# COEFFICIENT ESTIMATES FOR A NEW GENERAL SUBCLASS OF ANALYTIC BI-UNIVALENT FUNCTIONS 

Serap Bulut


#### Abstract

In a very recent paper, Yousef et al. [Anal. Math. Phys. 11: 58 (2021)] introduced two new subclasses of analytic and bi-univalent functions and obtained the estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions belonging to these classes. In this study, we introduce a general subclass $\mathcal{B}_{\Sigma}^{h, p}(\lambda, \mu, \delta)$ of analytic and bi-univalent functions in the unit disk $\mathbb{U}$, and investigate the coefficient bounds for functions belonging to this general function class. Our results improve the results of the above mentioned paper of Yousef et al.


## 1. Introduction

Let $\mathcal{A}$ denote the class of all functions of the form

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \tag{1}
\end{equation*}
$$

which are analytic in the unit disk

$$
\mathbb{U}=\{z:|z|<1\} .
$$

We also denote by $\mathcal{S}$ the class of all functions in the normalized analytic function class $\mathcal{A}$ which are univalent in $\mathbb{U}$.

Since univalent functions are one-to-one, they are invertible and the inverse functions need not to be defined on the entire unit disk $\mathbb{U}$. In fact, the Koebe one-quarter theorem [5] ensures that the image of $\mathbb{U}$ under every univalent function $f \in \mathcal{S}$ contains a disk of radius $1 / 4$. Thus every function $f \in \mathcal{A}$ has an inverse $f^{-1}$, which is defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right) .
$$

In fact, the inverse function $f^{-1}$ is given by

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in $\mathbb{U}$ if both $f$ and $f^{-1}$ are univalent in $\mathbb{U}$. Let $\Sigma$ denote the class of bi-univalent functions in $\mathbb{U}$ given by (1). For a brief

[^0]history and interesting examples of functions in the class $\Sigma$, see [8] (see also [1]). In fact, the aforecited work of Srivastava et al. [8] essentially revived the investigation of various subclasses of the bi-univalent function class $\Sigma$ in recent years (see, for example, $[3,4,6,7,9])$.

Recently, Yousef et al. [11] introduced the following two subclasses of the biunivalent function class $\Sigma$ and obtained non-sharp estimates on the first two TaylorMaclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions in each of these subclasses.

Definition 1.1. (see [11]) For $\lambda \geq 1, \mu \geq 0, \delta \geq 0$ and $0<\alpha \leq 1$, a function $f \in \Sigma$ given by (1) is said to be in the class $\mathcal{B}_{\Sigma}^{\mu}[\alpha, \lambda, \delta]$ if the following conditions hold for all $z, w \in \mathbb{U}$ :

$$
\left|\arg \left\{(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}+\xi \delta z f^{\prime \prime}(z)\right\}\right|<\frac{\alpha \pi}{2}
$$

and

$$
\left|\arg \left\{(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}+\xi \delta w g^{\prime \prime}(w)\right\}\right|<\frac{\alpha \pi}{2},
$$

where the function $g=f^{-1}$ is defined by (2) and $\xi=\frac{2 \lambda+\mu}{2 \lambda+1}$.
Theorem 1.2. (see [11]) Let the function $f$ given by (1) be in the class $\mathcal{B}_{\Sigma}^{\mu}[\alpha, \lambda, \delta]$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{(\lambda+\mu+2 \xi \delta)^{2}+\alpha\left[2 \lambda+\mu-(\lambda+2 \xi \delta)^{2}+(12-4 \mu) \xi \delta\right]}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{(\lambda+\mu+2 \xi \delta)^{2}}+\frac{2 \alpha}{2 \lambda+\mu+6 \xi \delta} .
$$

Definition 1.3. (see [11]) For $\lambda \geq 1, \mu \geq 0, \delta \geq 0$ and $0 \leq \beta<1$, a function $f \in \Sigma$ given by (1) is said to be in the class $\mathcal{B}_{\Sigma}^{\mu}(\beta, \lambda, \delta)$ if the following conditions hold for all $z, w \in \mathbb{U}$ :

$$
\Re\left\{(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}+\xi \delta z f^{\prime \prime}(z)\right\}>\beta
$$

and

$$
\Re\left\{(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}+\xi \delta w g^{\prime \prime}(w)\right\}>\beta,
$$

where the function $g=f^{-1}$ is defined by (2) and $\xi=\frac{2 \lambda+\mu}{2 \lambda+1}$.
Theorem 1.4. (see [11]) Let the function $f$ given by (1) be in the class $\mathcal{B}_{\Sigma}^{\mu}(\beta, \lambda, \delta)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\beta)}{\lambda+\mu+2 \xi \delta}, \sqrt{\frac{4(1-\beta)}{(\mu+1)(2 \lambda+\mu)+12 \xi \delta}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\min \left\{\frac{4(1-\beta)^{2}}{(\lambda+\mu+2 \xi \delta)^{2}}+\frac{2(1-\beta)}{2 \lambda+\mu+6 \xi \delta}, \frac{4(1-\beta)}{(\mu+1)(2 \lambda+\mu)+12 \xi \delta}\right\} & , \\ \frac{2(1-\beta)}{2 \lambda+\mu+6 \xi \delta} & , \quad \mu \geq 1\end{cases}
$$

Here, in our present sequel to some of the aforecited works (especially [11]), we introduce the following subclass of the analytic function class $\mathcal{A}$, analogously to the definition given by Xu et al. [9].

Definition 1.5. Let the functions $h, p: \mathbb{U} \rightarrow \mathbb{C}$ be so constrained that

$$
\min \{\Re(h(z)), \Re(p(z))\}>0 \quad(z \in \mathbb{U}) \quad \text { and } \quad h(0)=p(0)=1 .
$$

Also let the function $f \in \Sigma$ defined by (1) be in the analytic function class $\mathcal{A}$. We say that

$$
f \in \mathcal{B}_{\Sigma}^{h, p}(\lambda, \mu, \delta) \quad(\lambda \geq 1, \mu \geq 0, \delta \geq 0)
$$

if the following conditions are satisfied:

$$
\begin{equation*}
(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}+\xi \delta z f^{\prime \prime}(z) \in h(\mathbb{U}) \quad(z \in \mathbb{U}) \tag{3}
\end{equation*}
$$

and
(4) $\quad(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}+\xi \delta w g^{\prime \prime}(w) \in p(\mathbb{U}) \quad(w \in \mathbb{U})$,
where the function $g=f^{-1}$ is defined by (2) and

$$
\xi=\frac{2 \lambda+\mu}{2 \lambda+1} .
$$

Remark 1.6. We note that the class $\mathcal{B}_{\Sigma}^{h, p}(\lambda, \mu, \delta)$ reduces to the classes $\mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu)$, $\mathcal{B}_{\Sigma}^{h, p}(\lambda), \mathcal{B}_{\Sigma}^{h, p}$ and $\mathcal{H}_{\Sigma}^{h, p}$ given by

$$
\begin{gathered}
\mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu)=\mathcal{B}_{\Sigma}^{h, p}(\lambda, \mu, 0), \\
\mathcal{B}_{\Sigma}^{h, p}(\lambda)=\mathcal{B}_{\Sigma}^{h, p}(\lambda, 1,0), \\
\mathcal{B}_{\Sigma}^{h, p}=\mathcal{B}_{\Sigma}^{h, p}(1,0,0), \\
\mathcal{H}_{\Sigma}^{h, p}=\mathcal{B}_{\Sigma}^{h, p}(1,1,0),
\end{gathered}
$$

respectively, each of which was introduced and studied by Srivastava et al. [7], Xu et al. [10], Bulut [2] and Xu et al. [9], respectively.

Remark 1.7. There are many choices of the functions $h$ and $p$ which would provide interesting subclasses of the analytic function class $\mathcal{A}$. For example, if we let

$$
h(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad \text { and } \quad p(z)=\left(\frac{1-z}{1+z}\right)^{\alpha} \quad(0<\alpha \leq 1)
$$

or

$$
h(z)=\frac{1+(1-2 \beta) z}{1-z} \quad \text { and } \quad p(z)=\frac{1-(1-2 \beta) z}{1+z} \quad(0 \leq \beta<1)
$$

it is easy to verify that the functions $h$ and $p$ satisfy the hypotheses of Definition 1.5. If $f \in \mathcal{B}_{\Sigma}^{h, p}(\lambda, \mu, \delta)$, then $f \in \Sigma$,

$$
\left|\arg \left\{(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}+\xi \delta z f^{\prime \prime}(z)\right\}\right|<\frac{\alpha \pi}{2}
$$

and

$$
\left|\arg \left\{(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}+\xi \delta w g^{\prime \prime}(w)\right\}\right|<\frac{\alpha \pi}{2}
$$

or

$$
\Re\left\{(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}+\xi \delta z f^{\prime \prime}(z)\right\}>\beta
$$

and

$$
\Re\left\{(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}+\xi \delta w g^{\prime \prime}(w)\right\}>\beta
$$

where the function $g$ is defined by (2). This means that

$$
f \in \mathcal{B}_{\Sigma}^{\mu}[\alpha, \lambda, \delta] \quad(\lambda \geq 1, \mu \geq 0, \delta \geq 0,0<\alpha \leq 1)
$$

or

$$
f \in \mathcal{B}_{\Sigma}^{\mu}(\beta, \lambda, \delta) \quad(\lambda \geq 1, \mu \geq 0, \delta \geq 0,0 \leq \beta<1)
$$

Our paper is motivated and stimulated especially by the works of Yousef et al. [11], we propose to investigate the bi-univalent function class $\mathcal{B}_{\Sigma}^{h, p}(\lambda, \mu, \delta)$ introduced in Definition 1.5 here and derive coefficient estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for a function $f \in \mathcal{B}_{\Sigma}^{h, p}(\lambda, \mu, \delta)$ given by (1). Our results for the bi-univalent function class $\mathcal{B}_{\Sigma}^{h, p}(\lambda, \mu, \delta)$ would generalize and improve the related works of Yousef et al. [11], Çağlar et al. [4], Srivastava et al. [7], Bulut [2] and Xu et al. $[9,10]$.

## 2. A set of general coefficient estimates

Throughout this paper, we assume that

$$
\lambda \geq 1, \mu \geq 0, \delta \geq 0, \quad \text { and } \quad \xi=\frac{2 \lambda+\mu}{2 \lambda+1}
$$

In this section, we state and prove our general results involving the bi-univalent function class $\mathcal{B}_{\Sigma}^{h, p}(\lambda, \mu, \delta)$ given by Definition 1.5.

Theorem 2.1. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1) be in the function class $\mathcal{B}_{\Sigma}^{h, p}(\lambda, \mu, \delta)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\lambda+\mu+2 \xi \delta)^{2}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{2[(\mu+1)(2 \lambda+\mu)+12 \xi \delta]}}\right\} \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
\left|a_{3}\right| \leq & \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\lambda+\mu+2 \xi \delta)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(2 \lambda+\mu+6 \xi \delta)},\right. \\
& \left.\frac{[(3+\mu)(2 \lambda+\mu)+24 \xi \delta]\left|h^{\prime \prime}(0)\right|+|1-\mu|(2 \lambda+\mu)\left|p^{\prime \prime}(0)\right|}{4(2 \lambda+\mu+6 \xi \delta)[(\mu+1)(2 \lambda+\mu)+12 \xi \delta]}\right\} . \tag{6}
\end{align*}
$$

Proof. First of all, we write the argument inequalities in (3) and (4) in their equivalent forms as follows:

$$
(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}+\xi \delta z f^{\prime \prime}(z)=h(z) \quad(z \in \mathbb{U})
$$

and

$$
(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}+\xi \delta w g^{\prime \prime}(w)=p(w) \quad(w \in \mathbb{U})
$$

respectively, where $h(z)$ and $p(w)$ satisfy the conditions of Definition 1.5. Furthermore, the functions $h(z)$ and $p(w)$ have the following Taylor-Maclaurin series expansions:

$$
h(z)=1+h_{1} z+h_{2} z^{2}+\cdots
$$

and

$$
p(w)=1+p_{1} w+p_{2} w^{2}+\cdots,
$$

respectively. Now, upon equating the coefficients of

$$
(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}+\xi \delta z f^{\prime \prime}(z)
$$

with those of $h(z)$ and the coefficients of

$$
(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}+\xi \delta w g^{\prime \prime}(w)
$$

with those of $p(w)$, we get

$$
\begin{gather*}
(\lambda+\mu+2 \xi \delta) a_{2}=h_{1}  \tag{7}\\
(2 \lambda+\mu+6 \xi \delta) a_{3}+(\mu-1)\left(\lambda+\frac{\mu}{2}\right) a_{2}^{2}=h_{2} \\
-(\lambda+\mu+2 \xi \delta) a_{2}=p_{1} \tag{9}
\end{gather*}
$$

and

$$
\begin{equation*}
-(2 \lambda+\mu+6 \xi \delta) a_{3}+\left[(\mu+3)\left(\lambda+\frac{\mu}{2}\right)+12 \xi \delta\right] a_{2}^{2}=p_{2} \tag{10}
\end{equation*}
$$

From (7) and (9), we obtain

$$
\begin{equation*}
h_{1}=-p_{1} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
2(\lambda+\mu+2 \xi \delta)^{2} a_{2}^{2}=h_{1}^{2}+p_{1}^{2} . \tag{12}
\end{equation*}
$$

Also, from (8) and (10), we find that

$$
\begin{equation*}
[(\mu+1)(2 \lambda+\mu)+12 \xi \delta] a_{2}^{2}=h_{2}+p_{2} \tag{13}
\end{equation*}
$$

Therefore, from the equalities (12) and (13) we obtain

$$
\left|a_{2}\right|^{2} \leq \frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\lambda+\mu+2 \xi \delta)^{2}}
$$

and

$$
\left|a_{2}\right|^{2} \leq \frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{2[(\mu+1)(2 \lambda+\mu)+12 \xi \delta]},
$$

respectively. So we get the desired estimate on the coefficient $\left|a_{2}\right|$ as asserted in (5).
Next, in order to find the bound on the coefficient $\left|a_{3}\right|$, we subtract (10) from (8). We thus get

$$
\begin{equation*}
2(2 \lambda+\mu+6 \xi \delta) a_{3}-2(2 \lambda+\mu+6 \xi \delta) a_{2}^{2}=h_{2}-p_{2} \tag{14}
\end{equation*}
$$

Upon substituting the value of $a_{2}^{2}$ from (12) into (14), it follows that

$$
a_{3}=\frac{h_{1}^{2}+p_{1}^{2}}{2(\lambda+\mu+2 \xi \delta)^{2}}+\frac{h_{2}-p_{2}}{2(2 \lambda+\mu+6 \xi \delta)} .
$$

So we get

$$
\left|a_{3}\right| \leq \frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\lambda+\mu+2 \xi \delta)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(2 \lambda+\mu+6 \xi \delta)} .
$$

On the other hand, upon substituting the value of $a_{2}^{2}$ from (13) into (14), it follows that

$$
a_{3}=\frac{[(3+\mu)(2 \lambda+\mu)+24 \xi \delta] h_{2}+(1-\mu)(2 \lambda+\mu) p_{2}}{2(2 \lambda+\mu+6 \xi \delta)[(\mu+1)(2 \lambda+\mu)+12 \xi \delta]} .
$$

And, we get

$$
\left|a_{3}\right| \leq \frac{[(3+\mu)(2 \lambda+\mu)+24 \xi \delta]\left|h^{\prime \prime}(0)\right|+|1-\mu|(2 \lambda+\mu)\left|p^{\prime \prime}(0)\right|}{4(2 \lambda+\mu+6 \xi \delta)[(\mu+1)(2 \lambda+\mu)+12 \xi \delta]} .
$$

This evidently completes the proof of Theorem 2.1.

## 3. Corollaries and consequences

By setting $\delta=0$ in Theorem 2.1, we get Corollary 3.1 below.
Corollary 3.1. [7, Theorem 3] Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1) be in the function class $\mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\lambda+\mu)^{2}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{2(\mu+1)(2 \lambda+\mu)}}\right\}
$$

and
$\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\lambda+\mu)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(2 \lambda+\mu)}, \frac{(3+\mu)\left|h^{\prime \prime}(0)\right|+|1-\mu|\left|p^{\prime \prime}(0)\right|}{4(\mu+1)(2 \lambda+\mu)}\right\}$.
By setting $\delta=0, \mu=0$ and $\lambda=1$ in Theorem 2.1, we get Corollary 3.2 below.
Corollary 3.2. [2, Theorem 2.1] Let the function $f(z)$ given by the TaylorMaclaurin series expansion (1) be in the function class $\mathcal{B}_{\Sigma}^{h, p}$. Then

$$
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8}, \frac{3\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8}\right\}
$$

By setting $\delta=0$ and $\mu=1$ in Theorem 2.1, we get the following consequence.

Corollary 3.3. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1) be in the function class $\mathcal{B}_{\Sigma}^{h, p}(\lambda)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\lambda+1)^{2}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(2 \lambda+1)}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\lambda+1)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(2 \lambda+1)}, \frac{\left|h^{\prime \prime}(0)\right|}{2(2 \lambda+1)}\right\} .
$$

Remark 3.4. Corollary 3.3 is an improvement of the estimates obtained by Xu et al. [10, Theorem 3].

By setting $\delta=0, \mu=1$ and $\lambda=1$ in Theorem 2.1, we get the following consequence.
Corollary 3.5. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1) be in the function class $\mathcal{H}_{\Sigma}^{h, p}$. Then

$$
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{8}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{12}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{8}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{12}, \frac{\left|h^{\prime \prime}(0)\right|}{6}\right\} .
$$

Remark 3.6. Corollary 3.5 is an improvement of the estimates obtained by Xu et al. [9, Theorem 3].

If we set

$$
h(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad \text { and } \quad p(z)=\left(\frac{1-z}{1+z}\right)^{\alpha} \quad(0<\alpha \leq 1)
$$

in Theorem 2.1, then we have Corollary 3.7 below.
Corollary 3.7. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1) be in the function class $\mathcal{B}_{\Sigma}^{\mu}[\alpha, \lambda, \delta]$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2 \alpha}{\lambda+\mu+2 \xi \delta}, \frac{2 \alpha}{\sqrt{(\mu+1)(2 \lambda+\mu)+12 \xi \delta}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\min \left\{\frac{4 \alpha^{2}}{(\lambda+\mu+2 \xi \delta)^{2}}+\frac{2 \alpha^{2}}{2 \lambda+\mu+6 \xi \delta}, \frac{4 \alpha^{2}}{(\mu+1)(2 \lambda+\mu)+12 \xi \delta}\right\} & , 0 \leq \mu<1 \\ \frac{2 \alpha^{2}}{2 \lambda+\mu+6 \xi \delta} & , \quad \mu \geq 1\end{cases}
$$

Remark 3.8. It is worthy to note that Corollary 3.7 is an improvement of Theorem 1.2.

Remark 3.9. If we set

$$
h(z)=\frac{1+(1-2 \beta) z}{1-z} \quad \text { and } \quad p(z)=\frac{1-(1-2 \beta) z}{1+z} \quad(0 \leq \beta<1)
$$

in Theorem 2.1, then we can readily deduce Theorem 1.4.
Conflict of Interest. The authors declare that they have no conflict of interest.

## References

[1] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Studia Univ. BabeşBolyai Math. 31 (2) (1986), 70-77.
[2] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math. 43 (2) (2013), 59-65.
[3] S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat 30 (6) (2016), 1567-1575.
[4] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27 (7) (2013), 1165-1171.
[5] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983.
[6] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573.
[7] H.M. Srivastava, S. Bulut, M. Çağlar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (5) (2013), 831-842.
[8] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
[9] Q.-H. Xu, Y.-C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990-994.
[10] Q.-H. Xu, H.-G. Xiao and H.M. Srivastava, A certain general subclass of analytic and biunivalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), 11461-11465.
[11] F. Yousef, S. Alroud and M. Illafe, New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems, Anal. Math. Phys. 11: 58 (2021).

## Serap Bulut

Faculty of Aviation and Space Sciences, Kocaeli University, Arslanbey Campus, 41285 Kartepe-Kocaeli, Turkey
E-mail: serap.bulut@kocaeli.edu.tr


[^0]:    Received June 21, 2021. Revised August 6, 2021. Accepted August 11, 2021.
    2010 Mathematics Subject Classification: 30C45.
    Key words and phrases: Analytic function, univalent function, bi-univalent function, coefficient bounds.
    (C) The Kangwon-Kyungki Mathematical Society, 2021.

    This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

