

qnΦ (qnε1 + (1− qn) ε2)

= (ε2 − ε1)
1∫

0

Φ (sε1 + (1− s) ε2) dqs .

Definition 7. [11] Let Φ : [ε1, ε2] → R be a function. The qε2-derivative of Φ at
µ ∈ [ε1, ε2] is given by

ε2DqΦ (µ) =
Φ (qµ+ (1− q) ε2)− Φ (µ)

(1− q) (ε2 − µ)
, µ 6= ε2.

Theorem 3. [11] (qε2-Hermite-Hadamard inequality) If Φ : [ε1, ε2] → R is a con-
vex differentiable function on [ε1, ε2] and 0 < q < 1. Then, qε2-Hermite-Hadamard
inequalities are given as follows:

(2.5) Φ

(
ε1 + qε2

1 + q

)
≤ 1

ε2 − ε1

ε2∫
ε1

Φ (µ) ε2dqµ ≤
Φ (ε1) + qΦ (ε2)

1 + q
.

Let us set the following notations:

[n]q =

 qn−1
q−1 =

n−1∑
i=0

qi, n ∈ N
qn−1
q−1 , n ∈ C

,

and

(2.6) (1− s)nq = (s, q)n =
n−1∏
i=0

(
1− qis

)
.

Lemma 1. [10] For α ∈ R\ {−1}, the following formula holds:

(2.7)

µ∫
ε1

(s− ε1)α ε1dqs =
(µ− ε1)α+1

[α + 1]q
.
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3. Quantum Integral Identities

In this section, we will prove two equalities which will help us to obtain our main
results.

Lemma 2. Let Φ : I = [ε2 + η (ε1, ε2) , ε2] → R be a differentiable function on
I◦(interior of I) with −η (ε1, ε2) = η (ε2, ε1) > 0. Then the following identity holds for
qε2-integrals:

1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ (µ) ε2dqµ(3.1)

−1

6

[
Φ (ε2 + η (ε1, ε2)) + 4Φ

(
2ε2 + η (ε1, ε2)

2

)
+ Φ (ε2)

]
= η (ε2, ε1)

∫ 1

0

$q (t) ε2DqΦ (ε2 + tη (ε1, ε2)) dqt

where

$q (t) =

 qt− 1
6
, if 0 ≤ t < 1

2
,

qt− 5
6
, if 1

2
≤ t ≤ 1.

Proof. Using the basic properties of q-integral and definition of $q (t), we have∫ 1

0

$q (t) ε2DqΦ (ε2 + tη (ε1, ε2)) dqt(3.2)

=
2

3

∫ 1
2

0

ε2DqΦ (ε2 + tη (ε1, ε2)) dqt+

∫ 1

0

qt ε2DqΦ (ε2 + tη (ε1, ε2)) dqt

−5

6

∫ 1

0

ε2DqΦ (ε2 + tη (ε1, ε2)) dqt.

From Definition 7, we have

ε2DqΦ (ε2 + tη (ε1, ε2)) =
Φ (ε2 + tqη (ε1, ε2))− Φ (ε2 + tη (ε1, ε2))

(1− q) tη (ε2, ε1)
.

We now compute the integrals on the right side of (3.2). Using Definition 6, we obtain
that ∫ 1

2

0

ε2DqΦ (ε2 + tη (ε1, ε2)) dqt(3.3)

=

∫ 1
2

0

Φ (ε2 + tqη (ε1, ε2))− Φ (ε2 + tη (ε1, ε2))

(1− q) tη (ε2, ε1)
dqt

=
1

η (ε2, ε1)

[
∞∑
n=0

Φ

(
ε2 +

qn+1

2
η (ε1, ε2)

)
−
∞∑
n=0

Φ

(
ε2 +

qn

2
η (ε1, ε2)

)]

=
1

η (ε2, ε1)

[
Φ (ε2)− Φ

(
2ε2 + η (ε1, ε2)

2

)]
,
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0

ε2DqΦ (ε2 + tη (ε1, ε2)) dqt(3.4)

=
1

η (ε2, ε1)
[Φ (ε2)− Φ (ε2 + η (ε1, ε2))]

and

∫ 1

0

qt ε2DqΦ (ε2 + tη (ε1, ε2)) dqt(3.5)

=

∫ 1

0

q
Φ (ε2 + tqη (ε1, ε2))− Φ (ε2 + tη (ε1, ε2))

(1− q) η (ε2, ε1)
dqt

=
1

η (ε2, ε1)

[
(1− q)

∞∑
n=0

qnΦ (ε2 + qnη (ε1, ε2))− Φ (ε2 + η (ε1, ε2))

]

=
1

η (ε2, ε1)

[
1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ (µ) ε2dqµ− Φ (ε2 + η (ε1, ε2))

]
.

Finally, by substituting (3.3)-(3.5) in (3.2) and multiplying the resultant equality by
η (ε2, ε1), we obtain the required identity which completes the proof.

Remark 3. If we set η (ε2, ε1) = ε2 − ε1 and η (ε1, ε2) = ε1 − ε2 in Lemma 2, then
Lemma 2 reduces to [14, Lemma 2].

Lemma 3. Let Φ : I = [ε2 + η (ε1, ε2) , ε2] → R be a differentiable function on I◦

(interior of I) with −η (ε1, ε2) = η (ε2, ε1) > 0. Then the following identity holds for
qε2-integrals:

1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ (µ) ε2dqµ

−1

8

[
Φ (ε2 + η (ε1, ε2)) + 3Φ

(
3ε2 + η (ε1, ε2)

3

)
+3Φ

(
3ε2 + 2η (ε1, ε2)

3

)
+ Φ (ε2)

]
= η (ε2, ε1)

∫ 1

0

Πq (t) ε2Dq (ε2 + tη (ε1, ε2)) dqt

where

Πq (t) =


qt− 1

8
, if 0 ≤ t < 1

3
,

qt− 1
2
, if 1

3
≤ t < 2

3
,

qt− 7
8
, if 2

3
≤ t ≤ 1.
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Proof. By the fundamental properties of q-integrals and definition of Πq (t), we
obtain that ∫ 1

0

Πq (t) ε2Dq (ε2 + tη (ε1, ε2)) dqt

=
3

8

∫ 1
3

0

ε2Dq (ε2 + tη (ε1, ε2)) dqt+
3

8

∫ 2
3

0

ε2Dq (ε2 + tη (ε1, ε2)) dqt

+

∫ 1

0

(
qt− 7

8

)
ε2Dq (ε2 + tη (ε1, ε2)) dqt.

Following arguments similar to those in the proof of Lemma 2, the required identity
can be proved.

Remark 4. If we set η (ε2, ε1) = ε2− ε1 and η (ε1, ε2) = ε1− ε2 in Lemma 3, then
Lemma 3 becomes [14, Lemma 3].

4. Simpson’s type inequalities for quantum Integrals

In this section, we present some new Simpson’s type inequalities for preinvex func-
tions by using the Lemma 2.

Theorem 4. We assume that the conditions of Lemma 2 hold. If |ε2DqΦ| is preinvex
and integrable on I, then the following inequality holds for qε2-integrals:∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ (µ) ε2dqµ

−1

6

[
Φ (ε2 + η (ε1, ε2)) + 4Φ

(
2ε2 + η (ε1, ε2)

2

)
+ Φ (ε2)

]∣∣∣∣
≤ η (ε2, ε1) [A1 (q) + A3 (q) |ε2DqΦ (ε1)|+ (A2 (q) + A4 (q)) |ε2DqΦ (ε2)|]

where Ai, i = 1, 2, 3, 4 are defined by

A1 (q) =

∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ tdqt =


1−2q−2q2

24(1+q)(1+q+q2)
, if 0 < q < 1

3

18q2+18q−7
216(1+q)(1+q+q2)

, if 1
3
≤ q < 1,

A2 (q) =

∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ (1− t) dqt =


1−4q3

24(1+q)(1+q+q2)
, if 0 < q < 1

3

36q3+12q2+12q+1
216(1+q)(1+q+q2)

, if 1
3
≤ q < 1,

A3 (q) =

∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ tdqt =


15−6q−6q2

24(1+q)(1+q+q2)
, if 0 < q < 5

6

18q2+18q+25
216(1+q)(1+q+q2)

, if 5
6
≤ q < 1,

A4 (q) =

∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ (1− t) dqt =


−5+8q+8q2−8q3
24(1+q)(1+q+q2)

, if 0 < q < 5
6

12q2+12q+5
216(1+q)(1+q+q2)

, if 5
6
≤ q < 1.
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Proof. On taking modulus on the right hand side of an identity in Lemma 2 and
using the properties of modulus , we obtain that∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ (µ) ε2dqµ(4.1)

−1

6

[
Φ (ε2 + η (ε1, ε2)) + 4Φ

(
2ε2 + η (ε1, ε2)

2

)
+ Φ (ε2)

]∣∣∣∣
≤ η (ε2, ε1)

[∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ |ε2DqΦ (ε2 + tη (ε1, ε2))| dqt

+

∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ |ε2DqΦ (ε2 + tη (ε1, ε2))| dqt

]
.

Since |ε2DqΦ| is preinvex function, we have∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ |ε2DqΦ (tε1 + (1− t) ε2)| dqt(4.2)

≤ |ε2DqΦ (ε1)|
∫ 1

2

0

∣∣∣∣qt− 1

6

∣∣∣∣ tdqt+ |ε2DqΦ (ε2)|
∫ 1

2

0

∣∣∣∣qt− 1

6

∣∣∣∣ (1− t) dqt
= A1 (q) |ε2DqΦ (ε1)|+ A2 (q) |ε2DqΦ (ε2)|

and ∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ |ε2DqΦ (tε1 + (1− t) ε2)| dqt(4.3)

≤ |ε2DqΦ (ε1)|
∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ tdqt+ |ε2DqΦ (ε2)|
∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ (1− t) dqt
= A3 (q) |ε2DqΦ (ε1)|+ A4 (q) |ε2DqΦ (ε2)| .

Finally, substituting (4.2) and (4.3) in (4.1), we obtain the desired inequality which
completes the proof.

Corollary 1. In Theorem 4, if we take limit q → 1−, then we have∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ (µ) dµ

−1

6

[
Φ (ε2 + η (ε1, ε2)) + 4Φ

(
2ε2 + η (ε1, ε2)

2

)
+ Φ (ε2)

]∣∣∣∣
≤ 5η (ε2, ε1)

72
[|Φ′ (ε1)|+ |Φ′ (ε2)|]

which can be viewed as a special case of inequality derived in [17].

Therefore, we can deduce the following result for convex functions

Remark 5. If we set η (ε2, ε1) = ε2 − ε1 and η (ε1, ε2) = ε1 − ε2 in Theorem 4,
then Theorem 4 reduces to [14, Theorem 4].

Remark 6. If we set η (ε2, ε1) = ε2 − ε1, η (ε1, ε2) = ε1 − ε2, and q → 1− in
Theorem 4, then Theorem 4 reduces to [9, Corollary 1].
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Remark 7. In Theorem 4, if η (ε2, ε1) = ε2 − ε1, η (ε1, ε2) = ε1 − ε2, Φ (ε1) =
Φ
(
ε1+ε2

2

)
= Φ (ε2), and q → 1−, then Theorem 4 reduces to [9, Corollary 3].

The corresponding version of the Simpson’s inequality for powers in terms of the
first q-derivative is incorporated in the following result.

Theorem 5. We assume that the assumptions of Lemma 2 hold. If |ε2DqΦ|r is
preinvex and integrable on I where r > 1 with 1

r
+ 1

s
= 1, then we have∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ (µ) ε2dqµ(4.4)

−1

6

[
Φ (ε2 + η (ε1, ε2)) + 4Φ

(
2ε2 + η (ε1, ε2)

2

)
+ Φ (ε2)

]∣∣∣∣
≤ 1

6
η (ε2, ε1)

[
21− 1

s

×
(

1

4 (1 + q)
|ε2DqΦ (ε1)|r +

2q + 1

4 (1 + q)
|ε2DqΦ (ε2)|r

) 1
r

+
(
5s − 2s−1

) 1
s

×
(

3

4 (1 + q)
|ε2DqΦ (ε1)|r +

2q − 1

4 (1 + q)
|ε2DqΦ (ε2)|r

) 1
r

]
.

Proof. Applying Hölder’s inequality on the first right integral of (4.1) and using
the fact that |ε2DqΦ|r is preinvex function, we have∫ 1

2

0

∣∣∣∣qt− 1

6

∣∣∣∣ |ε2DqΦ (ε2 + tη (ε1, ε2))| dqt(4.5)

≤

(∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣s dqt
) 1

s

×

(
|ε2DqΦ (ε1)|r

∫ 1
2

0

tdqt+ |ε2DqΦ (ε2)|r
∫ 1

2

0

(1− t) dqt

) 1
r

.

Computing the integrals that appear on the right side of (4.5)∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣s dqt = (1− q) 1

2

∞∑
n=0

qn
∣∣∣∣qn+1

2
− 1

6

∣∣∣∣s
≤ (1− q) 1

2

∞∑
n=0

qn
∣∣∣∣12 − 1

6

∣∣∣∣s
≤ (1− q) 1

2

1

(1− q)
1

3s

≤ 1

2.3s∫ 1
2

0

tdqt = (1− q) 1

2

∞∑
n=0

q2n

2
=

1

4 (1 + q)
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and ∫ 1
2

0

(1− t) dqt =
1 + 2q

4 (1 + q)
.

So, we have ∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ |ε2DqΦ (ε2 + tη (ε1, ε2))| dqt

≤
(

1

2.3s

) 1
s
[

1

4 (1 + q)
|ε2DqΦ (ε1)|r +

1 + 2q

4 (1 + q)
|ε2DqΦ (ε2)|r

] 1
r

.

Using the similar operations to the second integral on the right side of (4.1), we obtain
that ∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ |ε2DqΦ (ε2 + tη (ε1, ε2))| dqt

≤
(

5s − 2s−1

6s

) 1
s
(

3

4 (1 + q)
|ε2DqΦ (ε1)|r +

2q − 1

4 (1 + q)
|ε2DqΦ (ε2)|r

) 1
r

.

Thus, the desired inequality can be easily obtained.

Remark 8. If we set η (ε2, ε1) = ε2 − ε1 and η (ε1, ε2) = ε1 − ε2 in Theorem 5,
then Theorem 5 reduces to [14, Theorem 5].

Another version of the Simpson’s inequality for powers in terms of the first q-
derivative is obtained as follows:

Theorem 6. Suppose that the assumptions of Lemma 2 hold. If |ε2DqΦ|r is prein-
vex and integrable on I where r ≥ 1, then we have∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ (µ) ε2dqµ(4.6)

−1

6

[
Φ (ε2 + η (ε1, ε2)) + 4Φ

(
2ε2 + η (ε1, ε2)

2

)
+ Φ (ε2)

]∣∣∣∣
≤ η (ε2, ε1) (A5 (q))1−

1
r [A1 (q) |ε2DqΦ (ε1)|r + A2 (q) |ε2DqΦ (ε2)|r]

1
r

+η (ε2, ε1) (A6 (q))1−
1
r [A3 (q) |ε2DqΦ (ε1)|r + A4 (q) |ε2DqΦ (ε2)|r]

1
r

where Ai, i = 1, 2, 3, 4 are defined as in Theorem 4. Furthermore, A5 and A6 are
defined by

A5 (q) =

∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ dqt =


1−2q

12(1+q)
, if 0 < q < 1

3

6q−1
36(1+q)

, if 1
3
≤ q < 1,

A6 (q) =

∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ dqt =


5−4q

12(1+q)
, if 0 < q < 5

6

5
36(1+q)

, if 5
6
≤ q < 1.
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Proof. Applying power mean inequality on the first right integral of (4.1) and using
the fact that |ε2DqΦ|r is preinvex function, we have∫ 1

2

0

∣∣∣∣qt− 1

6

∣∣∣∣ |ε2DqΦ (ε2 + tη (ε1, ε2))| dqt

≤

(∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ dqt
)1− 1

r
(∫ 1

2

0

∣∣∣∣qt− 1

6

∣∣∣∣ |ε2DqΦ (ε2 + tη (ε1, ε2))|r dqt

) 1
r

≤

(∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ dqt
)1− 1

r

×

[
|ε2DqΦ (ε1)|r

∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ tdqt+ |ε2DqΦ (ε2)|r
∫ 1

2

0

∣∣∣∣qt− 1

6

∣∣∣∣ (1− t) dqt
] 1

r

= (A5 (q))1−
1
r [A1 (q) |ε2DqΦ (ε1)|r + A2 (q) |ε2DqΦ (ε2)|r]

1
r .

If we use the same operations to the second integral on the right side of (4.1), we can
compute that ∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ |ε2DqΦ (tε1 + (1− t) ε2)| dqt

≤ (A6 (q))1−
1
r [A3 (q) |ε2DqΦ (ε1)|r + A4 (q) |ε2DqΦ (ε2)|r]

1
r .

Thus, the required inequality can be easily proved.

Corollary 2. If we take limit q → 1− in Theorem 6, then we have following
inequality∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ (µ) dµ

−1

6

[
Φ (ε2 + η (ε1, ε2)) + 4Φ

(
2ε2 + η (ε1, ε2)

2

)
+ Φ (ε2)

]∣∣∣∣
≤ 51− 1

r

72
η (ε2, ε1)

[(
29

18
|Φ′ (ε1)|r +

61

18
|Φ′ (ε2)|r

) 1
r

+

(
61

18
|Φ′ (ε1)|r +

29

18
|Φ′ (ε2)|r

) 1
r

]
which can be viewed as a special case of inequality derived in [17].

Remark 9. If we set η (ε2, ε1) = ε2 − ε1 and η (ε1, ε2) = ε1 − ε2 in Theorem 6,
then Theorem 6 reduces to [14, Theorem 6].

Remark 10. In Theorem 6, if we take η (ε2, ε1) = ε2− ε1, η (ε1, ε2) = ε1− ε2, and
q → 1−, then we have following inequality∣∣∣∣16

[
Φ (ε1) + 4Φ

(
ε1 + ε2

2

)
+ Φ (ε2)

]
− 1

ε2 − ε1

∫ ε2

ε1

Φ (µ) dµ

∣∣∣∣
≤ 51− 1

r

72
(ε2 − ε1)

[(
29

18
|Φ′ (ε1)|r +

61

18
|Φ′ (ε2)|r

) 1
r

+

(
61

18
|Φ′ (ε1)|r +

29

18
|Φ′ (ε2)|r

) 1
r

]
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which can be proved as a special case of inequality derived in [9].

5. Newton’s type inequalities for quantum integrals

In this section, we prove some Newton’s type inequalities for preinvex functions
using the Lemma 3.

Theorem 7. We assume that the assumptions of Lemma 3 hold. If |ε2DqΦ| is
preinvex and integrable on I, then the following inequality holds for qε2-integrals:∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ (µ) ε2dqµ(5.1)

−1

8

[
Φ (ε2 + η (ε1, ε2)) + 3Φ

(
3ε2 + η (ε1, ε2)

3

)
+3Φ

(
3ε2 + 2η (ε1, ε2)

3

)
+ Φ (ε2)

]∣∣∣∣
≤ η (ε2, ε1) [(Ψ1 (q) + Ψ3 (q) + Ψ5 (q)) |ε2DqΦ (ε1)|

+ (Ψ2 (q) + Ψ4 (q) + Ψ6 (q)) |ε2DqΦ (ε2)|]

where

Ψ1 (q) =

∫ 1
3

0

∣∣∣∣qt− 1

8

∣∣∣∣ tdqt =


3−5q−5q2

216(1+q)(1+q+q2)
0 < q < 3

8

160q2+160q−69
6912(1+q)(1+q+q2)

3
8
< q < 1,

Ψ2 (q) =

∫ 1
3

0

∣∣∣∣qt− 1

8

∣∣∣∣ (1− t) dqt =


6−q−q2−15q3

216(1+q)(1+q+q2)
0 < q < 3

8

480q3+248q2+248q−3
6912(1+q)(1+q+q2)

3
8
< q < 1,

Ψ3 (q) =

∫ 2
3

1
3

∣∣∣∣qt− 1

2

∣∣∣∣ tdqt =


9−5q−5q2

54(1+q)(1+q+q2)
0 < q < 3

4

6q2+6q−3
108(1+q)(1+q+q2)

3
4
< q < 1,

Ψ4 (q) =

∫ 2
3

1
3

∣∣∣∣qt− 1

2

∣∣∣∣ (1− t) dqt =


5q+5q2−9q3

54(1+q)(1+q+q2)
0 < q < 3

4

6q3+3
108(1+q)(1+q+q2)

3
4
< q < 1,

Ψ5 (q) =

∫ 1

2
3

∣∣∣∣qt− 7

8

∣∣∣∣ tdqt =


105−47q−47q2

216(1+q)(1+q+q2)
0 < q < 7

8

224q2+224q+525
6912(1+q)(1+q+q2)

7
8
< q < 1,

Ψ6 (q) =

∫ 1

2
3

∣∣∣∣qt− 7

8

∣∣∣∣ (1− t) dqt =


−42+53q+53q2−57q3
216(1+q)(1+q+q2)

0 < q < 7
8

−96q3+184q2+184q−21
6912(1+q)(1+q+q2)

7
8
< q < 1.

Proof. Following arguments similar to those in the proof of Theorem 4 by taking
into account the Lemma 3, the desired inequality (5.1) is attained.
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Corollary 3. If we take q → 1− in Theorem 7, then we have following inequality∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ (µ) dµ − 1

8

[
Φ (ε2 + η (ε1, ε2)) + 3Φ

(
3ε2 + η (ε1, ε2)

3

)
+3Φ

(
3ε2 + 2η (ε1, ε2)

3

)
+ Φ (ε2)

]∣∣∣∣
≤ 25η (ε2, ε1)

576
[|Φ′ (ε1)|+ |Φ′ (ε2)|]

which can be viewed a special cases of inequality given in [17].

Remark 11. If we set η (ε2, ε1) = ε2 − ε1 and η (ε1, ε2) = ε1 − ε2 in Theorem 7,
then Theorem 7 reduces to [14, Theorem 7].

Remark 12. If we set η (ε2, ε1) = ε2 − ε1, η (ε1, ε2) = ε1 − ε2, and q → 1− in
Theorem 7, then we have following inequality∣∣∣∣ 1

ε2 − ε1

∫ ε2

ε1

Φ (µ) dµ −1

8

[
Φ (ε1) + 3Φ

(
ε1 + 2ε2

3

)
+ 3Φ

(
2ε1 + ε2

3

)
+ Φ (ε2)

]∣∣∣∣
≤ 25 (ε2 − ε1)

576
[|Φ′ (ε1)|+ |Φ′ (ε2)|]

which was derived as special case of an inequality proved in [21].

Theorem 8. We assume that the assumptions of Lemma 3 hold. If |ε2DqΦ|r is
preinvex and integrable on I where r > 1 with 1

r
+ 1

s
= 1, then we have∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ (µ) ε2dqµ(5.2)

−1

8

[
Φ (ε2 + η (ε1, ε2)) + 3Φ

(
3ε2 + η (ε1, ε2)

3

)
+3Φ

(
3ε2 + 2η (ε1, ε2)

3

)
+ Φ (ε2)

]∣∣∣∣
≤ η (ε2, ε1)

[(
5s

3.8s

) 1
s

×
(

1

9 (1 + q)
|ε2DqΦ (ε1)|r +

3q + 2

9 (1 + q)
|ε2DqΦ (ε2)|r

) 1
r

+

(
2.3s − 1

3.6s

) 1
s

×
(

3

9 (1 + q)
|ε2DqΦ (ε1)|r +

3q

9 (1 + q)
|ε2DqΦ (ε2)|r

) 1
r

+

(
3.7s − 2

3.8s

) 1
s

×
(

5

9 (1 + q)
|ε2DqΦ (ε1)|r +

3q − 2

9 (1 + q)
|ε2DqΦ (ε2)|r

) 1
r

]
.



206 Muhammad Aamir Ali∗, Mujahid Abbas, Mubarra Sehar, and Ghulam Murtaza

Proof. If the techniques used in the proof of Theorem 5 are applied by taking into
account the Lemma 3, the desired inequality (5.2) can be attained.

Corollary 4. In Theorem 8, if we take limit q → 1−, then we have following
inequality ∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ (µ) dµ(5.3)

−1

8

[
Φ (ε1 + η (ε1, ε2)) + 3Φ

(
3ε2 + η (ε1, ε2)

3

)
+3Φ

(
3ε2 + 2η (ε1, ε2)

3

)
+ Φ (ε2)

]∣∣∣∣
≤ η (ε2, ε1)

3

[
5

8

(
|Φ′ (ε1)|r + 5 |Φ′ (ε2)|r

6

) 1
r

+

(
2.3s − 1

6s

) 1
s
(
|Φ′ (ε1)|r + |Φ′ (ε2)|r

2

) 1
r

+

(
3.7s − 2

8s

) 1
s
(

5 |Φ′ (ε1)|r + |Φ′ (ε2)|r

6

) 1
r

]
.

Remark 13. If we set η (ε2, ε1) = ε2 − ε1 and η (ε1, ε2) = ε1 − ε2 in (5.3), then
inequality (5.3) reduces to inequality presented in [14, Remark 4].

Remark 14. If we set η (ε2, ε1) = ε2 − ε1 and η (ε1, ε2) = ε1 − ε2 in Theorem 8,
then Theorem 8 reduces to [14, Theorem 8].

Theorem 9. Suppose that the assumptions of Lemma 3 hold. If |ε2DqΦ|r is prein-
vex and integrable on I where r ≥ 1, then we have∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ (µ) ε2dqµ(5.4)

−1

8

[
Φ (ε1 + η (ε1, ε2)) + 3Φ

(
3ε2 + η (ε1, ε2)

3

)
+3Φ

(
3ε2 + 2η (ε1, ε2)

3

)
+ Φ (ε2)

]∣∣∣∣
≤ η (ε2, ε1) (Ψ7 (q))1−

1
r

× [Ψ1 (q) |ε2DqΦ (ε1)|r + Ψ2 (q) |ε2DqΦ (ε2)|r]
1
r

+η (ε2, ε1) (Ψ8 (q))1−
1
r

× [Ψ3 (q) |ε2DqΦ (ε1)|r + Ψ4 (q) |ε2DqΦ (ε2)|r]
1
r

+η (ε2, ε1) (Ψ9 (q))1−
1
r

× [Ψ5 (q) |ε2DqΦ (ε1)|r + Ψ6 (q) |ε2DqΦ (ε2)|r]
1
r
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where Ψi : i = 1, 2, ...6 are defined as in Theorem 7 . Moreover, Ψ7, Ψ8, Ψ9 are
defined as

Ψ7 (q) =

∫ 1
3

0

∣∣∣∣qt− 1

8

∣∣∣∣ dqt =


3−5q

72(1+q)
0 < q < 3

8

20q−3
288(1+q)

3
8
≤ q < 1,

Ψ8 (q) =

∫ 2
3

1
3

∣∣∣∣qt− 1

2

∣∣∣∣ dqt =


3−3q

18(1+q)
0 < q < 3

4

q
18(1+q)

3
4
≤ q < 1,

Ψ9 (q) =

∫ 1

2
3

∣∣∣∣qt− 7

8

∣∣∣∣ dqt =


21−19q
72(1+q)

0 < q < 7
8

21−4q
288(1+q)

7
8
≤ q < 1.

Proof. The proof follows on the same lines used in the proof of Theorem 6 by taking
into account the Lemma 3.

Corollary 5. In Theorem 9, if we take limit q → 1−, then we have following
inequality ∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ (µ) dµ(5.5)

−1

8

[
Φ (ε1 + η (ε1, ε2)) + 3Φ

(
3ε2 + η (ε1, ε2)

3

)
+3Φ

(
3ε2 + 2η (ε1, ε2)

3

)
+ Φ (ε2)

]∣∣∣∣
≤ η (ε2, ε1)

36

[(
17

16

)1− 1
r
(

251

1152
|Φ′ (ε1)|r +

973

1152
|Φ′ (ε2)|r

) 1
r

+

(
|Φ′ (ε1)|r + |Φ′ (ε2)|r

2

) 1
r

+

(
17

16

)1− 1
r
(

973

1152
|Φ′ (ε1)|r +

251

1152
|Φ′ (ε2)|r

) 1
r

.

Remark 15. If we set η (ε2, ε1) = ε2 − ε1 and η (ε1, ε2) = ε1 − ε2 in (5.5), then
inequality (5.5) reduces to inequality presented in [14, Remark 5].

Remark 16. If we set η (ε2, ε1) = ε2 − ε1 and η (ε1, ε2) = ε1 − ε2 in Theorem 9,
then Theorem 9 reduces to [14, Theorem 9].

6. Concluding Remarks

In this paper, we proved some new inequalities of Simpson’s and Newton’s type
for q-differentiable preinvex functions by using the notions of qε2-integral. It is also
shown that some classical results can be obtained by the results presented in the
current research by taking limit q → 1−. It will be an interesting problem to prove
similar inequalities for the functions of two variables.
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