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A NEW ALGORITHM FOR VARIATIONAL INCLUSION

PROBLEM

Aadil Hussain Dar, Md. Kalimuddin Ahmad, and Salahuddin

Abstract. The target of this article is to modify the algorithm given by Fang and
Huang [6]. The rate of convergence of our algorithm is faster than that of Fang and
Huang [6]. A numerical example is given to justify our statement.

1. Introduction and preliminaries

As variational inequalities have lot of applications, these have been extended and
generalized in different directions. Variational inclusion is one of the important gen-
eralizations of variational inequalities. Many authors see [1–3, 5–7, 10, 11, 15] have
developed different types of algorithms for different types of variational inclusions.
The resolvent operator technique is interesting and essential to study the existence
of solution and develop iterative algorithms for different types of variational inclu-
sions. In 2003, Fang and Huang [6] developed H-monotone operators and extended
the concept of resolvent operators associated with maximal monotone operators to
new H-monotone operators. Using this new resolvent operator technique, they have
studied the approximate solutions of a new class of variational inclusions associated
with H-monotone operators.

In this paper, we modify the algorithm given by Fang and Huang [6] and show that
the rate of convergence of our algorithm is faster than that of Fang and Huang [6].

Everywhere in the paper, we have assumed H as a real Hilbert space associated
with norm ‖ · ‖ and an inner product 〈·, ·〉. The collection of all nonempty subsets of
H is denoted by 2H. Let us first recall some definitions and results which have been
utilized in the paper.

Definition 1.1. Let B,H : H→ H be two single valued operators. B is said to be

(i) monotone if

〈B(s)−B(t), s− t〉 ≥ 0 ∀s, t ∈ H;

(ii) strictly monotone, if B is monotone and

〈B(s)−B(t), s− t〉 = 0 iff s = t;
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(iii) strongly monotone if for some positive constant α

〈B(s)−B(t), s− t〉 ≥ α‖s− t‖2 ∀s, t ∈ H;

(iv) strongly monotone with respect to H if for some positive constant β

〈B(s)−B(t),H(s)−H(t)〉 ≥ β‖s− t‖2 ∀s, t ∈ H;

(v) Lipschitz continuous if for some positive constant γ

‖B(s)−B(t)‖ ≤ γ‖s− t‖ ∀s, t ∈ H.

Definition 1.2. Let H : H→ H be a single valued operator, then a multi-valued
mapping M : H→ 2H is said to be

(i) monotone if

〈s− t, x− y〉 ≥ 0 ∀ x, y ∈ H; s ∈M(x), t ∈M(y);

(ii) strongly monotone if there exists some positive constant η such that

〈s− t, x− y〉 ≥ η‖x− y‖2 ∀ x, y ∈ H; s ∈M(x), t ∈M(y);

(iii) maximal monotone if M is monotone and (I+λM)(H) = H for all λ > 0, where
I is the identity mapping on H;

(iv) H-monotone if M is monotone and (H + λM)(H) = H holds for every λ > 0;
(v) strongly H-monotone, if M is strongly monotone and (H + λM)(H) = H holds

for every λ > 0.

The relation between strongly H-monotone mapping and H-monotone mapping is
given as follows:
{strongly H−monotone mapping} ⊂ {H−monotone mapping}.

Lemma 1.1. [4] LetM : H→ 2H be a maximal monotone mapping and B : H→ H
be a Lipschitz continuous mapping. Then a mapping B + M : H→ 2H is a maximal
monotone mapping.

Using Lemma 1.1, we define a new resolvent operator in the following way:

Definition 1.3. Let H : H → H be a strictly monotone operator, B : H → H be
a Lipschitz continuous mapping and M : H → 2H be a maximal monotone operator,
so that B + M : H → 2H is a strongly H-monotone operator. Then the resolvent
operator is defined as:

(1.1) RH
B+M,λ(s) = [H + λ(B +M)]−1(s) ∀s ∈ H.

Lemma 1.2. Let H : H → H be a strictly monotone operator, B : H → H be
Lipschitz continuous and M : H → 2H be a maximal monotone operator, so that
B + M : H → 2H is a strongly H-monotone operator. Then the resolvent operator
RH
B+M,λ = [H + λ(B +M)]−1 is single valued.

Proof. Suppose for s ∈ H, and x, y ∈ [H+λ(B+M)]−1(s). Then from the definition
of resolvent operator (1.1), it follows that −Hx + s ∈ λ(B + M)x and −Hy + s ∈
λ(B +M)y. Using monotonocity of B +M , we get

〈(−Hx+ s)− (−Hy + s), x− y〉 = 〈Hy −Hx, x− y〉 ≥ 0.

As H is strictly monotone operator, so we get x = y. Thus [H+λ(B+M)]−1 is single
valued.
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Lemma 1.3. Let H : H→ H be a continuous and strongly monotone operator with
constant α > 0, B : H → H be Lipschitz continuous mapping and M : H → 2H be
a maximal monotone operator, so that B + M : H → 2H is a strongly H-monotone
operator with positive constant η. Then the resolvent operator RH

B+M,λ(s) = [H +

λ(B +M)]−1(s) ∀s ∈ H and λ > 0 is
(

1
α+λη

)
Lipschitizian continuous, i.e.,

∥∥RH
B+M,λ(s)− RH

B+M,λ(t)
∥∥ ≤ ( 1

α + λη

)
‖s− t‖ ∀ s, t ∈ H.

Proof. For two given points s, t ∈ H, we have

RH
B+M,λ(s) = [H + λ(B +M)]−1(s)

and

RH
B+M,λ(t) = [H + λ(B +M)]−1(t).

This means that

1

λ

(
s−H(RH

B+M,λ(s))
)
∈ (B +M)(RH

B+M,λ(s))

and

1

λ

(
t−H(RH

B+M,λ(t))
)
∈ (B +M)(RH

B+M,λ(t)).

Since B +M is η strongly monotone, we have

η‖RH
B+M,λ(s)− RH

B+M,λ(t)‖
≤
〈
s−H(RH

B+M,λ(s)− (t−H(RH
B+M,λ(t)),RH

B+M,λ(s)− RH
B+M,λ(t)

〉
=

1

λ

〈
s− t−

(
H(RH

B+M,λ(s))−H(RH
B+M,λ(t))

)
,RH

B+M,λ(s)− RH
B+M,λ(t)

〉
.

Using Cauchy Schwartz Inequality, we get

‖s− t‖‖RH
B+M,λ(s)− RH

B+M,λ(t)‖
≥
〈
s− t,RH

B+M,λ(s)− RH
B+M,λ(t)

〉
≥
〈
H(RH

B+M,λ(s))−H(RH
B+M,λ(t),RH

B+M,λ(s)− RH
B+M,λ(t)

〉
+λη‖RH

B+M,λ(s)− RH
B+M,λ(t)‖

≥ α‖RH
B+M,λ(s)− RH

B+M,λ(t)‖2

+λη‖RH
B+M,λ(s)− RH

B+M,λ(t)‖2

= (α + λη)‖RH
B+M,λ(s)− RH

B+M,λ(t)‖2.

So, we get

‖RH
B+M,λ(s)− RH

B+M,λ(t)‖ ≤
(

1

α + λη

)
‖s− t‖ ∀ s, t ∈ H.
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2. Algorithm for variational inclusion problem

In this section, we study variational inclusion problem which has been studied by many
authors in different settings. We develop an algorithm for the inclusion problem.

Let B,H : H→ H be two single valued operators and M : H→ 2H be a muti-valued
operator. Then variational inclusion problem consists in finding s ∈ H such that

(2.1) 0 ∈ B(s) +M(s).

Note that

(1) When H = Rn, B(s) = 0(∀s ∈ H) and M is maximal monotone, such problem
was considered by Rockafellar [15] and he proved the convergence of the proximal
point algorithm for solving the problem.

(2) If M = ∂ψ, where ψ is the sub-differential of a proper, convex and lower semi-
continuous functional ψ : H→ R∪{+∞}, then problem (2.1) becomes nonlinear
variational inequality problem, which is defined as:

(2.2) find s ∈ H : 〈B(s), t− s〉+ ψ(t)− ψ(s) ≥ 0, ∀t ∈ H.

The above problem (2.2) was examined by many authors like [8, 9, 12, 13].
(3) When H = Rn, B is continuously differentiable and M is maximal monotone, the

problem was examined by Robinson [14]. He proved the existence of solution of
the problem (2.1).

(4) When M is maximal monotone and B is Lipschitz continuous and strongly mono-
tone, the problem has been examined by Fang and Huang [6]. They developed
an iterative algorithm for approximating the solution of the problem (2.1). Their
algorithm is given below:

Algorithm 2.1. For any s0 ∈ H, the iterative sequence {sn} ⊂ H is defined by

sn+1 = RH
M,λ[H(sn)− λB(sn)], ∀ n ≥ 0.

They also proved that the sequence generated by their algorithm converges strongly
to unique solution of problem (2.1).
Motivated by their work, we construct a new algorithm for the variational inclusion
problem (2.1). Before giving our algorithm, we first state the fixed point formulation
of our problem in the form of a lemma.

Lemma 2.1. Let H : H → H be a strictly monotone operator B : H → H be
Lipschitz continuous and M : H → 2H be a maximal monotone operator, so that
B + M : H → 2H is a strongly H-monotone operator. Then s ∈ H is a solution of
problem (2.1) if and only if

s = RH
B+M,λ[H(s)].

Utilizing Lemma (2.1), we set up our algorithm for the problem (2.1).
Algorithm 2.2. For any s0 ∈ H, the iterative sequence {sn} ⊂ H is given by{

sn+1 = RH
B+M,λ[H(tn)],

tn = RH
B+M,λ[H(sn)], n = 0, 1, 2, · · · .
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3. Main result

In this section, we prove that the sequence generated by our algorithm converges
strongly to the unique solution of problem (2.1). We also show by numerical example
that the rate of convergence of our algorithm is faster than that of Fang and Huang.

Theorem 3.1. Let H : H → H be a strongly monotone and Lipschitz continuous
operator with positive constants α and β, respectively. Let B : H → H be Lipschitz
continuous and strongly monotone with respect to H with positive constants γ and δ,
respectively. LetM : H→ 2H be a maximal monotone operator and B+M : H→ 2H,
be strongly H-monotone with positive constant η and assume that there exists some
positive constant λ such that

(
β

α+λη

)
< 1. Then the iterative sequence {sn} generated

by algorithm 2.2 converges strongly to the unique solution of problem (2.1).

Proof. Let s∗ be the solution of the problem (2.1), then it follows that

‖sn+1 − s∗‖ = ‖RH
B+M,λ[H(tn)]− RH

B+M,λ[H(s∗)]‖

≤ 1

α + λη
‖H(tn)−H(s∗)‖

≤ β

α + λη
‖tn − s∗‖

=
β

α + λη
‖RH

B+M,λ[H(sn)]− RH
B+M,λ[H(s∗)]‖

≤
(

β

α + λη

)2

‖sn − s∗‖.

Continuing in this way, we obtain

‖sn+1 − s∗‖ ≤
( β

α + λη

)2(n+1)‖s0 − s∗‖.

Taking the limit n→∞, we get

lim
n→∞

‖sn+1 − s∗‖ = 0.

This implies that sn converges to s∗ strongly.

Now we show that the convergence is unique.
Let s be another solution of problem (2.1). Then, by Lemma 2.1, s = RH

B+M,λ[H(s)].
Now with similar arguments as earlier, we obtain

‖s∗ − s‖ ≤
(

β

α + λη

)
‖s∗ − s‖.

Since 0 ≤
(

β
α+λη

)
< 1, we get s∗ = s. This means that s∗ is a unique solution of

problem (2.1).

Example 3.1. Let H = R, the set of reals and let H, B : R→ R and M : R→ 2R

be defined as H(s) = 3s ∀ s ∈ R, B(s) = s
2
∀ s ∈ R and M(s) = {2s} ∀ s ∈ R. Then

H is strongly monotone with constant α = 2.9 and Lipschitz continuous with constant
β = 3.1, B is Lipschitz continuous with constant γ = 0.6 and is strongly monotone
with respect to H with constant δ = 1.4 and B+M is strongly H- monotone operator
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with constant η = 7.4.
Under these conditions the above example satisfies the conditions of both the theo-
rems, Theorem 3.1 of Fang and Huang [6] as well as Theorem 3.1.

No. of iterations
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Figure 1. The convergence of {sn} with initial value s1 = 1.

Table 1. The values of {sn} with initial value s1 = 1.

No. of Iterations Old Algorithm Our Algorithm
1 1.0000 1.0000
2 0.5000 0.1600
3 0.2500 0.0256
4 0.1250 0.0041
5 0.0625 0.0007
6 0.0156 0.0001
7 0.0078 0.0000
8 0.0039 0.0000
9 0.0020 0.0000
10 0.0010 0.0000
11 0.0005 0.0000
12 0.0002 0.0000
13 0.0001 0.0000
14 0.0001 0.0000
15 0.0000 0.0000
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