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A GENERALIZED APPROACH OF FRACTIONAL FOURIER

TRANSFORM TO STABILITY OF FRACTIONAL DIFFERENTIAL

EQUATION

Arusamy Mohanapriya, Varudaraj Sivakumar∗, and Periasamy Prakash

Abstract. This research article deals with the Mittag-Leffler-Hyers-Ulam stabil-
ity of linear and impulsive fractional order differential equation which involves the
Caputo derivative. The application of the generalized fractional Fourier transform
method and fixed point theorem, evaluates the existence, uniqueness and stability of
solution that are acquired for the proposed non-linear problems on Lizorkin space.
Finally, examples are introduced to validate the outcomes of main result.

1. Introduction

The fractional integral transform has been implemented as an unavoidable position
in the field of mathematics to solve fractional order differential equation (FODE) and
applied for numerous branch of science and technology. In the literature, there are
many transform to solve differential equations such as fractional Fourier [1], fractional
wavelet [2], fractional Laplace [3], fractional Mellin [4] and fractional Hankel [5] etc.

An effective and convenient method for solving fractional order differential equation
(FODE) is needed. Method for integer order differential equation is not applicable to
the case of arbitrary order. However, we discover the presence of fractional Fourier
transform (FrFT) solves FODE. The Fourier representation of a function is the most
important mathematical formulation for modeling and analysis of physical phenom-
ena. The FrFT is a kind of integral transform and it was utilized by Wiener in the
paper [6] as yearly 1929. It converts differential equation into simple algebraic equa-
tion. After solving the algebraic equation, we can find the solution of the original
equation by inverse FrFT.

Hyers-Ulam stability, which expects a significant job inside research of take a look
at of stability of various equations. It means that a function satisfying the differen-
tial equation approximately is close to an exact solution of differential equation. In
recent years, only few works have been reported on the development of stability of
differential equation by transforms approach. For instance, the stability result for lin-
ear differential equation of various order with constant co-coefficients using transform
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technique are proposed in [7, 8]. Unyong et al. [9] discussed the Hyers-Ulam stability
of FODE with Riemann-Liouville derivative in which the results are obtained with
help of FrFT.

At present, some results associated with Mittag-Leffler-Hyers-Ulam(M-L-H-U) sta-
bility of FODE have been reported [10]- [12]. Recently, the authors [13] used the
method of Laplace transform to prove the stability of linear Caputo-Fabrizio FODE
with Mittag-Leffler kernel and they also presented a existence and uniqueness of so-
lution of nonlinear FODE by fixed point method. To the exceptional of our under-
standing, there are no results on M-L-H-U stability of FODE with Caputo derivative
by using generalized FrFT method.

The impulsive phenomena and their models are examined and investigated in var-
ious practical issues. The theory of impulsive mathematical models based on FODE
has significant application in many problems in applied sciences and engineering. The
Hyers-Ulam stability of impulsive FODE are studied in different method and can be
referred to [14]- [16].

In this paper, we will discuss about M-L-H-U stability of

(1) C
aD

α
t h(t)− λh(t) = g(t), 0 < α ≤ 1, t ∈ [−T, T ],

and

(2) C
aD

α
t h(t) = λh(t)+

m∑
i=1

Ciχ(t−ti)ui(t−ti)h(ti)+g(t), 0 < α ≤ 1, t ∈ [−T, T ],

and the existence and uniqueness solution of

(3) C
aD

α
t h(t)− λh(t) = g(t, h(t)), 0 < α ≤ 1, t ∈ [−T, T ],

subject to the condition hk(a) = ak, k = 0, 1, 2...n− 1.
The paper is outlined as follows: In Section 2, basic definitions, properties and lem-
mas are related to Mittag-Leffler function, fractional derivative and fractional integrals
have been summarized. In Section 3, M-L-H-U stability of linear FODE are provided.
In Section 4, we investigate M-L-H-U stability of impulse FODE. In Section 5, the ex-
istence and uniqueness results for nonlinear FODE by fixed point theorems. Examples
and conclusions in Sections 5 and 6 respectively.

2. Preliminaries

In this section, we give some definitions, properties and preliminary concept to our
work. We note that F represents a real R or a complex C field.

Definition 2.1. [17] If 0 < α < 1, then the Riemann-Liouville fractional derivative
for the function h(t) is expressed as

aD
α
t h(t) =

1

Γ(1− α)

d

dt

∫ t

a

(t− u)−αh(u)du, Re(α) > 0.

Definition 2.2. [18] The non-integer-order derivative in the Caputo fractional
sense of a function h over the interval [a, t] is defined as

(4) C
aD

α
t h(t) =

1

Γ(1− α)

∫ t

a

(t− u)−αh
′
(u)du,

where 0 < α < 1 and Re(α) > 0.
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Lemma 2.3. [18] Let h(t) to be (n−1)-times continuously differentiable and h(n)(t)
to be integrable. Then,

(5) C
aD

α
t h(t) =a D

α
t h(t)−

n−1∑
k=0

(t− a)k−α

Γ(k − α + 1)
h(k)(a),

where h(k)(t) stands for k-th order derivative of h(t).

Definition 2.4. (Lizorkin space) Let V (R) be the set of functions

V (R) = {v ∈ S(R) : vn(0) = 0, n = 0, 1, 2, ...} .
The Lizorkin space Φ(R) is defined as

Φ(R) = {ϕ ∈ S(R) : ϕ̂ ∈ V (R)} ,
where S(R) is the set of rapidly decreasing test functions on R and ϕ̂ denotes the
FrFT of the function ϕ.

Definition 2.5. The function (h1 ∗h2)(t) =
∫
R h1(t− τ)h2(τ)dτ is the convolution

of the function h1, h2 defined on R.

Definition 2.6. (Generalized fractional Fourier Transform) If a function h(t) :
R→ F is absolutely integrable and piecewise αth continuously differentiable, then the
generalized FrFT of order α, α ≤ η is defined by

Ĥα(ω) = (Fαh)(ω) =

∫ ∞
−∞

h(t)eiω
η
α tdt, 0 < α ≤ 1, ω > 0.

Its inverse formula is given by

h(t) =
η

2πα

∫ ∞
−∞

eiω
η
α tω

η−α
α Ĥα(ω)dω, ω > 0.

The following are some requisite properties of generalized FrFT related to our work.

1. If (Fαh1) (ω) = (Fαh2) (ω), then h1(t) = h2(t); (one-to-one)
2. Fα (h1 ∗ h2) (ω) = Fα (h1) (ω)Fα (h2) (ω). (convolution)

Definition 2.7. [19] The Mittag-Leffler function with two parameters is defined
as

(6) Eρ,µ(t) =
∞∑
m=0

tm

Γ(mρ+ µ)
, t ∈ C,

where ρ and µ are positive constants.

Lemma 2.8. The generalized FrFT of the Mittag-Leffler function in two parameters
is

(7) Fα(Eρ,µ(t)) =

∫ ∞
−∞

Eρ,µ(t)eiω
η
α tdt =

∞∑
m=0

eiπ(m−1)/2

Γ(mρ+ µ)
ω
−η(m+1)

α m!, α ≤ η.

Proof. We first express generalized Mittag-Leffler function in (7) in a series form
and then interchange the order of integration and summation since the series occurring
in (6) is absolutely convergent. By substituting iω

η
α t = −z and we get

Fα (Eρ,µ(t)) =
∞∑
m=0

eiπ(m−1)/2ω
−η(m+1)

α )

Γ(mρ+ µ)

∫ ∞
0

e−zzmdz.(8)
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Now, using the following results in (8)∫ ∞
0

e−zzλdz = Γ(λ+ 1) = λ!, Re(λ) > 0.

We get the desired result (7).

Lemma 2.9. For any t, ρ, µ ∈ C with min {Re(ρ), Re(µ)} > 0,

Fα(tµ−1Eρ,µ(λtρ)) =
(iω

η
α )−µ+ρ

((iω
η
α )ρ − λ)

.

Proof. From the equation (6), it follows that

Fα(tµ−1Eρ,µ(λtρ)) = Fα

(
∞∑
k=0

tµ−1(λtρ)k

Γ(kρ+ µ)

)

=
∞∑
k=0

λk

Γ(kρ+ µ)
Fα(tkρ+µ−1)

=
∞∑
k=0

λk

Γ(kρ+ µ)

Γ(kρ+ µ)

(iω
η
α )kρ+µ

= (iω
η
α )−µ

(
1− λ(iω

η
α )−ρ

)−1

=
(iω

η
α )−µ+ρ

((iω
η
α )ρ − λ)

.

This completes the proof.

Remark 2.10. If λ = 1 and µ = ρ, we have

Fα(tρ−1Eρ,ρ(t
ρ)) =

1

((iω
η
α )ρ − 1)

.

Lemma 2.11. The generalized FrFT of Caputo fractional derivative is

Fα
(
C
aD

α
t h
)

(t) =
(
iω

η
α

)α
Ĥα(ω),

where Ĥα(ω) denotes the generalized FrFT of h(t).

Proof. Using (4) and concept of convolution, we get

Fα(CaD
α
t h)(t) = Fα

(
d

dt

(
t−α

Γ(1− α)
∗ h(t)

))
=

−α
Γ(1− α)

Fα(t−α−1)Fα(h(t))

=
−αΓ(−α)

Γ(1− α)
(iω

η
α )α+1−1F̂α(ω)

= (iω
η
α )αF̂α(ω).

The proof is completed.

For ε > 0, we consider the inequality:

(9)
∣∣C
aD

α
t h(t)− λh(t)− g(t)

∣∣ ≤ εEα(tα), t ∈ [−T, T ].
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Definition 2.12. The FODE (1) is said to be M-L-H-U stability if there exists
K ∈ R+ and such that for every function h : [−T, T ]→ F of the satisfying inequality
(9), there exists a solution hα : [−T, T ]→ F of FODE (1) with

|h(t)− hα(t)| ≤ KεEα(tα), t ∈ [−T, T ].

Further, the FODE (1) is generalized M-L-H-U stable if we can find a function Ψ :
R→ R with Ψ(0) = 0 such that |h(t)− hα(t)| ≤ Ψ(ε)Eα(tα), t ∈ [−T, T ].

Definition 2.13. The FODE (1) is stable in the generalized M-L-H-U-Rassias
sense subject to ψ : R→ R if there exist KΨ ∈ R+, in a way that given any ε > 0 and
any solution satisfying the inequality∣∣C

aD
α
t h(t)− λh(t)− g(t)

∣∣ ≤ εΨ(t)Eα(tα), t ∈ [−T, T ],

there exist a unique solution hα : [−T, T ]→ F of FODE (1), in which

|h(t)− hα(t)| ≤ KΨεΨ(t)Eα(tα), t ∈ [−T, T ].

Definition 2.14. The FODE (1) is said to be generalized M-L-H-U-Rassias stable
with respect to non zero positive real number KΨ, such that for any solution hα :
[−T, T ]→ F of the inequality∣∣C

aD
α
t h(t)− λh(t)− g(t)

∣∣ ≤ Ψ(t)Eα(tα), t ∈ [−T, T ],

there exists a unique solution hα : [−T, T ]→ F of FODE (1), such that

|h(t)− hα(t)| ≤ KΨΨ(t)Eα(tα), t ∈ [−T, T ].

Theorem 2.15. (Banach Contaction Principle) Let ψ be a Banach space,
∆ : ψ → ψ a contraction mapping. Then ∆ has a unique fixed point in ψ.

Theorem 2.16. (Schaefer’s fixed point theorem) Let ∆ : ψ → ψ be a com-
pletely continuous mapping. If

B = {h ∈ ψ|h = ζ∆h, 0 < ζ < 1} ,

is a bounded set, then there is at least one fixed point ψ for ∆.

3. M-L-H-U stability of linear FODE

In this section, we prove the M-L-H-U stability of linear or non-linear FODE (1)
on Lizorkin space by using the FrFT method.

Theorem 3.1. Suppose a given real continuous function g(t) in Φ(R) and 0 < α ≤
1. If a function h(t) satisfies the inequality∣∣C

aD
α
t h(t)− λh(t)− g(t)

∣∣ ≤ εEα(tα), t ∈ [−T, T ],(10)

λ ∈ R and for some ε > 0, then there exists a solution hα(t) : [−T, T ]→ F of FODE
(1) such that

|h(t)− hα(t)| ≤ εtα−2E2α,α+1(λt2α), t ∈ [−T, T ],

where E2α,α+1(λt2α) is the two-parameter Mittag-Leffler function.
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Proof. A function y : [−T, T ]→ F is defined in which

y(t) =C
aD

α
t h(t)− λh(t)− g(t)

=aD
α
t h(t)−

n−1∑
k=0

(t− a)k−α

Γ(k − α + 1)
hk(a)− λh(t)− g(t).(11)

Suppose that h(t) is a continuously differentiable function satisfying inequality (10).
We have,

|y(t)| ≤ εEα(tα).

Taking generalized FrFT operator Fα of (11), we get

Fα(y(t)) = (iω
η
α )αFα(h(t))− eiω

η
α a

n−1∑
k=0

ak
Γ(k − α+ 1)

Γ(k − α+ 1)(iω
η
α )k−α+1

− λFα(h(t))− Ĝα(ω)

Fα(h(t)) =
Fα(y(t))

((iω
η
α )α − λ)

+
eiω

η
α a

((iω
η
α )α − λ)

n−1∑
k=0

ak

(iω
η
α )k−α+1

+
Ĝα(ω)

((iω
η
α )α − λ)

.

(12)

At this point, set

hα(t) = eiω
η
α a

n−1∑
k=0

akt
kEα,k+1(λtα) +

∫ t

−t
(t− x)α−1Eα,α(λ(t− x)α)g(x)dx.(13)

Using the convolution property of generalized FrFT, we obtain

hα(t) = eiω
η
α a

n−1∑
k=0

akF
−1
α

(
(iω

η
α )−k−1+α

(iω
η
α )α − λ

)
+ (tα−1Eα,α(λtα)) ∗ g(t)

=
eiω

η
α a

(iω
η
α )α − λ

n−1∑
k=0

akF
−1
α

((
iω

η
α

)−k−1+α
)

+ F−1
α

(
1

(iω
η
α )α − λ

)
∗ F−1

α (Ĝα(ω))

Fα(hα(t)) =
eiω

η
α a

(iω
η
α )α − λ

n−1∑
k=0

ak(iω
η
α )−k−1+α +

(
Ĝα(ω)

(iω
η
α )α − λ

)
.

(14)

Now,

Fα(CaD
α
t hα(t)− λhα(t)) = (iω

η
α )αFα(hα(t))−

n−1∑
k=0

Fα((t− a)k−α)

Γ(k − α+ 1)
ak − λFα(hα(t))

=

(
(iω

η
α )α − λ

)
Fα(hα(t))−

n−1∑
k=0

ake
iω

η
α aΓ(k − α+ 1)(iω

η
α )α−k−1

Γ(k − α+ 1)

=

(
(iω

η
α )α − λ

)(
eiω

η
α a

(iω
η
α )α − λ

n−1∑
k=0

ak(iω
η
α )−k−1+α +

(
Ĝα(ω)

(iω
η
α )α − λ

))

−
n−1∑
k=0

ake
iω

η
α a(iω

η
α )α−k−1

= Ĝα(ω).
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By considering one-to-one property of generalized FrFT, we obtain

C
aD

α
t hα(t)− λhα(t) = g(t),

which gives that hα(t) is a solution of equation (1). From the relations (12) and (14),
we get

Fα(h(t))− Fα(hα(t)) =
Fα(y(t))

(iω
η
α )α − λ

.

By the convolution property of generalized FrFT and by Lemma 2.2 , we obtain

h(t)− hα(t) = tα−1Eα,α(λtα) ∗ y(t).

Taking modulus on both sides of above equation, we obtain

|h(t)− hα(t)| =
∣∣∣∣∫ t

−t
(t− x)α−1Eα,α(λ(t− x))αy(x)dx

∣∣∣∣
≤ ε

∫ t

−t
(t− x)α−1Eα,α(λ(t− x))αEα(xα)dx

= ε
∞∑
m=0

∫ t

−t

λm(t− x)αm+α−1

Γ(αm+ α)

xαm

Γ(αm+ 1)
dx

≤ ε
∞∑
m=0

tαm+α−2λm
∫ 1

0

(1− u)αm+α−1(tu)αm

Γ(αm+ α)Γ(αm+ 1)
du

= ε
∞∑
m=0

λmt2αm+α−2

Γ(αm+ α)Γ(αm+ 1)

∫ 1

0

(1− u)αm+α−1uαmdu

= ε
∞∑
m=0

λmt2αm+α−2

Γ(αm+ α)Γ(αm+ 1)

Γ(αm+ 1)Γ(αm+ α)

Γ(2αm+ α + 1)

≤ εtα−2E2α,α+1(λt2α), t ∈ [−T, T ].

From Definition 3.1, the FODE (1) is M-L-H-U stable. The proof is complete.

Remark 3.2. Putting Ψ(ε) = Kε, we obtain FODE (1) is generalized M-L-H-U
stable.

Similarly, we can prove that the FODE (1) is generalized M-L-H-U Rassias stable
with the help of generalized FrFT.

Corollary 3.3. For any function h ∈ Φ(R) fulfilling the inequality∣∣C
aD

α
t h(t)− λh(t)− g(t)

∣∣ ≤ Ψ(t)Eα(tα), ∀t ∈ R,

0 < α ≤ 1 and a continuous function g(t) ∈ Φ(R), there exists a solution hα ∈ Φ(R)
of FODE (1) wherein

|h(t)− hα(t)| ≤ KΨΨ(t)Eα(tα), ∀t ∈ R.
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4. M-L-H-U stability of impulsive FODE

In this section, we will discuss about M-L-H-U stability of impulsive FODE of the
form:

C
aD

α
t h(t) = λh(t)+

m∑
i=1

Ciχ(t−ti)ui(t−ti)h(ti)+g(t), hk(a) = ak, k = 0, 1, 2, ...n−1

on [−T, T ], where −T < t1 < t2..... < tm = T . We assume that λ,Ci are constant
for i = 1, 2, 3...m and g(t) is continuous function on [−T, T ]. Also, χ(t − ti) is the
Heaviside unit step function which is given by

χ(t− ti) =

{
1 ; t > ti
0 ; t ≤ ti.

In addition, ui(t − ti) are continuous function on (ti, T ), for i = 1, 2, 3...m such that
limt→tiui(t− ti) exists.

Theorem 4.1. Impulsive FODE 2 is M-L-H-U stable.

Proof. Let ε > 0 and for each solution h(t) satisfying∣∣∣∣∣CaDα
t h(t)− λh(t)−

m∑
i=1

Ciχ(t− ti)ui(t− ti)h(ti)− g(t)

∣∣∣∣∣ ≤ εEα(tα),(15)

for all t ∈ [−T, T ]. Define a function y(t) : [−T, T ] → F by y(t) =C
a Dα

t h(t) −
λh(t) −

∑m
i=1 Ciχ(t − ti)ui(t − ti)h(ti) − g(t) for all t > 0. In view of (15), we get

|y(t)| ≤ εEα(tα). Using (5), we have

y(t) =a D
α
t h(t)−

n−1∑
k=0

(t− a)k−α

Γ(k − α+ 1)
hk(a)− λh(t)−

m∑
i=1

Ciχ(t− ti)ui(t− ti)h(ti)− g(t).

(16)

Taking fractional Fourier transform operator Fα to y(t), we obtain

Fα(y(t)) =Fα(aD
α
t h(t))−

n−1∑
k=0

ak
Γ(k − α+ 1)

Fα((t− a)k−α)− λFα(h(t))

−
m∑
i=1

Cie
iω

η
α tih(ti)Fα(ui(t))− Ĝα(ω)

=(iω
η
α )αĤα(ω)− eiω

η
α a

n−1∑
k=0

ak
Γ(k − α+ 1)

Γ(k − α+ 1)(iω
η
α )k−α+1

− λĤα(ω)

−
m∑
i=1

Cie
iω

η
α tih(ti)Fα(ui(t))− Ĝα(ω)

((iω
η
α )α − λ)Fα(h(t)) = Fα(y(t)) + eiω

η
α a

n−1∑
k=0

ak

(iω
η
α )k−α+1

+

m∑
i=1

Cie
iω

η
α tih(ti)Fα(ui(t)) + Ĝα(ω)

Fα(h(t)) =
Fα(y(t))

((iω
η
α )α − λ)

+
eiω

η
α a

((iω
η
α )α − λ)

n−1∑
k=0

ak

(iω
η
α )k−α+1

+
m∑
i=1

Cie
iω

η
α ti

h(ti)Fα(ui(t))

((iω
η
α )α − λ)

+
Ĝα(ω)

((iω
η
α )α − λ)

.(17)
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Set

(18) hα(t) = eiω
η
α

n−1∑
k=0

akt
kEα,k+1(λt

α)+

m∑
i=1

Ciχi(t−ti)h(ti)Ûi(t−ti)+
∫ t

−t
(t−x)α−1Eα,α(λ(t−x)α)g(x)dx,

where Ûi(t) = Fourier inverse of Fα(ui(t))

(iω
η
α )α−λ

. By the definition of convolution,

hα(t) = eiω
η
α

n−1∑
k=0

akF
−1
α

(
(iω

η
α )−k−1+α

(iω
η
α )α − λ

)
+

m∑
i=1

Ciχi(t− ti)F−1
α

(
Fα(ui(t− ti))
(iω

η
α )α − λ

)
h(ti)

+ (tα−1Eα,α(λtα)) ∗ g(t)

=
eiω

η
α

(iωηα)α − λ

n−1∑
k=0

akF
−1
α

(
(iω

η
α )−k−1+α

)
+

m∑
i=1

Ciχi(t− ti)F−1
α

(
Fα(ui(t− ti))
(iω

η
α )α − λ

)
h(ti)

+ F−1
α

(
1

(iω
η
α )α − λ

)
∗ F−1

α (Ĝα(ω)),

Fα(hα(t)) =
eiω

η
α

(iω
η
α )α − λ

n−1∑
k=0

ak(iω
η
α )−k−1+α +

m∑
i=1

Ciχi(t− ti)

(
Fα(ui(t− ti))

(iω
η
α )α − λ

)
h(ti) +

(
Ĝα(ω)

(iω
η
α )α − λ

)
.

(19)

Now,

C
aD

α
t hα(t)− λhα(t) =a D

α
t hα(t)−

n−1∑
k=0

(t− a)k−α

Γ(k − α + 1)
hkα(a)− λhα(t),

Fα(CaD
α
t hα(t)− λhα(t)) = (iω

η
α )αFα(hα(t))−

n−1∑
k=0

Fα((t− a)k−α)

Γ(k − α + 1)
ak − λFα(hα(t))

=

(
(iω

η
α )α − λ

)
Fα(hα(t))−

n−1∑
k=0

ake
iω

η
α aΓ(k − α + 1)(iω

η
α )α−k−1

Γ(k − α + 1)

=

(
(iω

η
α )α − λ

)(
eiω

η
α

(iω
η
α )α − λ

n−1∑
k=0

ak(iω
η
α )−k−1+α

+
m∑
i=1

Ciχi(t− ti)
(
Fα(ui(t− ti))
(iω

η
α )α − λ

)
hα(ti) +

(
Ĝα(ω)

(iω
η
α )α − λ

))

−
n−1∑
k=0

ake
iω

η
α a(iω

η
α )α−k−1,

=
m∑
i=1

Ciχi(t− ti)Fα(ui(t− ti))hα(ti) + Fα(g(t)),

which shows that hα(t) is solution of equation (2) since Fα is one-to-one. Now, the
relations (17) and (19) necessitate that

Fα(h(t))− Fα(hα(t)) =
Fα(y(t))

(iω
η
α )α − λ

.
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By the convolution property FrFT and Lemma 2.3, we obtain

Fα(h(t)− hα(t)) = Fα
(
tα−1Eα,α(λtα) ∗ y(t)

)
,

h(t)− hα(t) = tα−1Eα,α(λtα) ∗ y(t).(20)

Taking modulus on both sides of equation (20) and |y(t)| ≤ εEα(tα), we get

|h(t)− hα(t)| ≤ εtα−2E2α,α+1(λt2α), t ∈ [−T, T ].(21)

Hence impulse FODE (2) has Mittag-Leffler-Hyers-Ulam stability.

5. M-L-H-U stability of non-linear FODE

Now, we give the proof of the existence and uniqueness theorem for non-linear
FODE (3).
We provide the following assumptions:

(B1) The function g : [−T, T ] x R → F is continuous, there exists constant L > 0
such that |g(t, h1)− g(t, h2)| ≤ L |h1 − h2| , ∀h1, h2 ∈ R.

(B2) There exists a constant Lh > 0 such that |g(t, h)| ≤ Lh(1 + |h|), ∀h ∈ R.

Theorem 5.1. Suppose that (B1) holds. Then the FODE (3) have a unique

solution, provided that L(2T )α

Γ(α+1)
< 1.

Proof. The space ψ = C(R,F) is define with the norm ‖h‖ = sup {|h(t)| ; t ∈ R}.
Define the operator Λ : ψ → ψ as

(Λh)(t) = eiω
η
α a

n−1∑
k=0

akt
kEα,k+1(λtα) +

∫ t

−t
(t− x)α−1Eα,α(λ(t− x)α)g(x, h(x))dx,

(22)

for any t ∈ [−T, T ]. Λ is well defined because of (B1). Let h1, h2 ∈ ψ, then

‖(Λh1)(t)− (Λh2)(t)‖ ≤
∫ t

−t
(t− x)α−1 |Eα,α(λ(t− x)α)| |g(x, h1(x))− g(x, h2(x))| dx

≤ L

Γα

∫ t

−t
(t− x)α−1 |h1(x)− h2(x)| dx

≤ L
(2T )α

Γ(α + 1)
‖h1 − h2‖ .

Condition L(2T )α

Γ(α+1)
< 1 shows that Λ is a contraction mapping. By Banach contraction

principle, Λ has a unique fixed point.

Theorem 5.2. Suppose that assumptions (B1) and (B2) hold. Then there exists
at least one solution of nonlinear FODE (3).

Proof. Define Λ as in (22). We will complete the proof into four steps.
Step 1: Λ is continuous.
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Let hn be a sequence such that hn → h, as n→∞ in ψ. For all t ∈ [−T, T ], one has

‖(Λhn)(t)− (Λh)(t)‖ ≤
∫ t

−t
(t− x)α−1 |Eα,α(λ(t− x)α)| |g(x, hn(x))− g(x, h(x))| dx

≤ (2T )α

Γ(α + 1)
‖g(., hn)− g(., h)‖ .

Since g is continuous, the operator Λ is also continuous. Then, ‖(Λhn)(t)− (Λh)(t)‖ →
0 as n→ 0.
Step 2: Λ maps bounded set in ψ.
For all l > 0, there exists a N > 0, in which for any h ∈ Bl = {h ∈ ψ : ‖h‖ ≤ l}, we

have ‖Λh‖ ≤ N . Form (B2), ‖Λh‖ ≤ 2TLh(1+|h|)
Γ(α+1)

= K. Hence Λ(Bl) is bounded.

Step 3: Λ maps bounded set into equicontinuous set in ψ.
Let t1, t2 ∈ [−T, T ] with a ≤ t1 < t2 ≤ T , h ∈ Bl. Then, by using (B2), we have

‖Λh(t2)− Λh(t1)‖ ≤ 1

Γα

n−1∑
k=0

ak(t
k
2 − tk1) +

∣∣∣∣ ∫ t2

a

(t2 − x)α−1Eα,α(λ(t2 − x)α)g(x, h(x))dx

−
∫ t1

a

(t1 − x)α−1Eα,α(λ(t1 − x)α)g(x, h(x))dx

∣∣∣∣
≤ 1

Γα

n−1∑
k=0

ak(t
k
2 − tk1) +

∫ t1

a

(
(t1 − x)α−1 |Eα,α(λ(t1 − x)α)|

− (t2 − x)α−1 |Eα,α(λ(t2 − x)α)|
)
|g(x, h(x))| dx

+

∫ t2

t1

(t2 − x)α−1 |Eα,α(λ(t2 − x)α)| |g(x, h(x))| dx

≤ 1

Γα

n−1∑
k=0

ak(t
k
2 − tk1) + Lh(1 + |h|)(t2 − t1)α

Γ(α + 1)
.

Then, ‖Λh(t2)− Λh(t1)‖ → 0 as t2 → t1. From Steps (1) − (3), Λ is completely
continuous by Arzela-Ascoli theorem.
Step 4: We show that the set E(Λ) = {h ∈ ψ : h = ζΛh, ζ ∈ (0, 1)} is bounded.
Let h ∈ E(Λ). Then h = ζΛh for some ζ ∈ (0, 1). For each t ∈ [−T, T ], we have

|h(t)| ≤ 1

Γα

∫ t

−t
(t− x)α−1 |g(x, h(x))| dx

≤Lh
Γα

∫ t

−t
(t− x)α−1dx+

Lh
Γα

∫ t

−t
(t− x)α−1 |h(x)| dx

≤Lh(2T )α

Γ(α + 1)
+

Lh
Γα

∫ t

−t
(t− x)α−1 |h(x)| dx

≤R1 + R2

∫ t

−t
(t− x)α−1 |h(x)| dx,

where R1 = Lh(2T )α

Γ(α+1)
and R2 = Lh

Γα
. Grownwall’s inequality gives that |h(t)| ≤

R1exp
(

R2(2T )α

α

)
. Then the set E(Λ) is bounded. By Schaefer’s fixed point theorem,

Λ has a fixed point which is a solution of FODE (3).
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Theorem 5.3. Assume that hypothesis (B1) holds. If a continuously differential
function h : R→ F satisfies

(23)
∣∣C
aD

α
t h(t)− λh(t)− g(t, h(t))

∣∣ ≤ εEα(tα),

for all t ∈ [−T, T ], then non-linear FODE (3) is M-L-H-U stable.

Proof. Let h ∈ C(R,F) be a solution of (23). From Theorem 3.2, the FODE (3)
has a unique solution

hα(t) = eiω
η
α a

n−1∑
k=0

akt
kEα,k+1(λtα) +

∫ t

−t
(t− x)α−1Eα,α(λ(t− x)α)g(x, hα(x))dx.

From equation (23), we have −εEα(tα) ≤Ca Dα
t h(t)− λh(t)− g(t, h(t)) ≤ εEα(tα), for

all t ∈ [−T, T ]. If we integrate each term of above inequality, we obtain∣∣∣∣h(t)− eiω
η
α a

n−1∑
k=0

akt
kEα,k+1(λtα)−

∫ t

−t
(t− x)α−1Eα,α(λ(t− x)α)g(x, h(x))dx

∣∣∣∣
≤ ε

∫ t

−t
(t− x)α−1

∣∣Eα,α(λ(t− x)α)
∣∣Eα(xα)dx ≤ εtα−2E2α,α+1(λt2α).

Thus,

|h(t)− hα(t)|

=

∣∣∣∣h(t)− eiω
η
α a

n−1∑
k=0

akt
kEα,k+1(λtα)−

∫ t

−t
(t− x)α−1Eα,α(λ(t− x)α)g(x, hα(x))dx

∣∣∣∣
≤
∣∣∣∣h(t)− eiω

η
α a

n−1∑
k=0

akt
kEα,k+1(λtα)−

∫ t

−t
(t− x)α−1Eα,α(λ(t− x)α)g(x, h(x))dx

∣∣∣∣
+

∫ t

−t
(t− x)α−1

∣∣Eα,α(λ(t− x)α)
∣∣∣∣g(x, h(x))− g(x, hα(x))

∣∣dx
≤ εtα−2E2α,α+1(λt2α) +

L
Γα

∫ t

−t
(t− x)α−1 |h(x)− hα(x)| dx.

From Grownwall’s inequality,

|h(t)− ho(t)| ≤ K∗εE2α,α+1(λt2α),

where K∗ = tα−2exp
(L(2T )α

Γ(α+1)

)
.

6. Examples

Example 6.1. Consider the composite fractional oscillation equation [20]

(24) C
0 Dαt h(t) + h(t)− t2 − 2

Γ(3− α)
t2−α = 0, 0 ≤ t ≤ 1,

with the initial conditions hk(0) = 0, k = 0, 1.

If we set α = 1
2

and λ = 1, we obtain g(t) = t2 + 8
3

1√
π
t
3
2 .

Note h(t) = t2 satisfies∣∣C
0 Dαt h(t) + h(t)− g(t)

∣∣ =

∣∣∣∣C0 Dαt h(t) + h(t)− 8

3

1√
π
t
3
2 − t2

∣∣∣∣ ≤ 1

2
= ε.
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From (13), we get solution of equation (24), that is

hα(t) =

∫ 1

0

(t− x)
−1
2 E0.5,0.5

(
(t− x)

1
2

)(
t2 +

8

3

1√
π
t
3
2

)
dx.

By Theorem 3.1, it is M-L-H-U stable whereby

|h(t)− hα(t)| ≤ 1

2
t−1.5E1,1.5 (t) , 0 ≤ t ≤ 1.

Hence, our outcomes can be applied to equation (24).

Example 6.2. Consider the problem

(25) C
0 D

3
4
t h(t) + h(t) = 1.77t

5
4 + t2 +

1

2
, 0 ≤ t ≤ 1,

with the initial conditions h(0) = 0, h′(0) = 0.

with α = 3
4
, a = 0, λ = 1, g(t) = 1.77t

5
4 + t2 + 1

2
. Note h(t) = t2 satisfies∣∣∣C0 D 3

4
t h(t) + h(t)− g(t)

∣∣∣ =

∣∣∣∣C0 D 3
4
t t

2 + t2 − 1.77t
5
4 − t2 − 1

2

∣∣∣∣ ≤ 1

2
.

From (13), we get solution of equation (25), that is

hα(t) =

∫ 1

0

(t− x)
−1
4 E0.75,0.75

(
(t− x)

3
4

)(
1.77x

5
4 + x2 +

1

2

)
dx.

By Theorem 3.1,

|h(t)− hα(t)| ≤ 1

2
t
−1
4 E 3

2
, 7
4

(
t
3
2

)
, 0 ≤ t ≤ 1.

Hence, the solution of equation (25) is M-L-H-U stable.

Example 6.3. Consider

(26) C
0 D

1
2
t h(t) = h(t) +

m∑
i=1

iχ(t− ti)h(ti) + t2, hk(0) = 0, k = 0, 1, 2...n− 1.

We have taken α = 1
2
, λ = 1, u(t − ti) = 1, Ci = i and g(t) = t2. For ε = 1

2
, the

function h(t) = t2 satisfies∣∣∣∣∣C0 D 1
2
t h(t)− h(t)−

m∑
i=1

iχ(t− ti)h(ti)− t2
∣∣∣∣∣ < 1

2
.

From (18), there exists a solution of equation (26)

hα(t) =
m∑
i=1

iχi(t− ti)h(ti) +

∫ t

−t
(t− x)

−1
2 E 1

2
, 1
2
((t− x)

1
2 )x2dx.

By Theorem 4.1, we gets

|h(t)− hα(t)| ≤1

2
t−1.5E1,1.5 (t) .

Therefore, we can ascertain that equation (26) is M-L-H-U stable.
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7. Conclusion

In this paper, the researcher had made an attempt to analyze the M-L-H-U sta-
bility of FODE with Caputo derivative using generalized FrFT. Also we have showed
that the existence and uniqueness solution of non-linear FODE by Banach contrac-
tion principle and fixed point theorems. The article went further in the process and
highlighted an immodest role of Mittag-Leffler function and generalized FrFT plays
in solving FODE.
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