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ON COUNTABLY g-COMPACTNESS AND SEQUENTIALLY

GO-COMPACTNESS

P. Vijayashanthi and J. Kannan

Abstract. In this paper, we investigate some properties of countably g-compact
and sequentially GO-compact spaces. Also, we discuss the relation between count-
ably g-compact and sequentially GO-compact. Next, we introduce the definition of
g-subspace and study the characterization of g-subspace.

1. Preliminaries

Let (X, τ) be a topological space. A subset A of X is called g-closed [4] if
cl(A) ⊂ G holds whenever A ⊂ G and G is open in X.
A is called g-open of X if its complement Ac is g-closed in X. Every open set is

g-open [8]. A topological space X is said to be T1/2 [2] if every g-closed set in X is
closed in X. A is called sequentially closed [5] if for every sequence (xn) in A with
(xn)→ x, then x ∈ A.

A sequence (xn) in a space X g-converges to a point x ∈ X [4] if (xn) is eventually

in every g-open set containing x and is denoted by (xn)
g−→ x and x is called the g-limit

of the sequence (xn), denoted by glim xn.
A is called sequentially g-closed [4] if every sequence in A g-converges to a point

in A. S[A] denote the set of all sequences in A and cg(X) denote the set of all g-
convergent sequences in X. A sequentially g-open subset U (which is the complement
of a sequentially g-closed set) is one in which every sequence in X which g-converges
to a point in U is eventually in U . A space X is said to be GO-compact [7] if every
g-open cover of X has a finite subcover. A space X is said to be g-Lindelöf [7] if every
g-open cover of X has a countable subcover. A subset A of X is said to be sequentially
GO-compact [4] if every sequence in A has a subsequence which g-converges to a point
in A. A space X is countably g-compact [7] if every countable cover of X by g-open
sets of X has a finite subcover.
A map f : X → Y from a topological space (X, τ) into a topological space (Y, σ) is
called g-continuous [2] if the inverse image of every closed set in Y is g-closed in X.
A map f : X → Y is said to be strongly g-continuous [2] if the inverse image of every
g-closed set in Y is closed in X.
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Let (X, τ) and (Y, σ) be any two topological spaces. Then a map f : (X, τ)→ (Y, σ)

is said to be sequentially g-continuous at x ∈ X [4] if the sequence (f(xn))
g−→ f(x)

whenever the sequence (xn)
g−→ x. If f is sequentially g-continuous at each x ∈ X,

then it is said to be a sequentially g-continuous function.

Lemma 1.1. [1] Suppose X is a topological space and A ⊂ X. The sequential
closure of A is defined as the set {limx | x ∈ s(A) ∩ c(X)} where s(A) denotes the
set of all sequences in A, c(X) denote the set of all g-convergent sequences in X and
it is denoted by [A]seq. Then A ⊂ [A]seq.

2. Sequentially GO-compact

Definition 2.1. A subset A of a topological space (X, τ) is called a g-neighborhood
of a point x ∈ X if there exists a g-open set U with x ∈ U ⊂ A.

Definition 2.2. Let (X, τ) be a topological space, A ⊂ X and let S[A] be the
set of all sequences in A. Then the sequential g-closure of A, denoted by [A]gseq , is
defined as

[A]gseq = {x ∈ X | x = glim xn and (xn) ∈ S[A] ∩ cg(X)}
cg(X) denote the set of all g-convergent sequences in X.

Lemma 2.3. [16, Lemma 3.3] Let (X, τ) be a topological space. Then the following
hold.

(a) Every g-convergence sequence is convergence sequence.
(b) If (X, τ) is a T1/2 space, then the concept of convergence and g-convergence

coincide.

The following Example 2.4 shows that Every g-convergence sequence is convergence
sequence. But converse of Lemma 2.3 (a) need not be true.

Example 2.4. Consider the topological space (X, τ) where X = [0, 2), τ =
{∅, (0, 1), X}. Suppose that (xn) = ( 1

n
) for n ∈ N. Then (xn) converges to 0. If

A = (0, 1], then A is g-closed and so X \A is g-open. That is, {0} ∪ (1, 2) is a g-open
subset of X. But 1

n
/∈ {0} ∪ (1, 2) for any n. Hence (xn) does not g-convergent to 0.

Theorem 2.5. Let (X, τ) be a topological space and A ⊂ X. Then the following
hold.

(a) Every sequentially closed set is a sequentially g-closed set.
(b) A is sequentially g-closed if and only if [A]gseq ⊂ A.
(c) Every sequentially g-closed set is g-closed hence every sequentially closed set is

g-closed.

Proof. (a) Let A ⊂ X. Suppose A is sequentially closed. Let (xn) be a sequence in A

such that (xn)
g−→ x. By Theorem 2.3 (a), (xn) → x in A and so x ∈ A. Thus, A is

sequentially g-closed.
(b) Suppose x ∈ [A]gseq . Then there exists (xn) ∈ S[A]∩cg(X) such that x = glim xn.
Since A is a sequentially g-closed subset of X, x ∈ A. Hence [A]gseq ⊂ A. Conversely,

let (xn) be a sequence in A such that (xn)
g−→ x. Then x ∈ [A]gseq . By assumption,

[A]gseq ⊂ A and so x ∈ A. Hence A is sequentially g-closed.
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(c) Suppose that A is sequentially g-closed. Then [A]gseq ⊂ A, by (b). Let (xn) ∈
S[A] ∩ cg(X). Then glim xn ∈ [A]gseq . Since [A]gseq ⊂ A, A is closed. Thus, A is
g-closed. By (a), every sequentially closed set is sequentially g-closed. Therefore,
every sequentially closed set is g-closed.

Theorem 2.6. Let (X, τ) be a topological space and A be a subset of X. If A is
open then A is sequentially g-open.

Proof. Let A be open and (xn) be a sequence in X \ A. Let y ∈ A. Then there is
a g-neighborhood U of y which contained in A. Hence U does not contain any term
of (xn). So y is not a limit of the sequence (xn). Since every g-convergent sequence is
convergent (By Theorem 2.3(a)), y is not a g-limit of the sequence. Therefore, A is
sequentially g-open.

Theorem 2.7. Every sequentially GO-compact space is a sequentially compact
space.

Proof. Suppose that (X, τ) is a sequentially GO-compact space and (xn) is a se-
quence in X. Then by the definition of sequentially GO-compactness, there exists
a subsequence (xnk

) of (xn) such that (xnk
) g-converges to x. By Lemma 2.3 (a),

(xnk
)→ x. Therefore, X is sequentially compact.

In general, the converse of the Theorem 2.7 need not be true by Example 2.4.

Definition 2.8. A topological space (X, τ) is said to be g-sequential if any subset
A of X with [A]gseq ⊂ A is closed in X, that is, every sequentially g-closed set in X is
a closed set.

Next, we have to show that Theorem 2.9 every sequentially GO-compact space is
countably g-compact space but converse true in g-sequential.

Theorem 2.9. Every sequentially GO-compact space is countably g-compact space.

Proof. Suppose that (X, τ) is not countably g-compact. Let C be a countable
g-open cover that does not have a finite subcover. We choose xj ∈ X, for each j > 1.

Let Uj ∈ C that contains a point xj but not in
j−1⋃
i=1

Ui. We enough to show that the

sequence (xn) does not have a subsequence that g-converges.
Let x ∈ X. Then there exists k such that for every g-neighborhood Uk of x,

xj ∈ Uk for every j > k. Thus, no subsequence of (xn) g-converges to x. Since x is
any arbitrary point, no subsequence of (xn) g-converges to x. Therefore, (X, τ) is not
a sequentially GO-compact space.

Theorem 2.10. Let (X, τ) be a g-sequential space. Every countably g-compact
space is sequentially GO-compact space.

Proof. Suppose that (X, τ) is a countably g-compact space. It suffices to show
that any sequence (xn) of points of a countably g-compact g-sequential space X has
a g-convergent subsequence.

Suppose that xi 6= xj if i 6= j. Let x be a g-limit point of the infinite set A. Since
x ∈ cl(A \ {x}), the set A \ {x} is not closed. So that, X being a g-sequential space,
the set A \ {x} contains a sequence g-converging to a point in the complement of
A \ {x}. Rearranging the sequence (yn), we get a g-convergent subsequence of (xn).
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Theorem 2.11. If the topological space (X, τ) is countably g-compact, then every
sequence (xn) has a g-limit point.

Proof. Let (xn) be a sequence in X and let A = {xn | n ∈ N}. Suppose that A is
an infinite set. Then A has a set of g-limit point of x. Let U be a g-neighborhood of
x. Then there is a sequence (yn) in A \ {x} such that g lim yn = x. This implies that
xn ∈ A \ {x}, xn ∈ U . Therefore, x is a g-limit point of A. If A is finite, then there
exists x ∈ X such that xn = x for infinitely many n ∈ N. Then for every g-open set
U containing x. Hence x is a g-limit point of A.

Theorem 2.12. The Cartesian product X × Y of a countably g-compact space X
and a sequentially GO-compact space Y is countably g-compact.

Proof. Consider a countably infinite set A = {m1,m2, ...} ⊂ X × Y , where mi =
(xi, yi) for i = 1, 2, ... and mi 6= mj whenever i 6= j. Let yk1 , yk2 , ... be a subsequence
of y1, y2, ... that g-converges to a point y ∈ Y . If the set {xk1 , xk2 , ...} is finite, then
there exists a point x ∈ X and a subsequence kl1 , kl2 , ... of the sequence k1, k2, ... such
that xkli = x for i = 1, 2, ... If the set {xk1 , xk2 , ...} is infinite, then it has g-limit point

x ∈ X. Therefore, (x, y) ∈ X × Y is a g-limit point of the set A.

Theorem 2.13. If X is a countably g-compact space and Y is a g-sequential space,
then the projection P : X × Y → Y is closed.

Proof. Let A be a closed subset ofX×Y . Consider a sequence (yn) of points of P (A)
and U be g-open neighborhood of y in Y , yi ∈ U and a point y ∈ g lim yi. We Choose
a point xi ∈ X such that (xi, yi) ∈ A for i = 1, 2, ... Suppose the set A = {x1, x2, ...}
is finite, then there exists x ∈ X such that xki = x for infinite sequence k1 < k2 < ...
of integers. So that (x, y) ∈ g lim(xki , yki) implies that (x, y) ∈ [A]gseq = A, since A
is closed, that is, y ∈ P (A). Suppose the set A is infinite, then it has g-limit point
x ∈ A so that (x, y) ∈ [A]gseq = A implies that y ∈ P (A). Since Y is a g-sequential
space, the set P (A) is closed in Y .

Proposition 2.14. Every g-closed subset of countably g-compact space is count-
ably g-compact relative to X.

Proof. Let A be a g-closed subset of a countably g-compact space X. Then Ac is
g-open in X. Let B be a countable cover of A by g-open sets in X. Then {B,Ac}
is a g-open cover of X. Since X is countably g-compact it has a finite subcover
say {C1, C2, ..., Cn}. If this subcover contains Ac, we remove it. Otherwise leave the
subcover as it is. Thus, we have obtained finite g-open subcover of A and so A is
countably g-compact relative to X.

Theorem 2.15. Let X be countably g-compact and Y be any space. If f : X → Y
is g-continuous, then f(X) is countably g-compact.

Proof. Let A be an infinite subset of f(X). Then A = {f(x) | x ∈ B} where B ⊆ X
is infinite. Since X is countably g-compact. B has a g-limit point k. Let Vk be a
g-neighborhood of f(k). Since f is g-continuous, there exists some g-neighborhood
Uk of k such that f(Uk) ⊆ Vk.

Since k is a g-limit point of B, there exists some yn ∈ B such that yn 6= k, yn ∈ Uk.

Thus, f(yn) ∈ f(Uk) ⊆ Vk. Since f(yn) ∈ A \ f(k), f(yn)
g−→ f(k). Since every g-

neighborhood Vk of f(k), f(yn) ∈ Vk, that is f(k) is a g-limit point of A. By Theorem
2.11, f(X) has a g-limit point. Therefore, f(X) is countably g-compact.
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Theorem 2.16. If X is g-Lindelöf, then countably g-compactness implies GO-
compactness.

Proof. Suppose X is not GO-compact. Suppose that X has an g-open cover which
has no finite subcover. We assume that the g-open cover to be countable, since X is

g-Lindelöf. So, X =
⋃
k∈N

Uk where each Uk is g-open. Assume that if Um ⊂
m−1⋃
k=1

Uk,

then Um is not a part of the cover. Now, for each m, let xm ∈ Um− (
m−1⋃
k=1

Uk). So (xm)

is an infinite set which has a g-limit point x. Because {Uk}k∈N covers X, x ∈ Un for
some n and xi ∈ Un for i > n. But this is impossible, since the xi’s were chosen to be

disjoint from
m−1⋃
k=1

Uk.

Proposition 2.17. A g-sequential space has unique g-limit if and only if each
countably g-compact subset is closed.

Proof. Suppose that A = {x}
⋃
{xn | n ∈ N} is an infinite subset of X which is

g-converging to two distinct points x and y, then A has a countably g-compact subset
of X which is not closed.

Conversely, let A be a countably g-compact subset of X. Suppose that (xn) is a

sequence in A and (xn)
g−→ x. Then {x}

⋃
{xn | n ∈ N} is sequentially g-closed and

closed. Thus, x is the only possible g-limit of {xn | n ∈ N}. If {xn | n ∈ N} is infinite,
then x ∈ A. If {xn | n ∈ N} is finite, then xn = x for all n and xn ∈ A. Hence A is
closed.

Corollary 2.18. A g-sequential space has unique g-limit if and only if each se-
quentially GO-compact subset is closed.

Proof. Suppose that A is a sequentially GO-compact subset of a g-sequential space
X with unique g-limit. Then A is countably g-compact. By Proposition 2.17, A is
closed. The converse part of the proof follows from Theorem 2.9.

3. g-subspace

Let (X, τ) be a topological space, Y be a subspace of X and A ⊂ Y .

[A]g|Y seq
= {x ∈ Y | x = glimxn and xn ∈ S[A] ∩ cg|Y (Y )} = [Y ]gseq ∩ Y

where cg|Y (Y ) = {xn ∈ S[Y ] ∩ cg(X) |x ∈ Y }

Proposition 3.1. Let (X, τ) be a topological space and A ⊂ Y ⊂ X. Then
[A]g|Y seq

= [A]gseq ∩ Y .

Proof. If x ∈ [A]g|Y seq
, then there exists a sequence (xn) ∈ cg|Y (Y ) ∩ S[A] with

(xn)
g|Y−−→ x. Thus, x ∈ [A]. Next, suppose that [A]gseq ∩ Y , then there exists a

(xn) ∈ S[A] ∩ cg(X) with (xn)
g−→ x ∈ Y . Therefore, (xn) ∈ cg|Y (Y ) and x ∈ [A]g|Y seq

.

Thus, [A]g|Y seq
= [A]gseq ∩ Y .

Corollary 3.2. Let (X, τ) be a topological space and Y be a subspace of X. If
A is sequentially g-closed in X, then the set A ∩ Y is sequentially g|Y -closed in Y .
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Proof. Since A is sequentially g-closed in X, [A]gseq ⊂ A, by Theorem 2.5 (b). By
Proposition 3.1, [A ∩ Y ]g|Y seq

= [A ∩ Y ]gseq ∩ Y ⊂ [A]gseq ∩ Y ⊂ A ∩ Y . Thus, A ∩ Y
is sequentially g|Y -closed in Y .

Corollary 3.3. Let (X, τ) be a topological space and A ⊂ Y ⊂ X. If A is
sequentially g|Y -closed in Y and Y is sequentially g-closed in X, then A is sequentially
g-closed in X

Proof. Since Y is sequentially g-closed in X, [A]gseq ⊂ [Y ]gseq ⊂ Y . Since A is
sequentially g|Y -closed in Y , [A]g|Y seq

⊂ A. By Proposition 3.1, [A]gseq = [A]gseq ∩Y =

[A]g|Y seq
⊂ A. Therefore, A is sequentially g-closed in X.

Theorem 3.4. Every g-closed subset of a g-sequential space is g-sequential.

Proof. Suppose that X is a g-sequential space and Y is a g-closed set of X. We
have show that the subspace Y is a g|Y -sequential space.

Let A be a subset of Y with [A]gseq ⊂ A, that is, A is sequentially g|Y -closed in Y .
Since [A]gseq ⊂ [Y ]gseq , [A]gseq = [A]gseq ∩ Y = [A]g|Y seq

⊂ A and so A is closed in X.
Therefore, A is closed in Y . Hence Y is a g-sequential space.
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