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ORGANIC RELATIONSHIP BETWEEN LAWS BASED ON

JUDICIAL PRECEDENTS USING TOPOLOGICAL DATA

ANALYSIS

Seonghun Kim and Jaeheon Jeong

Abstract. There have been numerous efforts to provide legal information to the
general public easily. Most of the existing legal information services are based on
keyword-oriented legal ontology. However, this keyword-oriented ontology construc-
tion has a sense of disparity from the relationship between the laws used together in
actual cases. To solve this problem, it is necessary to study which laws are actually
used together in various judicial precedents. However, this is difficult to implement
with the existing methods used in computer science or law. In our study, we analyzed
this by using topological data analysis, which has recently attracted attention very
promisingly in the field of data analysis. In this paper, we applied the the Mapper
algorithm, which is one of the topological data analysis techniques, to visualize the
relationships that laws form organically in actual precedents.

1. Introduction

In recent decades, conflicts between many individuals or groups have increased
exponentially as societies have diversified and lots of changes have occurred in the
industrial structure. As a result, the demand for legal services has increased. Experts
predict that the size of the legal market will continue to grow due to various reasons
such as an increase in the number of lawyers and the expansion of the new legal service
market [7]. However, in spite of these high demands, the law comes to non-professionals
as a being that is difficult to deal with and esoteric. There have been many efforts
at the level of government and individuals to solve this problem. In 2008, the govern-
ment reclassified intricately entangled laws based on the lives of ordinary citizens and
provide through the Practical Law Information Service(https://www.easylaw.go.kr/)
so that non-experts can easily find and understand the contents of the esoteric laws.
In addition, a number of studies have been conducted to make more convenient legal
information search services, such as a research on how to search by matching life terms
and legal terms [5]. However, despite these many efforts, most of the existing attempts
are limited to forming keyword-oriented legal ontology based on natural language pro-
cessing (NLP). Providing legal information grouped by keywords is very important
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and necessary in constructing legal ontology, but this alone does not establish a highly
complete legal knowledge base. Because there are so many associated laws within a
single keyword, it is very difficult to pinpoint the necessary laws within them. To
make matters worse, laws that are grouped by the same keyword do not mean they
are used together in actual cases. Users have to go through the entire list each time
they search for each keyword corresponding to a case. To solve this inconvenience, we
propose a new perspective of classifying laws by whether or not they actually work
together.

In each precedent, laws may be referenced alone or in combination. They also relate
to various laws in other precedents. However, this is not such a simple situation. We
must also consider to what extent each law is related, because two laws referenced
together multiple times have to be considered to be more strongly related than two
laws referenced together only once. Figure 1 is an example of the relationship between
laws.

Figure 1. Relationship between laws

As such, each law is actually used together in various precedents such as Supreme
Court precedents and Constitutional Court precedents to form a network of relation-
ships. Therefore, it is important to understand the relationship organically formed by
the law in actual precedents, away from the existing method of analyzing the law in
the form of keywords or sentences. In addition, in order to provide easy and conve-
nient legal services to non-professional users, it is necessary to present each law and
the laws that are actually used together as related laws. Until now, there have been
many studies to understand the structural properties of laws and to improve the le-
gal system, but none of them have focused on which laws are used together actually.
However, it is not easy to analyze these relationships with the usual methods used in
law and computer science.

In this paper, we will use Topological data analysis (TDA), which is attracting
great attention among a number of big data analysis techniques. Studies using TDA
in Korea include a study that analyzed hotel review data based on emotional key-
words [3], a study that analyzed mathematical anxiety [6], and a study that analyzed
VLBI time series data [8]. Unlike other methods, topological data analysis has the
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advantage of being able to simultaneously perform clustering and connectivity anal-
ysis. Our study of analyzing the real organic relationships of law is a very fresh and
novel approach and will contribute to building a more advanced legal ontology by
organizing legal knowledge more efficiently.

2. Topological data analysis

Topology is a field of mathematics that studies shapes and properties that do not
change due to continuous deformations such as Hausdorff and compactness. In topol-
ogy, we basically pay more attention to connectivity rather than the distance between
two objects that changes easily in scaling, or twisting. As you can see in Figure 1, it
is our primary concern to understand how each law relates to other laws in various
precedents and what networks they form. We can extract geometric features of data
set such as loops which are continuous circular segments and flares which are long
linear segments by applying topology to data analysis. Topological data analysis is a
field that has been studied for about two decades, and is emerging as an innovative
method that can complement the limitations of existing data analysis methods such
as Principal Component Analysis (PCA) and Multidimensional scaling (MDS).

Topological data analysis has several features [9]. First, TDA finds the topological
properties of the data set. A topological property means a property preserved under
homeomorphism. For example, no matter how much an object is bent or stretched, the
number of holes or the connectivity between each component does not change. TDA
extracts these properties of the data set. This also means that TDA has resistance
to noise. Second, TDA has the advantage of being able to observe the data set at
multiple resolutions. we can analyze from the global structure of the data set to the
local parts of each data point to various resolution we set. Third, TDA shows complex
data in a compressed form such as a simplicial complex or a network. A simplicial
complex K is a finite set of simplices that satisfies these two conditions:

i) If σ1 ∩ σ2 6= φ for two simplices σ1, σ2 ∈ K, then they meet along faces.
ii) If a face τ ∈ σ1 ∩ σ2, then τ ∈ K.

Here, n-simplex means the convex hull of n+1 affinely independent vertices S = {vi},
i ∈ [0, 1, ..., n] in Rd where d ≥ n [10]. Finally, TDA makes the output in coordinate
free way. Each data may have different coordinate values depending on the equip-
ment and measurement technology used. But, TDA always produces similar results
that capture the geometric properties of the data regardless of the coordinate system.

There are two methods in TDA: Persistent homology and the Mapper algo-
rithm. Persistent homology extracts topological properties that appear persistently
at different spatial resolutions. It is mainly used to compare with other objects. Mean-
while, the the Mapper algorithm is used to visualize the overall structure of the data
as a network in a plane or low dimension [3]. The purpose of this paper is presenting
and visualizing the relationship network of laws by using the Mapper algorithm.

2.1. Basic principle. The Mapper algorithm is a method suggested by Singh et al
in 2007. In this section, I will introduce the basic principle of the Mapper algorithm
with an intuitive example. If you want more theoretical details, see [12]. the Mapper
algorithm proceeds through filtering, partitioning, clustering, and visualization. Any
specific function or clustering algorithm is not obligatory in the Mapper algorithm.
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You can choose the appropriate technique according to the situation and your pur-
pose.

The Mapper algorithm begins with giving a metric to a data set X with |X| = N .
By giving a metric, the data space becomes a easy-to-handle topological space, and we
can manipulate the data through several transformations. Here, for easy understand-
ing, we assume that human-shaped data are given in a two-dimensional Euclidean
space as shown in Figure 2-(a). The distance in the data space does not be restricted
to Euclidean distance. You can choose the best one corresponding the features of
the data set(cosine distance, chebyshev distance, correlation distance, and etc). If the
metric should be defined directly due to the characteristic of the data set, even though
it does not satisfy the triangle inequality, you can give an N by N square matrix cal-
culating the distances between each data point as an input of the algorithm.

In the filtering step, define a real-valued function f from the data set X to a pa-
rameter space Z. The parameter space Z may be the real line R or the unit circle
S1 in the plane. This function is called the filter function. The filter function often
depends on the distance function we previously set. It plays a very important role in
the Mapper algorithm to reflect the geometric properties of the data and the result
of the Mapper can be changed by the filter function. Since it is similar to what lens
the camera sees through, filter function is also called a lens(lens is also used as a word
indicating projected data in the actual programming process). As a filter function,
you can use various functions such as a density estimator that can measure the den-
sity of data using Gaussian kernel, eccentricity that measures Data Depth, a concept
representing how far each data is from the center, etc. You can also apply PCA or
MDS at this stage. In our example, we will choose the orthogonal projection onto
y-axis, the simplest one(b).

After each data is moved on y-axis by the lens, set a covering U that covers all the
filter values of the data. If the parameter space is the real line R, then the covering
U will consist of some intervals. You can also set several filter functions at the same
time. In this case, the parameter space will be Rn and the elements of the covering U
will be n-dimensional hypercubes. In this step, it is important to ensure that adjacent
elements overlap each other to cover the ranges of the filter function. There is no need
to keep the overlapping ratio constant, but it is usually unified as one for convenience.
Applying the Mapper algorithm, you can set several variables such as resolution or
gain as input values. Resolution means the number of elements composing of the cov-
ering U , and gain refers to how much each adjacent element overlaps. So, gain is also
called percent overlap.

Next, give each element UiΦ(i = 1, 2, ..., n) of the covering U a different color, and
find each inverse image f−1(Ui) under the filter function f . Since we set adjacent
cubes that overlap by a certain amount in the covering U , each f−1(Ui) will also form
regions of different colors that overlap adjacently in the data space(c).

Also, since the covering {Ui} covers the entire range of f , {f−1(Ui)} also covers
the entire data set. Thus, for any data point x ∈ X, there exists i0 ∈ {1, 2, ..., n} such
that x ∈ f−1(Ui0) ∈ {f−1(Ui)}. This allows us to partially cluster the data set X into
several overlapping groups. You can apply clustering algorithm on the projection in
the parameter space Z, but this may give you some projection loss. So, you’d better
cluster on the original data set X to avoid it. In this step, You are not forced to use
a certain specific clustering algorithm. You can try k-means, hierarchical clustering,
spectral clustering and so on. However, there is one caveat here. Even data projected
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Figure 2. The procedure of the Mapper algorithm

into the same interval do not have to belong to the same cluster. When clustering in
the data space, you should ensure that the distance between the inner data in each
cluster is always less than the distance between the clusters. Under this condition, we
can check that the left leg and the right leg can be separated in Figure 2-(d).

In the visualization step, we express each cluster as a node. The size of each node
depends on the amount of data included. The more data each node contains, the larger
the node, and the less data it contains, the smaller the node. Since we set adjacent
clusters overlap each other, some data point can appear in multiple nodes. If two nodes
have a non-empty intersection, then connect them with an edge. We can represent the
data set in the form of a simple network in this way(e). At this time, the filter value
of the data constituting the node can be roughly known through the color(a red node
contains data with high filter values, and a blue node contains data with low values).
Although the Mapper’s output is compressed and has a much simpler form compared
to the complex data prototype, it provides relatively accurate information about the
distribution of data through the size and color of each node.

Through these series of procedures, the Mapper algorithm represents the relation-
ship of high-dimensional complex data in the form of a network in a two-dimensional
plane or a multidimensional simplicial complex. In the example above, we can confirm
that the Mapper grasps the partial characteristics corresponding to each body part
or weight, as well as the connectivity between each cluster. Topological data analysis
extracts key topological properties such as loops and flares in the data space unlike
existing methods where it is difficult to study the structural aspects or geometric
properties of the data.
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3. The application of the Mapper algorithm

Although TDA plays an active role in various fields around the world and have
many possibilities, there are not many papers applying this method in Korea yet.
Moreover, even that is difficult to check the code actually executed. It makes it hard
for TDA novices who understand the theory to get to practical application. Thus, we
want to help those who want to study this field by showing the actual application
process of the Mapper algorithm. Until a few years ago, many programs had to be
used in complex ways to apply this algorithm. But now, we can easily implement the
Mapper through kepler Mapper that is a Python library adopting the scikit-learn
API as much as possible. In this paper, we visualized the network of laws by applying
the Mapper algorithm to a number of judicial precedents and analyzing the distance
relationship between the laws referenced in each precedent.

3.1. Data collecting and preprocessing. From 2019, information on all court
precedents across the country can be searched using the “Internet integrated brows-
ing and search service for judgments”. However, this information cannot be viewed
in a lump, but only judgments corresponding to our search terms. Besides, not only
is it too costly to browse them, they are not data in a form that is easy for us to
handle. Korea’s major precedent data can be obtained at the National Law Informa-
tion Center(https://www.law.go.kr/). You can browse about 82,000 cases here, but
the number of data that can be downloaded in Excel format is limited. We conducted
the study with 10,677 data.

We used the openpyxl Python library in the data preprocessing. In the downloaded
list, there are data including empty blanks due to system errors. We first removed all
these corrupted data. After that, when a single article is classified in more detail, we
treated them as the same (e.g. Article 360-24 of the Commercial Law→ Article 360 of
the Commercial Law). In our experiment, subdividing Articles further is meaningless.
Lastly, we re-stated the Act in each Article when several Articles are listed in one Act
(e.g. Civil Code — Article 416, Article 419, Article 421, Article 423 → Article 416 of
the Civil Law, Article 419 of the Civil Law, Article 421 of the Civil Law, Article 423
of the Civil Law).

3.2. Metric. The Mapper is an algorithm for simplifying and visualizing the struc-
ture of high-dimensional data in low-dimension. You can give a metric using distance
functions already built in the kepler Mapper library. Figure 4 is a list of distance func-
tions built into the library. When using the Mapper algorithm, you should give the
appropriate metric for the situation because the results can be completely different
depending on which distance function is used. In our study, we have considered two
laws that are referenced together in the same precedent as being related. When two
laws are referenced together multiple times, they become increasingly exponentially
associated in proportion to the number of times they are referenced together. We
can express the association between two laws as a distance. Hence, the distance dA,B
between two laws A and B can be calculated as follows:

d =
d0
2n

where d0 is the distance between two unrelated law and n is the number of times
A and B are referenced together. Because this metric cannot be obtained with only
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Figure 3. Before and after data preprocessing

Figure 4. The list of built-in distance functions

the built-in functions of the kepler Mapper library, we have to create our custom
metric. However, how to do this is not well explained, and we couldn’t find cases
of TDA that made custom metrics. Basically, the project function of the kepler
Mapper library performs projection in a way that returns the N ×N distance matrix
after automatically calculating the distances between each coordinated data using the
metric already built in the library. However, since our legal data has a characteristic
that is difficult to coordinate, the above process could not be applied as it is. Therefore,
we modified the code of kmapper.py and used our custom metric directly for projection
without going through the above process. We presented the code of process creating
our custom metric in the appendix. You can check the entire process of our the Mapper
algorithm on [4].

3.3. Filtering. The filter function is a function that determines which geometric
characteristics of the data set are to be extracted and is a very important factor
that influences the result of the Mapper. In our study, we used t-Distributed Sto-
chastic Neighbor Embedding (t-SNE) as a filter function. Stochastic Neighbor Em-
bedding (SNE), developed by Hinton and Roweis in 2002 [2], is a technique that
preserves distance information between high-dimensional data and embeds it into a
low-dimensional space. In SNE, the similarity of the data point xj to xi is expressed
as a conditional probability pj|i using the distance between the two points. pj|i is
proportional to the probability density values of xj in a Gaussian distribution whose
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center is xi. We can compute pj|i as following:

pj|i =
exp(−‖xi − xj‖2/2σ2

i )∑
k 6=i exp(−‖xi − xk‖2/2σ2

i )

The similarity between the two data points yj and yi in the lower dimension corre-
sponding to xj and xi can be expressed in similar. Here, the variance σi is set to 1√

2

and qj|i is calculated as follows;

qj|i =
exp(−‖yi − yj‖2)∑
k 6=i exp(−‖yi − yk‖2)

In order to minimize the error between each pj|i and qj|i, the gradient descent method
is used, where the cost function is as follows;

cost function =
∑
i

∑
j

pj|ilog
pj|i
qj|i

However, there are some shortcomings to this SNE technique, and to compensate for
this, Maaten and Hinton proposed t-SNE in 2008 [13]. In t-SNE, the cost function is
changed to a symmetrized version to solve the problem of SNE, which was difficult to
optimize. For this, pji and qji are used instead of pj|i and qj|i, and pji is computed as

pji =
(pj|i+pi|j)

2N
. In addition, Student t-distribution which has much more heavier tails

than Gaussian is used as a probability distribution in the low-dimension in order to
solve the crowding problem that occurs when mapping high-dimensional data into a
low-dimensional space. Accordingly, qij is expressed as follows;

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

In addition, the performance of the algorithm is further improved through some tricks
such as “early compression” that adds L2-penalty to the cost function and “early
exaggeration” that multiplies each conditional probability pij by a specific value ap-
propriately to each situation at the beginning of optimization.

The Mapper algorithm creates a metric in the form of a square matrix by automati-
cally calculating the distance between each data when we put the coordinate values of
data and a distance function as an input. However, since we did not follow this usual
procedure and created our custom metric directly, we cannot use filter functions that
require the coordinate values of the data. By applying this t-SNE technique, we em-
bedded high-dimensional law data into low-dimension while minimizing information
loss.

3.4. Partitioning. In this step, we need to adjust two hyperparameters: resolution
and gain. Resolution, denoted by n cubes, means the number of hypercubes in the
parameter space. If we set n cubes high, the parameter space will be divided into
more areas and more clusters will be formed in the original data set (to be precise,
more colored clusters are created). Then single pieces of data form clusters and we
can observe the locality of the data. Conversely, if we set n cubes small, the original
data is grouped into a small amount of clusters. Thus, we can see the global structure
of the data set. Figure 5 shows the results that change with the increase of n cubes.

On the other hand, gain, denoted by perc overlap, means the degree of overlap
between each hypercube. If we set perc overlap high, the probability that each data
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Figure 5. Results in various n cubes

belongs to multiple hypercubes at the same time increases. Therefore, the connectivity
between each cluster becomes complex and the number of edges increases. Conversely,
if we set perc overlap low, the probability that the intersection of each adjacent
hypercube is empty is high. Then a simple network is formed between each cluster in
the original data set. Figure 6 is the results in various perc overlap.

Figure 6. Results in various perc overlap

3.5. Clustering and visualization. The Mapper algorithm does not restrict the
use of any specific clustering algorithm. In our study, we used the Density Based Spa-
tial Clustering of Applications with Noise (DBSCAN) technique, which is one of the
most commonly used clustering algorithms. DBSCAN is a data clustering technique
on density-based notion proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander
and Xiaowei Xu in 1996. There are some preliminaries before exploring the princi-
ple of this algorithm. DBSCAN requires some hyperparameters as an input such as
epsilon(ε) and minimum samples(m).

Definition 3.1. A point a is a core sample if ∃ m other samples in Nε(a). These
other samples are neighbors of the core sample.

Here, Nε(a) is a closed ball of points z such that {z | dist(z, a) ≤ ε}
Definition 3.2. A point a is directly density-reachable from a point b with

respect to ε, m if a ∈ Nε(b) and |Nε(b)| ≥ m.
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Figure 7. Clusters by DBSCAN

Definition 3.3. A point a is density-reachable from a point b with respect to
ε and m if ∃ points p1, ..., pn such that p1 = b, pn = a, and pi+1 is directly density-
reachable from pi.

Definition 3.4. A point a is density-connected to a point b with respect to ε
and m if ∃ a point o such that both a and b are density-reachable from o with respect
to ε and m.

Definition 3.5. A cluster C with respect to ε and m is a non-empty subset of a
database if

i) ∀a ∈ C, ∀b density-reachable from a with respect to ε and m, b ∈ C
ii) ∀a, b ∈ C, a is density-connected to b with respect to ε and m.

It is trivial that density-connectivity is a symmetric relation. For each core sample,
it is density-connected to itself, which means density-connectivity is reflexive. Suppose
that a is density-connected to b, and b is density-connected to c for core samples a,
b, and c. Then, there exists a core sample o1 such that a and b are density-reachable
from o1, and there exists a core sample o2 such that b and c are density-reachable
from o2 with respect to ε and m. Note that density-reachability is symmetric for core
samples. Hence, both a and c are density-reachable from the core sample b. Thus, a
is density-connected to c by definition. Therefore, density-connectivity is transitive.

In the procedure of forming clusters, DBSCAN begins with an arbitrary point a
and collects the points density-reachable from a with respect to ε and m. The success
of cluster formation depends on whether a is a core sample or not. If a is a core sample,
DBSCAN will make a cluster containing a. If not, any cluster cannot be generated
because no point is density-reachable from a. Next, DBSCAN continues the above
process. Since density-connectivity is an equivalence relation for core samples, the
members of core samples in each cluster do not change according to the data order
while non-core samples can be assigned to the different clusters due to the order.
DBSCAN is a deterministic algorithm in that it always creates the same clusters if
data is given in the same order.

See figure 7. There are large and small circles in each cluster. The large circles
represent core samples while the small circles represent neighbors of core samples.



Organic relationship between laws using topological data analysis 659

The black circles represent noise data. The noise is the set of points

{p | ∀i, p does not belong to any cluster Ci}.

DBSCAN can find out clusters of any shape unlike algorithms such as k-means, and
is efficient for large spatial databases. DBSCAN is an appropriate algorithm that can
well catch partial characteristics of the dataset for our purpose. Refer to [1], [11] for
more information on DBSCAN.

4. Results

There are three important hyperparameters that influence the outcome of our ex-
periment(n cubes, perc overlap, and ε). We have been able to find values that reflect
meaningful results through numerous trials. This experiment shows completely differ-
ent aspects of results around when ε = 1. Even data belonging to the same cube in
the parameter space can be grouped into different clusters according to the character-
istics of the data. The assumption in our experiment was that the default value of the
distance between each law was 1. Therefore, if we set the value of ε to 1 or more, it
means that all data belonging to the same cube will be grouped into the same cluster.
Therefore, it is desirable to set the value of ε less than 1. See Figure 8. Overall, most
clusters exist independently without being related to each other. Observing the data
constituting each cluster, you can find that the members of each cluster are all articles
within the same Act. From this, it is confirmed that the Mapper algorithm performed
its part well. However, unlike most clusters that exist in the form of singletons, there
are several clusters that are connected to each other and form a group. Observing
these groups, the data in the same group were all articles of the same Act even if they
belonged to different clusters. For example, in Group A, Article 37 of the Criminal
Procedure Act and Article 151 of the Criminal Procedure Act belonged to different
clusters. This means that the articles of the same Act can have different degrees of
association. Meanwhile, even within the same Act, there were clusters that formed dif-
ferent groups. In the figure 8, articles of the Civil Code form different groups (Group
B and Group C). We can see from this that articles of the same Act can be related
to each other in different groups.

We set ε = 1 to also check the association between articles of different Acts. Then,
we can find that the articles of different Acts can be included in one cluster. In Figure
9, Article 17 of the Public Officials Ethics Act and Article 2 of the Banking Act are
actually somewhat related. Article 17 of the Public Officials Ethics Act is the law on
the restriction of employment of retired public officials, and Article 2 of the Banking
Act defines what is banking. However, this result is not entirely reliable. As mentioned
before, this is because all data in the same cube are grouped into one cluster if the
value of ε becomes 1. In fact, Article 49 of the Urban Parks and Green Spaces Act is
also included in this cluster, which is not related to the previous two laws.

At the beginning of this experiment, we expected to discover relationships not only
between articles of the same Act, but also between articles of different Acts. In reality,
there are many articles of different Acts that are interrelated, but we were not able to
check that part in this experiment. This is because we could obtain only a very small
amount of precedent data. As a result, we could only identify relationships between
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Figure 8. The case when n cubes=15, perc overlap= 0.15, ε=0.6

Figure 9. The case when n cubes=20, perc overlap=0.02, ε=1

laws that were very strongly related. If more precedent data are provided to the public
in the future, this problem will be solved.

5. Conclusion

In this paper, we investigated the relationships that laws form organically in actual
precedents. In the legal ontology that has been analyzed only by keyword until now,
this approach will help to compose very diverse content. There is not much precedent
data that we can secure yet, but if more and more data can be obtained later, then
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we can discover a very complete and systematic relationship network of laws by using
the code executed in this study. In future work, we will develop an application that
provides associated laws in order of higher relevance(closer distance), and will study
ways to provide easy and convenient legal information to the public.

Appendix

Lastly, we will present the process of creating a custom metric. You can check all
the processes we performed the Mapper algorithm and the results directly in [4].

1 import operator

2 import numpy as np

3 from openpyxl import load_workbook

4

5 load_wb = load_workbook("./ law_data/law_data.xlsx")

6 load_ws = load_wb[’sheet1 ’]

7

8 values = []

9 output = []

10 law_dict = {}

11 num_row = 17143 # number of rows of excel file

12

13 i=0

14 for row in load_ws.rows:

15 i +=1

16 if i == num_row :

17 break

18

19 row_value = []

20 for cell in row:

21 if cell.value != None :

22 row_value.append(cell.value)

23 values.append(row_value)

24

25 for j in range(len(values)) :

26 if str(type(values[j][0])) == "<class ’int ’>" :

27 del values[j][0]

28 output.append(values[j])

29 else :

30 output [-1]. extend(values[j])

31

32 # removing error data (blank etc..)

33 idx = 0

34 while True :

35 if idx == len(output) :

36 break

37 if len(output[idx]) % 2 == 1 :

38 del output[idx]

39 idx -=1

40 idx+=1

41
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42 # preprocessing data

43 for i in range(len(output)) :

44 t_len = int(len(output[i])/2)

45

46 for j in range(t_len) :

47 pre = str(output[i][2*j])

48 post = str(output[i][2*j+1]).split(’, ’)

49 for k in range(len(post)) :

50 if post[k][-2] == "의" :

51 post[k] = post[k][0: -2]

52

53 final = pre+’ ’+post[k]

54 if final in law_dict :

55 law_dict[final] += 1 # count +1

56 else :

57 law_dict[final] = 1 # new

58

59 law_list = list(law_dict.keys()) # list of whole laws used in all

cases

60 law_num = len(law_list) # number of whole laws used in all cases

61

62

63 # make a numpy array for matching law and index

64 np_law_list =[]

65 for i in range(len(law_list)) :

66 np_law_list.append(law_list[i] + "/")

67 np_law_list = np.array(np_law_list)

68 np.save(’law_data/law_list ’,np_law_list)

69

70 distance_matrix = []

71

72 # initiate distance matrix uniformly (Set the distance between all

laws to 1.)

73 for i in range(law_num) :

74 tmp = []

75 for j in range(law_num) :

76 if i==j :

77 tmp.append (0.0)

78 else :

79 tmp.append (1.0)

80 distance_matrix.append(tmp)

81

82 distance_matrix = np.array(distance_matrix) # initiated distance

matrix

83

84 # update distance matrix

85 for i in range(len(output)) :

86 t_len = int(len(output[i])/2)

87

88 for j in range(t_len) :

89 case_law = [] # list for saving laws used in same case
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90

91 pre = str(output[i][2*j])

92 post = str(output[i][2*j+1]).split(’, ’)

93 for k in range(len(post)) :

94 if post[k][-2] == "의" :

95 post[k] = post[k][0: -2]

96 final = pre+’ ’+post[k]

97 case_law.append(final)

98

99 if len(case_law)==1 :

100 continue

101

102 ## shorten distance between laws used in same case (multiply

0.5)

103 idx_list = []

104 for k in range(len(case_law)) :

105 idx_list.append(law_list.index(case_law[k]))

106

107 for n1 in idx_list :

108 for n2 in idx_list :

109 if n1 == n2 :

110 continue

111 distance_matrix[n1][n2] = distance_matrix[n1][n2]/2

112

113 # save custom metric as binary file

114 np.save(’law_data/custom_metric ’,distance_matrix)
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