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RADAU QUADRATURE FOR A RATIONAL ALMOST

QUASI-HERMITE-FEJÉR-TYPE INTERPOLATION

Shrawan Kumar, Neha Mathur, Laxmi Rathour,
Vishnu Narayan Mishra∗, and Pankaj Mathur∗

Abstract. The aim of this paper is to obtain a Radau type quadrature formula
for a rational interpolation process satisfying the almost quasi Hermite Fejér inter-
polatory conditions on the zeros of Chebyshev Markov sine fraction on [−1, 1).

1. Introduction

Let R2n−1(a0, a1, a2, · · · , a2n−1) be a rational space defined as

R2n−1(a0, a1, · · · , a2n−1) :=

{
p2n−1(x)∏2n−1

k=0 (1 + akx)

}
(1)

where p2n−1(x) is a polynomial of degree ≤ 2n− 1 and {ak}2n−1
k=0 are real and belong

to [−1, 1] or are paired by complex conjugation.
Study of rational interpolation processes has been a field of interest for many math-

ematicains. In 1962, Rusak [10] initiated the study of interpolation processes by means
of rational functions on the interval [−1, 1]. The nodes were taken to be the zeros of
Chebyshev Markov [3, 4, 11, 12] rational fractions given by

Un(x) =
sinµ2n(x)√

1− x2
µ2n(x) =

1

2

2n−1∑
k=0

arccos
x+ ak
1 + akx

(2)

where, for n ∈ N

µ′2n(x) = − λ2n(x)√
1− x2

, λ2n(x) =
1

2

2n−1∑
k=0

√
1− a2

k

1 + akx
(3)

and ak, k = 0, 1, . . . , 2n− 1 are either real with ak ∈ (−1, 1) or are paired by complex
conjugation.

Received May 29, 2021. Revised February 8, 2022. Accepted February 8, 2022.
2010 Mathematics Subject Classification: 05C38, 15A15, 05A15, 15A18.
Key words and phrases: Almost Quasi-Hermite-Fejér-type interpolation, Radau-type quadrature,

rational space, prescribed poles, Chebyshev-Markov fractions.
∗Corresponding author.
© The Kangwon-Kyungki Mathematical Society, 2022.
This is an Open Access article distributed under the terms of the Creative commons Attribu-

tion Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits un-
restricted non-commercial use, distribution and reproduction in any medium, provided the original
work is properly cited.



44 S. Kumar, N. Mathur, L. Rathour, V.N. Mishra, and P. Mathur

In [7] rational interpolation functions of Hermite-Fejér-type were constructed. Min
[5] was the first to consider the rational quasi-Hermite-type interpolation. He con-
structed the interpolatory function and proved its uniform convergence for the contin-
uous functions on the segment with the restriction that the poles of the approximating
rational functions should not have limit points on the interval [−1, 1]. Based on the
ideas of [7] and using method that was different from that of [5], Rouba et. al. [6], [9]
revisited the rational interpolation functions of Hermite-Fejér-type. They also proved
the uniform convergence of the interpolation process for the function f ∈ C[−1, 1]
and obtained explicitly its corresponding Lobatto type quadrature formula. Recently,
Shrawan Kumar et.al. [2] studied the Radau type quadrature for an almost quasi-
Hermite-Fejér-type interpolation in rational spaces.

In this paper we have considered an almost quasi-Hermite-Fejér-type interpolation
process on the zeros of the rational Chebyshev Markov sine fraction on the semi closed
interval [−1, 1), that is, when the interpolatory condition is prescribed only at one
of the end points “−1”. A Radau type quadrature formula corresponding to the
interpolation process has also been obtained explicitly.

2. Preliminaries

Let the points ak, k = 0, 1, . . . , 2n− 1 be the real and ak ∈ (−1, 1) or be paired by
complex conjugation. The rational fraction Un(x), given by (2), (3), can be expressed
as

Un(x) =
Pn−1(x)√

Π2n−1
k=0 (1 + akx)

where Pn−1(x) is an algebraic polynomial of degree n − 1 with real coefficient. The
fraction Un(x) has n− 1 zeros on the interval (−1, 1),

−1 < xn−1 < xn−2 < · · · < x2 < x1 , µ2n(xk) = kπ, k = 1, 2, . . . , n− 1.

Let {`k(x)}n−1
k=1 be the fundamental polynomials of Lagrange interpolation given by

(4) `k(x) =
Un(x)

(x− xk)U ′n(xk)
.

3. Almost Quasi-Hermite-Fejér-type interpolation

Let xn = −1. Then for any function f ∈ C[−1, 1) an almost quasi type Hermite
interpolation function Hn(x, f) satisfying the conditions

Hn(xk, f) = f(xk), k = 1, 2, . . . , n

H ′n(xk, f) = yk, k = 1, 2, . . . , n− 1

is given by

(5) Hn(x, f) =
n∑

k=1

f(xk)Ak(x) +
n−1∑
k=1

ykBk(x)
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where yk, k = 1, 2, . . . , n − 1 are arbitrarily given real numbers, {Ak(x)}nk=1 and
{Bk(x)}n−1

k=1 are fundamental functions of an almost quasi type Hermite interpola-
tion are given by:

For k = 1, 2, · · · , n− 1

(6) Bk(x) =
(1 + x)(1− xk)(1− x2

k)U2
n(x)

λ2n(x)λ2n(xk)(x− xk)
,

Ak(x) =
(1− xk)(1− x2

k)(1 + x){1− bk(x− xk)}U2
n(x)

λ2n(xk)(x− xk)2λ2n(x)
(7)

where

bk =
2xk − 1

1− x2
k

(8)

and

(9) An(x) =
U2
n(x)

λ2n(x)λ2n(−1)
.

Theorem 3.1. The almost quasi type Hermite interpolation function Hn(x, f) is
a rational function of degree atmost 2n− 1 that is

Hn(f, x) ∈ R2n−1(a1, a2, · · · , a2n−1).(10)

Proof. Since Un ∈ Rn−1(a0, a1, · · · , a2n−1), we can express it as

Un(x) :=
Sn−1(x)

S∗n(x)

where S∗n(x) :=
√∏2n−1

k=0 (1 + xak), Sn−1(x) := cn−1(x− x1)(x− x2) · · · (x− xn−1) and

cn−1 depends on n and {ak}2n−1
k=0 . So, we have

`k(x) =
S∗n(xk)

S∗n(x)
qk(x), k = 1, 2, · · · , n− 1,(11)

where

qk(x) :=
Sn−1(x)

S ′n−1(xk)(x− xk)
, k = 1, 2, · · · , n− 1.(12)

Thus `k(x) ∈ Rn−2(a0, a1, · · · , a2n−1). Hence by (5), (7) and (6) the lemma follows.

Let yk = 0, k = 1, 2, · · · , n− 1 then (5) reduces to

Hn(f, x) =
n∑

k=1

f(xk)Ak(x)(13)

which is an almost quasi Hermite Fejér interpolation function for f ∈ C[−1, 1].
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4. Radau-type quadrature formula

For a given function f defined on [−1, 1], we define the function

(14) Gn(x, f) =
n∑

k=1

f(xk)hk(x)

where, for k = 1, 2, · · · , n− 1,

hk(x) =
1 + x

1 + xk

[
1−

(
U ′′n(xk)

U ′
n(xk)

− 1

(1− xk)

)
(x− xk)

]
`2
k(x)

and

hn(x) =
U2
n(x)

U2
n(1)

.

We have that Gn(f, x) ∈ R2n−1(a1, a2, · · · , a2n−1). Also the rational function Gn(f, x)
is an almost quasi Hermite-Fejér interpolation function. Let

(15) Ak =

∫ 1

−1

√
1− x
1 + x

hk(x)dx

and

(16) An =

∫ 1

−1

√
1− x
1 + x

U2
n(x)

U2
n(−1)

dx

then the Radau-type quadrature formula corresponding to the interpolatory function
(14) is given by

(17)

∫ 1

−1

√
1− x
1 + x

Gn(f, x)dx =
n−1∑
k=1

Akf(xk) + Anf(−1).

The quadrature formula corresponding to the Almost Quasi Hermite Fejér interpola-
tion Gn(x, f) is given in the following theorem.

Theorem 4.1. The quadrature formula (17) can be expressed as

(18)

∫ 1

−1

√
1− x
1 + x

Gn(x, f)dx =
n−1∑
k=1

π(1 + xk)

λ2n(xk)
f(xk) +

2λ2n(1)

λ2
2n(−1)

πf(−1).

To prove this theorem we shall the the following lemmas.

Lemma 4.2. For k = 1, 2, · · · , n− 1,

(19)

∫ 1

−1

√
1− x2 `2

k(x)dx =
π(1− x2

k)

λ2n(xk)
.

Proof. For k = 1, 2, · · · , n− 1, we have

`2
k(x) =

U2
n(x)

(U ′n)2(xk)(x− xk)2

=
(1− x2

k)2 sin2 µ2n(x)

λ2
2n(xk)(1− x2)(x− xk)2

.(20)

Also,

(21) Un(1) = lim
x→1

sinµ2n(x)√
1− x2

= λ2n(1)
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and

(22) Un(−1) = (−1)n+1λ2n(−1).

Then for k = 1, 2, · · · , n− 1, due to (20), we have∫ 1

−1

√
1− x2 `2

k(x)dx =
(1− x2

k)2

λ2
2n(xk)

∫ 1

−1

sin2 µ2n(x)

(x− xk)2
√

(1− x2)
dx.(23)

Consider the integrals,

(24) A∗k =

∫ 1

−1

sin2 µ2n(x)

(x− xk)2
√

1− x2
dx.

Consider the transformation

(25) x =
1− y2

1 + y2

which gives

(26) dx =
4y

(1 + y2)2
dy,

(27) x− xk =
2(y2 − y2

k)

(1 + y2)(1 + y2
k)
,

(28) 1− x =
2

1 + y2
,

(29)
√

1− x2 =
2y

1 + y2
.

We know that,

(30) sinµ2n

(
y2 − 1

y2 + 1

)
= sinφ2n(y)

where sinφ2n(y) is a Bernstein sine fraction

(31) sinφ2n(y) =
1

2i

(
χn(y)− χ−1

n (y)
)

where χn(y) =
∏2n−1

j=0
y−zj
y−z̄j and zk are the roots of the equations y2+(ak+1)(ak−1)−1 =

0, Izk > 0, k = 0, 1, · · · , 2n − 1. Taking into account the assumptions on the
parameters ak, k = 0, 1, · · · , 2n − 1, we have the following: 1) z0 = i, 2) if ak and
al are paired by complex conjugation, then the corresponding numbers zk and zl are
symmetric with respect to the imaginary axis. Besides, the function sinφ2n(y) has

zeros at ±yk, yk =
√

(1− xk)/(1 + xk), k = 1, 2, · · · , n− 1. Thus,

A∗k = (1 + y2
k)2

∫ ∞
−∞

(1 + y2) sin2 φ2n(y)

4(y2 − y2
k)2

dy.

Consider the auxillary integral

J∗k (z) =

∫ ∞
−∞

(1 + y2) sin2 φ2n(y)

(y2 − z2)2
dy
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then

A∗k =
(1 + y2

k)2

4
lim

z→yk,=zk>0
J∗k (z).(32)

From (31), we get

J∗k (z) = J∗1k(z) + J∗2k(z) + J∗3k(z)(33)

where

J∗1k(z) = −1

4

∫ ∞
−∞

(1 + y2)χ2
n(y)

(y2 − z2)2
dy.

J∗2k(z) =
1

2

∫ ∞
−∞

(1 + y2)

(y2 − z2)2
dy.

J∗3k(z) = −1

4

∫ ∞
−∞

(1 + y2)χ−2
n (y)

(y2 − z2)2
dy.

Since z0 = i, thus the integrand of J∗1k(z) has only one singular point at y = z in the
upper half plane. Thus by the residue theorem we have

J∗1k(z) = −πi
2

lim
y→z

d

dy

[
(1 + y2)χ2

n(y)

(y + z)2

]
= −πi

2
lim
y→z

[
χ2
n(y)

d

dy

(y2 + 1)

(y + z)2
+

2(y2 + 1)

(y + z)2
χn(y)

d

dy
(χn(y))

]
.

Since,

χn(y) =
2n−1∏
j=0

y − zj
y − z̄j

which by logarithmic differentiation gives

d

dy
χn(y) = χn(y)

2n−1∑
j=0

zj − z̄j
(y − zj)(y − z̄j)

.

Also
d

dy

(y2 + 1)

(y + z)2
=

2(yz − 1)

(y + z)3
.

Therefore,

J∗1k(z) = −πi
2
χ2
n(z)

[
(z2 − 1)

4z3
(34)

+
(z2 + 1)

4z2

2n−1∑
j=0

zj − z̄j
(z − zj)(z − z̄j)

]
.(35)

Proceeding similarly, we have

J∗3k(z) = −πiχ
−2
n (z)

2

[
(z2 − 1)

4z3
(36)

+
(z2 + 1)

4z2

2n−1∑
j=0

zj − z̄j
(z − zj)(z − z̄j)

]
.(37)
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Again since y = z is the only singular point of the integrand of J∗2k(z) in the upper
half plane. Thus, by the residue theorem, we have

J∗2k(z) =
πi

2
lim
y→z

d

dy

[
(1 + y2)

(y + z)2

]
=
πi

2

(z2 − 1)

4z3
.(38)

Taking into account that χ2
n(yk) = 1 and putting the vales of (39), (38) and (36) in

(33), it follows form (32) that

A∗k = −πi(1 + y2
k)3

16y2
k

2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

.

Since, yk =
√

(1− xk)/(1 + xk) and zk = i
√

(1 + ak)/(1− ak), thus by simple
calculation we have,

2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

=
2n−1∑
j=0

(
1

yk − zj
− 1

yk − z̄j

)

=
2n−1∑
j=0

i
√

(1 + aj)
√

(1− aj)
1 + ajxk

(
2

1 + y2
k

)
=

4iλ2n(xk)

(1 + y2
k)

(39)

where we have used

1 + xk =
2

1 + y2
k

.

Thus,

A∗k = −(1 + y2
k)3

16y2
k

πi

(
−4

λ2n(xk)

i(1 + y2
k)

)
=

πλ2n(xk)(1 + y2
k)2

4y2
k

=
πλ2n(xk)

(1− x2
k)
.

Therefore by (23) the lemma follows.

Lemma 4.3. For k = 1, 2, · · · , n− 1,

(40)

∫ 1

−1

√
1− x2(x− xk)`2

k(x)dx = 0.

Proof. For k = 1, 2, · · · , n− 1, due to (20), we have

Ik =

∫ 1

−1

√
1− x2(x− xk)`2

k(x)dx

=
(1− x2

k)2

λ2
2n(xk)

∫ 1

−1

sin2 µ2n(x)√
1− x2(x− xk)

dx(41)

By using the transformation (25), (26), (27), (28), (29) and (30) we get

Ik = −(1− x2
k)2(1 + y2

k)

2λ2
2n(xk)

∫ ∞
−∞

sin2 φ2n(y)

(y2 − y2
k)
dy
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where sinφ2n(y) is a Bernstein sine fraction given by (31).

Ik =
(1− x2

k)2(1 + y2
k)

2λ2
2n(xk)

lim
z→yk,Izk>0

Jk(z)(42)

where

(43) Jk(z) =

∫ ∞
−∞

sin2 φ2n(y)

y2 − z2
dy.

From (31) we get

(44) Jk(z) = −1

4

∫ ∞
−∞

χ2
n(y)− 2 + χ−2

n (y)

y2 − z2
dy.

Since Jk(z) has only singular point y = z in the upper half plane. Thus, by the residue
theorem, we have

Jk(z) = −2πi

4
lim
y→z

[
χ2
n(y)− 2 + χ−2

n (y)

(y + z)

]
= −πi

4

[
χ2
n(z)− 2 + χ−2

n (z)

z

]
.

Thus, (42) gives

(45) Ik = −(1− x2
k)2(1 + y2

k)

2λ2
2n(xk)

lim
z→yk,Izk>0

[
χ2
n(z)− 2 + χ−2

n (z)

z

]
.

Since χn(yk) = 1, thus it follows that Ik = 0 which proves the lemma.

5. Proof of the Theorem 4.1

Due to Lemma 4.2 and Lemma 4.3, the coefficients of the quadrature formula (17)
{Ak}n−1

k=1 given by (15), can be expressed as

Ak =
1

(1 + xk)

∫ 1

−1

√
1− x2`2

k(x)dx

=
π(1− x2

k)

λ2n(xk)

1

(1 + xk)
=
π(1 + xk)

λ2n(xk)
.

Proceeding on similar lines we have

(46) An =
2λ2n(1)

λ2
2n(−1)

π

which in turn proves the theorem.
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