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ON AN OPERATOR PRESERVING POLYNOMIAL INEQUALITIES

N. A. Rather, Liyaqat Ali, and Ishfaq Dar∗

Abstract. In this paper, we consider an operator N : Pn → Pn on the space of
polynomials Pn of degree at most n and establish some compact generalizations of
Bernstein-type polynomial inequalities, which include several well known polynomial
inequalities as special cases.

1. Introduction and Statement of results

Polynomial inequalities have been investigated for quite some time and have im-
portant applications in all those mathematical models whose solutions lead to the
problem of valuing how large or small the maximum modulus of the derivative of
an algebraic polynomial can be in terms of the maximum modulus and degree of
that polynomial. Polynomial inequalities are also fundamental for the proofs of many
inverse theorems in polynomial approximation theory, which is concerned with ap-
proximating unknown or complicated functions by polynomials. In the first place,
this concept of best approximation was introduced in Mathematics mainly by the
work of the famous mathematician Chebyshev(1821-1894), who studied some proper-
ties of polynomial with least deviation from given continuous function. He introduced
the polynomials known today as Chebyshev polynomials of first kind, which appear
prominently in various extremal problems concerned with polynomial (see [8]). His-
torically, the questions relating to approximations by polynomials have given rise to
some of the interesting problems in Mathematics and engendered extensive research
over the past millennium. This paper deals with Bernstein type inequities for poly-
nomials. These inequalities have played a fundamental role in harmonic and complex
Analysis, as well as in approximation theory [3, 4, 6] and in the study of random
trigonometric series [5] [15, Chapter 6] or random Dirichlet series [13, Chapter 5].
One can also see their use in the theory of Banach spaces [10, pp. 20-21], and in
Numerical Analysis. Having said that, the purpose of this paper is not to focus on
applications but on certain objects of mathematical interest. The study of operators
preserving inequalities between polynomials has been of some interest lately as they
provide a unified approach of arriving at various polynomial inequalities and their
generalizations simultaneously [14, pp. 538-565 ]. Actually it was this aim of simulta-
neously obtaining various polynomial inequalities and their generalizations that has
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motivated our work in this paper. Before we state some of the fundamental results,
we shall first define some symbols and notations which will be used throughout this
paper.

We shall use Pn to denote the vector space of all polynomials of degree at most n
over the field C of complex numbers. Note that for any c ∈ C, the linear function
taking z 7→ cz, will be denoted by σc and the function which maps z 7→ zn will be
denoted by ψ. Further we shall use ◦ to denote the usual composition of functions.
Thus, in this notation, for any complex function F : C 7−→ C, the function F ◦ σR is
defined as F ◦ σR(z) := F (σR(z)) = F (Rz), for z ∈ C.
For P ∈ Pn, we have

max
|z|=1
|P ′(z)| ≤ nmax

|z|=1
|P (z)|(1)

and

max
|z|=R>1

|P (z)| ≤ Rn max
|z|=1
|P (z)|(2)

Inequality (1) is due to S.Bernstein [3] (see also [8, 14]), whereas inequality (2) is a
simple consequence of the maximum modulus principle [11, p.346]. Inequalities (1)
and (2) were generalised by Aziz and Rather [2] by proving that if P ∈ Pn, then for
α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R > 1 and |z| ≥ 1,∣∣∣∣P (Rz)− αP (z) + β

{(
R + 1

2

)n
− |α|

}
P (z)

∣∣∣∣
≤
∣∣∣∣Rn − α + β

{(
R + 1

2

)n
− |α|

} ∣∣∣∣|z|n max
|z|=1
|P (z)|.

(3)

Restricting ourselves to the class of polynomials P ∈ Pn having no zero in |z| < 1, then
the inequalities (1) and (2) can be significantly improved and respectively replaced by

max
|z|=1
|P ′(z)| ≤ n

2
max
|z|=1
|P (z)|(4)

and

max
|z|=R>1

|P (z)| ≤ Rn + 1

2
max
|z|=1
|P (z)|(5)

Inequality (5) was conjectured by Erdös and verified by Lax [7], while as inequality
(7) is due to Ankeny and Rivlin [1]. Aziz and Rather [2] used (3) to prove that if
P ∈ Pn having no zero in |z| < 1, then for every α, β ∈ C with |α| ≤ 1, |β| ≤ 1 and
R > 1,

∣∣∣∣P (Rz)− αP (z) + β

{(
R + 1

2

)n
− |α|

}
P (z)

∣∣∣∣ ≤ 1

2

[∣∣∣∣Rn − α + β

{(
R + 1

2

)n
− |α|

}∣∣∣∣|z|n
+

∣∣∣∣1− α + β

{(
R + 1

2

)n
− |α|

}∣∣∣∣]max
|z|=1
|P (z)|.

(6)

Inequality (6) is a compact generalization of inequalities (4) and (5).
Recently Rather et al. [12] introduced an operator N : Pn → Pn. That is, the



On an operator preserving polynomial inequalities 437

operator N carries polynomials P ∈ Pn into

N [P ](z) :=
k∑
i=0

λi

(nz
2

)i P (i)(z)

i!
, k ≤ n,

where λi, i ∈ {0, 1, 2, ...k}, are fixed complex numbers chosen in such a way that all
the zeros of

g(z) =
k∑
i=0

(
n

i

)
λiz

i,

lie in the half plane |z| ≤ |z − n
2
| and established certain sharp results concerning

the upper-bound of |N [P ]| for |z| ≥ 1 and among other things they [12] generalised
inequalities (1) and (4), by proving the following results:

Theorem 1.1. If all the zeros of polynomial f(z) of degree n lie in |z| ≤ 1 and
P ∈ Pn such that

|P (z)| ≤ |f(z)| for |z| = 1,

then

|N [P ](z)| ≤ |N [f ](z)| for |z| ≥ 1.(7)

The result is sharp and equality in (7) holds for P (z) = eiαf(z), α ∈ R.

Theorem 1.2. If P ∈ Pn and P (z) 6= 0 in |z| < 1, then

|N [P ](z)| ≤ 1

2

(
|N [ψn](z)|+ |λ0|

)
max
|z|=1
|P (z)| for |z| ≥ 1,(8)

the result is best possible and equality in (8) holds for P (z) = azn + b, |a| = |b| 6= 0.

In this paper, we prove some more general results concerning the operator N :
Pn → Pn preserving inequalities between polynomials, which in turn yields compact
generalizations of some well known polynomial inequalities. We begin by proving the
following result:

Theorem 1.3. If all the zeros of polynomial f(z) of degree n lie in |z| ≤ 1 and
P ∈ Pn such that

|P (z)| ≤ |f(z)| for |z| = 1,

then for α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|N [P ◦ σR](z) + φ(α, β,R, r)N [P ◦ σr](z)| ≤ |N [f ◦ σR](z) + φ(α, β,R, r)N [f ◦ σr](z)|,
(9)

where φ(α, β,R, r) = β

{(
R + 1

r + 1

)n
− |α|

}
− α.(10)

The result is sharp and equality in (9) holds for P (z) = eibf(z), b ∈ R.

Remark 1.4. For α = β = 0 and R = r = 1, Theorem 1.3 reduces to Theorem
1.1.

Taking f(z) = Mzn where M = max|z|=1 |P (z)| in Theorem 1.3, we obtain the
following result.
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Corollary 1.5. If P ∈ Pn, then for α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1
and |z| ≥ 1,

|N [P ◦ σR](z) + φ(α, β,R, r)N [P ◦ σr](z)| ≤ |Rn + rnφ(α, β,R, r)||N [ψ](z)|max
|z|=1
|P (z)|,

(11)

where φ(α, β,R, r) is defined in (10). The result is sharp and equality in (11) holds
for P (z) = azn, a 6= 0, a ∈ R.

Remark 1.6. Taking λi = 0 ∀ i < k and λk 6= 0 in Corollary 1.5, it follows that if
P ∈ Pn, then for α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|RkP (k)(Rz) + φ(α, β,R, r)rkP (k)(rz)| ≤ n!

(n− k)!
|Rn + rnφ(α, β,R, r)||z|n−k max

|z|=1
|P (z)|.

(12)

For different choices of k, α, β,R, r, the above inequality yield many interesting results.
In particular, for k = 0, r = 1, inequality (12) reduces to the inequality (3) which
includes inequalities (1) and (2) as special cases.

Further setting P (z) = mzn in Theorem 1.3 where m = min|z|=1 |f(z)|, we obtain the
following result.

Corollary 1.7. If all the zeros of polynomial f(z) of degree n lie in |z| ≤ 1, then
for α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1, we have

|N [f ◦ σR](z) + φ(α, β,R, r)N [f ◦ σr](z)| ≥ |Rn + rnφ(α, β,R, r)||N [ψ](z)|m,

where φ(α, β,R, r) is defined in (10). The result is sharp as shown by polynomial
f(z) = azn, a 6= 0, a ∈ R.

Remark 1.8. Similarly as in the case of Remark 1.6, Corollary 1.7 implies that
if all the zeros of polynomial f(z) of degree n lie in |z| ≤ 1, then for α, β ∈ C with
|α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1, we have

|Rkf (k)(Rz) + φ(α, β,R, r)rkf (k)(rz)| ≥ n!

(n− k)!
|Rn + φ(α, β,R, r)rn||z|n−km.

Next we present the following result for the class of polynomials having no zero
inside the unit circle |z| = 1.

Theorem 1.9. If P ∈ Pn and P (z) 6= 0 in |z| < 1,then for every α, β ∈ C with
|α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|N [P ◦ σR](z) + φ(α, β,R, r)N [P ◦ σr](z)|

≤ 1

2

(
|Rn + rnφ(α, β,R, r)||N [ψ](z)|+ |1 + φ(α, β,R, r)||λ0|

)
M,

(13)

where M = max|z|=1 |P (z)| and φ(α, β,R, r) is defined in (10). The result is best
possible and equality in (13) holds for P (z) = azn + b, |a| = |b| 6= 0.

Remark 1.10. For α = β = 0 and R = r = 1, Theorem 1.9 reduces to Theorem
1.2.

Now taking λi = 0 ∀ i < k and λk 6= 0 in Theorem 1.9, we get the following result.
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Corollary 1.11. If P ∈ Pn and P (z) 6= 0 in |z| < 1,then for every α, β ∈ C with
|α| ≤ 1, |β| ≤ 1, R > r ≥ 1, 1 ≤ k ≤ n and |z| ≥ 1,

|RkP (k)(Rz) + φ(α, β,R, r)rkP (k)(rz)| ≤ n!

2(n− k)!

(
|Rn + φ(α, β,R, r)rn||z|n−k

)
M,

which includes inequality (4) as a special case.

Remark 1.12. Further for k = 0, r = 1, inequality (13) reduces to inequality (6)
including (5) as a special case.

2. Lemmas

For the proof of these theorems, we need the following lemmas.

Lemma 2.1. If P ∈ Pn and P (z) has all its zeros in |z| ≤ 1, then for every
R > r ≥ 1 and |z| = 1,

|P (Rz)| ≥
(
R + 1

r + 1

)n
|P (rz)| .

Proof. Since all the zeros of P (z) lie in |z| ≤ 1, we write

P (z) = C
n∏
j=1

(
z − rjeiθj

)
,

where rj ≤ 1. Now for 0 ≤ θ < 2π, R > r ≥ 1, one can easily show that∣∣∣∣Reiθ − rjeiθjreiθ − rjeiθj

∣∣∣∣ ≥ (R + rj
r + rj

)
, for j = 1, 2, · · · , n.

Hence for 0 ≤ θ < 2π and R > r ≥ 1,∣∣∣∣P (Reiθ)

P (reiθ)

∣∣∣∣ =
n∏
j=1

∣∣∣∣Reiθ − rjeiθjreiθ − rjeiθj

∣∣∣∣ ,
≥
(
R + rj
r + rj

)n
,

≥
(
R + 1

r + 1

)n
.

This implies for |z| = 1 and R > r ≥ 1,

|P (Rz)| ≥
(
R + 1

r + 1

)n
|P (rz)| ,

which completes the proof of Lemma 2.1.

Next lemma is due to N. A. Rather et al. [12]

Lemma 2.2. If all the zeros of polynomial F (z) of degree n lie in |z| ≤ r and if all
the zeros of the polynomial

g(z) =
k∑
i=0

λi

(
n

i

)
zi, k ≤ n
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lie in |z| ≤ s|z − t|, s > 0, then the polynomial

h(z) =
k∑
i=0

λiF
(i)(z)

(tz)i

i!

has all its zeros in |z| ≤ r max(1, s).

Lemma 2.3. If P ∈ Pn has all its zeros in |z| ≥ 1, then for every α, β ∈ C with
|α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|N [P ◦ σR](z) + φ(α, β,R, r)N [P ◦ σr](z)| ≤ |N [P ∗ ◦ σR](z) + φ(α, β,R, r)N [P ∗ ◦ σr](z)|,
(14)

where P ∗(z) = znP
(
1/z
)

and φ(α, β,R, r) is defined in (10).

Proof. Since P ∈ Pn has all its zeros in |z| ≥ 1, P ∗ ∈ Pn and has all its zeros in
|z| ≤ 1. Applying Theorem 1.3 with f(z) replaced by P ∗(z), it follows that for every
α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|N [P ◦ σR](z) + φ(α, β,R, r)N [P ◦ σr](z)| ≤ |N [P ∗ ◦ σR](z) + φ(α, β,R, r)N [P ∗ ◦ σr](z)|.
This completes the proof of Lemma 2.3.

Finally we prove the following lemma.

Lemma 2.4. If P ∈ Pn, then for every α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1
and |z| ≥ 1,

|N [P ◦ σR](z) + φ(α, β,R, r)N [P ◦ σr](z)|+ |N [P ∗ ◦ σR](z) + φ(α, β,R, r)N [P ∗ ◦ σr](z)|
≤
(
|Rn + rnφ(α, β,R, r)||N [ψ](z)|+ |1 + φ(α, β,R, r)||λ0|

)
M,

(15)

where M = max|z|=1 |P (z)|, P ∗(z) = znP
(
1/z
)

and φ(α, β,R, r) is defined in (10).

Proof. Since |P (z)| ≤ M for |z| = 1, by Rouche’s Theorem it follows that for
µ ∈ C, |µ| > 1, F (z) = P (z) − µM does not vanish in |z| < 1. Applying Lemma
2.3 to F (z), it follows that for every α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and
|z| ≥ 1,

|N [F ◦ σR](z) + φ(α, β,R, r)N [F ◦ σr](z)| ≤ |N [F ∗ ◦ σR](z) + φ(α, β,R, r)N [F ∗ ◦ σr](z)|.

where F ∗(z) = znF
(
1/z
)

= P ∗(z)− µznM. Hence for α, β, µ ∈ C with |µ| > 1, |α| ≤
1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1, we obtain

|N [P ◦ σR](z) + φ(α, β,R, r)N [P ◦ σr](z)− µ(1 + φ(α, β,R, r))λ0M |
≤ |N [P ∗ ◦ σR](z) + φ(α, β,R, r)N [P ∗ ◦ σr](z)− µ(Rn + rnφ(α, β,R, r))N [ψ](z)M |.

(16)

Choosing argument of µ in the right hand side of inequality (16) such that

|N [P ∗ ◦ σR](z) + φ(α, β,R, r)N [P ∗ ◦ σr](z)− µ(Rn + rnφ(α, β,R, r))N [ψ](z)M |
= |µ||Rn + rnφ(α, β,R, r)||N [ψ](z)|M − |N [P ∗ ◦ σR](z) + φ(α, β,R, r)N [P ∗ ◦ σr](z)|

which is possible by inequality (11), therefore from inequality (16) we have for α, β, µ ∈
C with |µ| > 1, |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|N [P ◦ σR](z) + φ(α, β,R, r)N [P ◦ σr](z)|+ |N [P ∗ ◦ σR](z) + φ(α, β,R, r)N [P ∗ ◦ σr](z)|
≤ |µ|

(
|Rn + rnφ(α, β,R, r)||N [ψ](z)|+ |1 + φ(α, β,R, r)||λ0|

)
M.
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Letting |µ| → 1, we get inequality (15). This completes the proof of Lemma 2.4.

3. Proof of theorems

Proof of Theorem 1.3. By hypothesis f(z) is a polynomial of degree n having all
zeros in |z| ≤ 1 and P ∈ Pn such that

|P (z)| ≤ |f(z)| for |z| = 1.(17)

If zν is a zero of f(z) of multiplicity sν on the unit circle |z| = 1, then it is evident
from (17) that zν is also a zero of P (z) of multiplicity at least sν . If P (z)/f(z) is
a constant, then inequality (9) is obvious. We now assume that P (z)/f(z) is not a
constant, so that by the maximum modulus principle, it follows that

|P (z)| < |f(z)| for |z| > 1 .

Let g(z) =
∏
zν∈Ω

(z− zν)sν where Ω = {zν ∈ C : f(zν) = 0∧ |zν | = 1}. Then again from

(17), we have ∣∣∣∣P (z)

g(z)

∣∣∣∣ ≤ ∣∣∣∣f(z)

g(z)

∣∣∣∣ for |z| = 1.

By Rouche’s theorem for every γ ∈ C with |γ| > 1, the polynomial G(z) = P (z)−γf(z)
g(z)

has all its n −
∑
sv zeros in |z| < 1. Since the polynomial g(z) has

∑
sv zeros on

|z| = 1, the polynomial h(z) = G(z)g(z) = P (z)− γf(z) has all the n zeros in |z| ≤ 1
with at least one zero in |z| < 1, so that we can write

h(z) = (z − teiδ)H(z)

where t < 1 and H(z) is a polynomial of degree n− 1 having all its zeros in |z| ≤ 1.
Applying Lemma 2.1 to the polynomial H(z), we obtain for every R > r ≥ 1 and
0 ≤ θ < 2π,

|h(Reiθ)| = |Reiθ − teiδ||H(Reiθ)|

≥ |Reiθ − teiδ|
(
R + 1

r + 1

)n−1

|H(reiθ)|,

=

(
R + 1

r + 1

)n−1 |Reiθ − teiδ|
|reiθ − teiδ|

|(reiθ − teiδ)H(reiθ)|,

≥
(
R + 1

r + 1

)n−1(
R + t

r + t

)
|h(reiθ)|.

This implies for R > r ≥ 1 and 0 ≤ θ < 2π,

(18)

(
r + t

R + t

)
|h(Reiθ)| ≥

(
R + 1

r + 1

)n−1

|h(reiθ)|.

Since R > r ≥ 1 > t so that h(Reiθ) 6= 0 for 0 ≤ θ < 2π and r+1
R+1

> r+t
R+t

, from
inequality (18), we obtain

(19) |h(Reiθ)| >
(
R + 1

k + 1

)n
|h(reiθ)|, R > r ≥ 1 and 0 ≤ θ < 2π.
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Equivalently,

|h(Rz)| >
(
R + 1

r + 1

)n
|h(rz)| for |z| = 1 and R > r ≥ 1.(20)

Hence for every α ∈ C with |α| ≤ 1 and R > r ≥ 1, we have

|h(Rz)− αh(rz)| ≥ |h(Rz)| − |α| |h(rz)|

>

{(
R + 1

r + 1

)n
− |α|

}
|h(rz)|, for |z| = 1.

(21)

Since R + 1 > r + 1, from inequality (20), we have

|h(rz)| < |h(Rz)| for |z| = 1.

Since all the zeros of h(Rz) lie in |z| ≤ (1/R) < 1, a direct application of Rouche’s
theorem shows that for every α ∈ C with |α| ≤ 1 the polynomial h(Rz)− αh(rz) has
all its zeros in |z| < 1. Applying Rouche’s theorem again, it follows from (21) that
for α, β ∈ C with |α| ≤ 1, |β| ≤ 1 and R > r ≥ 1, all the zeros of the polynomial

T (z) = h(Rz)− αh(rz) + β

{(
R + 1

r + 1

)n
− |α|

}
h(rz)

= h(Rz) +

[
β

{(
R + 1

r + 1

)n
− |α|

}
− α

]
h(rz)

= P (Rz)− γf(Rz) + φ(α, β,R, r) (P (rz)− γf(rz))

= P (Rz) + φ(α, β,R, r)P (rz)− γ (f(Rz) + φ(α, β,R, r)f(rz))

lie in |z| < 1. Invoking Lemma 2.2 with s = 1, t = n/2 and noting that N is a linear
operator, it follows that all the zeros of the polynomial

N [T ](z) = N [P ◦ σR](z) + φ(α, β,R, r)N [P ◦ σr](z)

− γ (N [f ◦ σR](z) + φ(α, β,R, r)N [f ◦ σR](z))
(22)

lie in |z| < 1. This implies for |z| ≥ 1 and R > r ≥ 1,

|N [P ◦ σR](z) + φ(α, β,R, r)N [P ◦ σr](z)| ≤ |N [f ◦ σR](z) + φ(α, β,R, r)N [f ◦ σr](z)|.
(23)

For if inequality (23) is not true, then there exists z = z0 with |z0| ≥ 1 such that

|N [P ◦ σR](z0) + φ(α, β,R, r)N [P ◦ σr](z0)| > |N [f ◦ σR](z0) + φ(α, β,R, r)N [f ◦ σR](z0)|.

Taking γ = N [P◦σR](z0)+φ(α,β,R,r)N [P◦σr](z0)
N [f◦σR](z0)+φ(α,β,R,r)N [f◦σR](z0)

, which is well defined complex number with

|γ| > 1 and with this choice of γ, from (22) we obtain N [T ](z0) = 0 where |z0| ≥ 1.
This contradicts the fact that all the zeros of N [T ](z) lie in |z| < 1. Thus establishes
(23) and this completes the proof of Theorem 1.3.

Proof of Theorem 1.9. Since P ∈ Pn, having all its zeros in |z| ≥ 1, from Lemma
2.3 and Lemma 2.4 it follows that for α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and
|z| ≥ 1,

2|N [P ◦ σR](z) + φ(α, β,R, r)N [P ◦ σr](z)|
≤ |N [P ◦ σR](z) + φ(α, β,R, r)N [P ◦ σr](z)|+ |N [P ∗ ◦ σR](z) + φ(α, β,R, r)N [P ∗ ◦ σr](z)|

≤
(
|Rn + rnφ(α, β,R, r)||N [ψ](z)|+ |1 + φ(α, β,R, r)||λ0|

)
M,
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which is equivalent to inequality (13). This completes the proof of Theorem 1.9.
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