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RADAU QUADRATURE FOR A RATIONAL ALMOST
QUASI-HERMITE-FEJER-TYPE INTERPOLATION

SHRAWAN KUMAR, NEHA MATHUR, LAXMI RATHOUR,
VISHNU NARAYAN MISHRA®, AND PANKAJ MATHUR®

ABSTRACT. The aim of this paper is to obtain a Radau type quadrature formula
for a rational interpolation process satisfying the almost quasi Hermite Fejér inter-
polatory conditions on the zeros of Chebyshev Markov sine fraction on [—1,1).

1. Introduction

Let Ro,—1(ag, a1, a9, -+ ,as, 1) be a rational space defined as
n_1(x
(1) RZn—l(CLOyal; ce >a2n—1) = 23)_21 1( )
k=0 (1+ axx)

where py,_1 () is a polynomial of degree < 2n — 1 and {a;};"," are real and belong
to [—1, 1] or are paired by complex conjugation.

Study of rational interpolation processes has been a field of interest for many math-
ematicains. In 1962, Rusak [10] initiated the study of interpolation processes by means
of rational functions on the interval [—1,1]. The nodes were taken to be the zeros of
Chebyshev Markov [3,4,11,12] rational fractions given by

2n—1

sin gy, () 1 T+ ag
2 Uy(x) = ——— n(2) = = arccos ———
) 0= "HEZ i) = 5 2 anceos E
where, forn € N
2n—1
1—aj

’ _ /\2n(l‘) T _l N
(3) Mo (T) = m’ Aan() = 2 ; 14+ apx

and ag, k =0,1,...,2n — 1 are either real with a; € (—1,1) or are paired by complex
conjugation.
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In [7] rational interpolation functions of Hermite-Fejér-type were constructed. Min
[5] was the first to consider the rational quasi-Hermite-type interpolation. He con-
structed the interpolatory function and proved its uniform convergence for the contin-
uous functions on the segment with the restriction that the poles of the approximating
rational functions should not have limit points on the interval [—1,1]. Based on the
ideas of [7] and using method that was different from that of [5], Rouba et. al. [6], [9]
revisited the rational interpolation functions of Hermite-Fejér-type. They also proved
the uniform convergence of the interpolation process for the function f € C[—1,1]
and obtained explicitly its corresponding Lobatto type quadrature formula. Recently,
Shrawan Kumar et.al. [2] studied the Radau type quadrature for an almost quasi-
Hermite-Fejér-type interpolation in rational spaces.

In this paper we have considered an almost quasi-Hermite-Fejér-type interpolation
process on the zeros of the rational Chebyshev Markov sine fraction on the semi closed
interval [—1,1), that is, when the interpolatory condition is prescribed only at one
of the end points “—1”7. A Radau type quadrature formula corresponding to the
interpolation process has also been obtained explicitly.

2. Preliminaries

Let the points ax, k = 0,1,...,2n — 1 be the real and a; € (—1,1) or be paired by
complex conjugation. The rational fraction U, (x), given by (2), (3), can be expressed
as

where P, _1(x) is an algebraic polynomial of degree n — 1 with real coefficient. The
fraction U, (x) has n — 1 zeros on the interval (—1,1),

—1<xp 1 <Tpo<-+<wzy<x1, pop(ag)=kmk=12...,n—1.

Let {Ek(m)}z;i be the fundamental polynomials of Lagrange interpolation given by

(4) li(x) =

3. Almost Quasi-Hermite-Fejér-type interpolation

Let xz,, = —1. Then for any function f € C[—1,1) an almost quasi type Hermite
interpolation function H,(z, f) satisfying the conditions

H,(z, f) = f(xy), kE=1,2,....n
H;z(xkaf):yka k:1>27"'7n_1
is given by

n

(5) Ho(e, f) = " fen) due) + 3 e Bi(e)
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where yk,k = 1,2,...,n — 1 are arbitrarily given real numbers, {A;(z)}}_, and
{By(x)}}Z] are fundamental functions of an almost quasi type Hermite interpola-
tion are given by:

For k=1,2,--- ,n—1

(L4 2)(1 = 2)(1 — 23)Uz(2)

(6) Bil®) = 5 @) (@ = 20)

(1 —2p) (1 — i) (1 + a){1 — (2 — ) }U(2)

(7) Ap(z) = Azn (1) (2 — 1) 2Agn ()
where

(8) m::?t;;

and k

o A (@) - — U

A2n () A2n(—1) .

THEOREM 3.1. The almost quasi type Hermite interpolation function H,(z, f) is
a rational function of degree atmost 2n — 1 that is

(10) H,(f,x) € Ron—1(a1,az,- -+ ,azn—1).
Proof. Since U,, € R,—1(ag, a1, -+ ,as,—1), we can express it as
Sn-1(2)
U, =
= 5w
where S¥(x \/HZ" Y14 zag), Snei(z) := cooy(z — 1) (. — 23) - - (x — 2,_1) and
Cn_1 depends on n and {ak} n 1 So, we have
Sh(ar)
11 lo(z) = 2n E—1.9 . 1
( ) k(‘r) S;;(l‘) Qk('r>7 ) , )
where
Sn_l(l')
12 x) = , k=1,2,--- . n—1
12 #) = g o — o

Thus ¢x(x) € Ry_o(ag, a1, ,a9,-1). Hence by (5), (7) and (6) the lemma follows.
[

Let y» =0, k=1,2,--- ,n — 1 then (5) reduces to

n

(13) H,(f,x) = f(zr) Aw()

k=1

which is an almost quasi Hermite Fejér interpolation function for f € C[—1,1].
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4. Radau-type quadrature formula

For a given function f defined on [—1, 1], we define the function

n

(14) Gulx, ) = flw) ()

k=1
where, for k =1,2,--- ,n—1,

-2 - (B )]

n

and U2 ()
x
ho(x) = —=—.
D= T2
We have that G,,(f,z) € Ron_1(a1,as,- -+ ,a2,-1). Also the rational function G,,(f, x)
is an almost quasi Hermite-Fejér interpolation function. Let

(15) A= \/f ()

and

then the Radau-type quadrature formula corresponding to the interpolatory function
(14) is given by

(17) / \/? f$d$—zz4kfﬂfk + Anf(=1).

The quadrature formula corresponding to the Almost Quasi Hermite Fejér interpola-
tion G, (z, f) is given in the following theorem.

THEOREM 4.1. The quadrature formula (17) can be expressed as

19 [T fn@?mmf;zg_(%wf(—n.

To prove this theorem we shall the the following lemmas.

LEmMmA 4.2. Fork=1,2,--- ;n—1,

(19) /_1 V1 — 22 3 (2)dr = %

Proof. For k=1,2,--- ,n— 1, we have

by U2 (x)
b0 = T @ = )
(1 —2})?sin® pg(2)
(20) T @)1 — 2@ — m)?
Also,
(21) Up(1) = lim S0 n (7) = A2n(1)

rx—1 1/1 _1'2
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and
(22) Un(—1) = (=1)" ™ Agn(—1).
Then for £k =1,2,--- ;n— 1, due to (20), we have

(23) /11 VIZHE B)ydn = L= 7i)” /1 S pon(1)

Aon() Joy (x— 2)2/(1 — 22)

Consider the integrals,

b sin® o (2)
24 A; = = dx.
(24 -/, (-2

Consider the transformation

1 a2
(25) T = y2

1+y
which gives

4y
26 dr = ———=dy,
(26) Tt

(T+y)A+yp)
2

28 1= ——
(28) T

(29) N

We know that,

2
. Yy — .

30 nl =—— ) = n
(30) Sin 4o (y2 n 1) sin ¢an (y)
where sin ¢, (y) is a Bernstein sine fraction

. 1 _
(31) sin ¢n(y) = o2 (xa(¥) = Xa' (v)
where x,(y) = Hjigl % and z;, are the roots of the equations y*+(az+1)(ar—1)"! =
0, Zz, > 0, kK = 0,1,---,2n — 1. Taking into account the assumptions on the
parameters ag, k = 0,1,---,2n — 1, we have the following: 1) zy = 4, 2) if a; and

a; are paired by complex conjugation, then the corresponding numbers z; and z; are
symmetric with respect to the imaginary axis. Besides, the function sin ¢, (y) has

zeros at Lyg, yr = /(1 —ax)/(L + ), k=1,2,--- ,n— 1. Thus,

* (1 +y?) sin® ¢on(y)
A = (1+y; 2/ ( dy.

Consider the auxillary integral

Jz(Z) — /_OO (1 + y2) Sin2 ¢2n(y) dy

[eS) (y2 - 22)2
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then
O . )
(32) Ak - T z—>y£1,glzk>0 Jk (Z)
From (31), we get
(33) i (2) = Jii(2) + I (2) + J55.(2)
where
. 1 [ (1+y°)xa(y)
=1 |

56 =3 [ S

2 J oo (2 = 22)?

i (2) = _i /: (1 (j;f—)ig)?(y) dy.

Since zg = 4, thus the integrand of J;,(z) has only one singular point at y = z in the
upper half plane. Thus by the residue theorem we have

\ om o d [A+y)xa ()
e = g im | SO
i d (y*+1) 2y*+1) d
= ——1 2 - n 7 \Xn :
- lim [X”(y)dy TEE A R (0)g, (x (y))]
Since,
2n—1
Xn(y) = I
J=0 v

Also
dP+1) 20—
dy(y+2)*  (y+2)3
Therefore,
. i (22 —-1)
(34) 8D = T [ =
P+~ 45—

35 :
(35) + 422 = (z — 2j)(z — %))
Proceeding similarly, we have

=2 2
] Tix, (2) | (7 —1)
(36) Tule) = T [ =
B+~ -5

37 :

(37) i 422 = (z — 2z)(2 — %)
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Again since y = z is the only singular point of the integrand of J3,(z) in the upper
half plane. Thus, by the residue theorem, we have

. Com,d [(A4+yH)]  mi(z*-1)
(38) 2(?) = Ezllllgd_y{(y—l—zﬁ}_? P

Taking into account that x2(y) = 1 and putting the vales of (39), (38) and (36) in
(33), it follows form (32) that

7'['2(1 + y,%)?’ fli Zj — 2]'

16y;; = (r = 2z) (e — %)

Ap=—

Since, yr = /(1 —xx)/(1 +ax) and 2z, = i\/(1+ ax)/(1 — a), thus by simple
calculation we have,

2il(y o :%Z_l(yl T )

2n—1 .
_ Z i/ (14 a;)\/(1— a;) ( 2 )
=0 1+ a; Ty 1+ y,z
4idoy,
(39) _ (Zli—(xzk)
Yir)
where we have used
1+a, = :
Thus,
1+ 92)3 Aon
ap = U dan).
Pan)(L+ 2 an()
4y (1—a3)
Therefore by (23) the lemma follows. O

LemmA 4.3. Fork=1,2,--- ;n—1,
(40) /1 V1= 22(x — 23)(x)dx = 0.
—1
Proof. For k=1,2,--- ,n— 1, due to (20), we have
I, = /1 V1 — 22(z — ) (z)da
-1

(@ =ap)? [t sin® pga()
(41) = A%n(x‘;) y —1_x2(x_xk)dm

By using the transformation (25), (26), (27), (28), (29) and (30) we get

=) [ sindu(y)
b= 203, (1r) /_oo )"




50 S. Kumar, N. Mathur, L. Rathour, V.N. Mishra, and P. Mathur

where sin ¢, (y) is a Bernstein sine fraction given by (31).
(1= )" (1 + )

(42) Ik = 2)‘%11 (k) z—>y£1,glzk>0 Ji(2)
where
> sin® pon (1)
From (31) we get
L xa(y) =2+ x.°(v)
(44) J(z) =7 /_ e,

Since Ji(z) has only singular point y = z in the upper half plane. Thus, by the residue
theorem, we have

21711 2 -9 -2
) = Xa¥) =2+ X" (¥)
y—== (y +2)
__mi [xa(z) =24 x5,%(2)
= =3 . .
Thus, (42) gives
1 — 22)2(1 4+ 2 2(,) 9 42
) o P L [ =2 0]
2)‘271 (:Ck) 2—=Yk, Lz >0 Z
Since xn(yx) = 1, thus it follows that I = 0 which proves the lemma. O

5. Proof of the Theorem 4.1

Due to Lemma 4.2 and Lemma 4.3, the coefficients of the quadrature formula (17)
{A}7Z] given by (15), can be expressed as
1 1
A, = —— | V1 —2203(2)d
' (1 + ) /1 ()
r(l—a3) 1 w(l4ay)

Proceeding on similar lines we have

20, (1)
which in turn proves the theorem.
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