
Korean J. Math. 30 (2022), No. 1, pp. 81–90
http://dx.doi.org/10.11568/kjm.2022.30.1.81

HANKEL DETERMINANT PROBLEMS FOR CERTAIN

SUBCLASSES OF SAKAGUCHI TYPE FUNCTIONS DEFINED

WITH SUBORDINATION

Gagandeep Singh∗ and Gurcharanjit Singh

Abstract. The present investigation is concerned with the estimation of initial co-
efficients, Fekete-Szegö inequality, second Hankel determinants, Zalcman functionals
and third Hankel determinants for certain subclasses of Sakaguchi type functions de-
fined with subordination in the open unit disc E = {z ∈ C : |z| < 1}. The results
derived in this paper will pave the way for the further study in this direction.

1. Introduction

Let A, be the class of all analytic functions of the form f(z) = z +
∑∞

k=2 akz
k

defined in the open unit disc E = {z ∈ C : |z| < 1} and normalized by the conditions
f(0) = f ′(0)−1 = 0. Let S denote the subclass of A, consisting of functions which are
univalent in E. For two analytic functions f and g in E, f is said to be subordinate
to g (symbolically f ≺ g) if there exists a function w with w(0) = 0 and |w(z)| < 1
for z ∈ E such that f(z) = g(w(z)). Further, if g is univalent in E, then f ≺ g is
equivalent to f(0) = g(0) and f(E) ⊂ g(E).

A very famous result in the theory of univalent functions was Bieberbach’s conjec-
ture established by Bieberbach [5]. According to this conjecture, for f ∈ S, |an| ≤ n,
n = 2, 3, .... This conjecture remained as a challenge for the mathematicians for a long
time. Finally, it was L. De-Branges [7], who proved this conjecture in 1985. During
the course of proving this conjecture, various results related to the coefficients were
established and some new subclasses of S were developed. The well-known classes of
starlike and convex functions are denoted by S∗ and K, respectively.

Sakaguchi [21] introduced the class S∗s consisting of analytic functions f ∈ A and
satisfying the condition

Re

(
2zf ′(z)

f(z)− f(−z)

)
> 0 or

2zf ′(z)

f(z)− f(−z)
≺ 1 + z

1− z
.
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The functions in the class S∗s are known as the starlike functions with respect to sym-
metric points.

Later on, Das and Singh [6] introduced the class Ks consisting of analytic functions
f ∈ A, known as convex functions with respect to symmetric points, which satisfy
the condition

Re

(
2(zf ′(z))′

(f(z)− f(−z))′

)
> 0 or

2(zf ′(z))′

(f(z)− f(−z))′
≺ 1 + z

1− z
.

Clearly, f ∈ Ks if and only if zf ′ ∈ S∗s .

Sokol and Stankiewicz [25] introduced the class SL∗ consisting of analytic functions
f ∈ A and satisfying the condition∣∣∣∣∣

(
zf ′(z)

f(z)

)2

− 1

∣∣∣∣∣ < 1 or
zf ′(z)

f(z)
≺
√

1 + z.

The superordinate function
√

1 + z maps the unit disc E onto the right-half of the
lemniscate of Bernoulli which has the equation

(x2 + y2)2 − 2(x2 − y2) = 0.

From time to time, various subclasses of S were studied by subordinating to the func-
tion

√
1 + z by various researchers including, Najafzadeh et al. [17], Singh et al. [24],

Ali et al. [1], Sokol and Thomas [26] and Ullah et al. [27]. Getting inspired from
these works, now we define the following subclasses of Sakaguchi type functions by
subordinating to

√
1 + z.

Let S∗s (L) denote the class which consists of analytic functions f ∈ A satisfying
the condition (

2zf ′(z)

f(z)− f(−z)

)
≺
√

1 + z.

By Ks(L), we denote the class which consists of analytic functions f ∈ A satisfying
the condition (

2(zf ′(z))′

(f(z)− f(−z))′

)
≺
√

1 + z.

For the complex sequence an, an+1, an+2, ...,, the q × q Hankel matrix, named after
Hermann Hankel (1839-1873), is defined as

an an+1 ... an+q−1
an+1 ... ... ...
... ... ... ...

an+q−1 ... ... an+2q−2

 where q ∈ N− {1}.

We observe that the Hankel matrix has constant positive slopping diagonals whose
entries also satisfy:

aij = ai−1,j+1(i ∈ N− {1}; j ∈ N).
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For basic properties of the hankel matrix, we refer to [9, 10]. In 1976, Noonan and
Thomas [18] stated the qth Hankel determinant for q ≥ 1 and n ≥ 1 as

Hq(n) =

∣∣∣∣∣∣∣∣
an an+1 ... an+q−1
an+1 ... ... ...
... ... ... ...

an+q−1 ... ... an+2q−2

∣∣∣∣∣∣∣∣ .
Particularly, for q = 2, n = 1, a1 = 1 and q = 2, n = 2, the Hankel determinant
simplifies respectively to

H2(1) = a3 − a22 and H2(2) = a2a4 − a23.

Easily, one can observe that the Fekete-Szegö functional is H2(1). Fekete and Szegö [8]
then further generalised the estimate |a3−µa22| where µ is real and f ∈ S. Also H2(2)
is called the second Hankel determinant.

The functional Jn,m(f) = anam − am+n−1, n,m ∈ N − {1}, was investigated by
Ma [15] and it is known as generalized Zalcman functional. The functional J2,3(f) =
a2a3 − a4 is a specific case of the generalized Zalcman functional. Various authors
computed the upper bound for the functional J2,3(f) over different subclasses of an-
alytic functions.

The Hankel determinant in the case q = 3, n = 1,

H3(1) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣
is called the Third Hankel determinant.
For f ∈ S and a1 = 1, we have

H3(1) = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22).

By using the triangle inequality, the above equation yields

(1) |H3(1)| ≤ |a3||a2a4 − a23|+ |a4||a2a3 − a4|+ |a5||a3 − a22|...

For various subclasses of S, the second Hankel determinants has been extensively
studied by various authors including Mehrok and Singh [16], Janteng et al. [11] and
many others, while the third Hankel determinants were studied by the authors in-
cluding Babalola [4], Shanmugam et al. [22], Altinkaya and Yalcin [2] and Singh and
Singh [23].

In the present paper, we study Fekete-Szegö inequalities, Second Hankel determi-
nants, Zalcman functionals and third Hankel determinants for the classes S∗s (L) and
Ks(L).
To prove our result, we shall make use of the following lemmas:

By P , we denote the class of analytic functions p of the form

p(z) = 1 +
∞∑
k=1

pkz
k,
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whose real parts are positive in E.

Lemma 1.1. [12, 19] If p ∈ P , then
(2) |pk| ≤ 2, k ∈ N...,

(3)

∣∣∣∣p2 − p21
2

∣∣∣∣ ≤ 2− |p1|
2

2
...,

(4) |pi+j − µpipj| ≤ 2, 0 ≤ µ ≤ 1...,

and for complex number ρ, we have

(5) |p2 − ρp21| ≤ 2max{1, |2ρ− 1|}...

Lemma 1.2. [13, 14] If p ∈ P , then
2p2 = p21 + (4− p21)x,

4p3 = p31 + 2p1(4− p21)x− p1(4− p21)x2 + 2(4− p21)(1− |x|2)z,
for |x| ≤ 1 and |z| ≤ 1.

Lemma 1.3. [3] Let p ∈ P , then
|Jp31 −Kp1p2 + Lp3| ≤ 2|J |+ 2|K − 2J |+ 2|J −K + L|.

In particular, it is proved in [19] that

|p31 − 2p1p2 + p3| ≤ 2.

Lemma 1.4. [20] Let m,n, l and r satisfy the inequalities 0 < m < 1, 0 < r < 1
and

8r(1−r)
[
(mn− 2l)2 + (m(r +m)− n)2

]
+m(1−m)(n−2rm)2 ≤ 4m2(1−m)2r(1−r).

If p ∈ P , then ∣∣∣∣lp41 + rp22 + 2mp1p3 −
3

2
np21p2 − p4

∣∣∣∣ ≤ 2.

2. The class S∗s (L)

Theorem 2.1. If f ∈ S∗s (L), then

(6) |a2| ≤
1

4
...,

(7) |a3| ≤
1

4
...,

(8) |a4| ≤
1

8
...,

and

(9) |a5| ≤
1

8
...
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Proof. As f ∈ S∗s (L), by the principle of subordination, we have

(10)
2zf ′(z)

f(z)− f(−z)
=
√

1 + w(z)...

Define p(z) =
1 + w(z)

1− w(z)
= 1 + p1z + p2z

2 + p3z
3 + ..., which implies w(z) =

p(z)− 1

p(z) + 1
.

Also
2zf ′(z)

f(z)− f(−z)
= 1 + 2a2z + 2a3z

2 + (4a4 − 2a2a3)z
3 + (4a5 − 2a23)z

4 + ....

Again
√

1 + w(z) =

(
2p(z)

p(z) + 1

) 1
2

= 1 +
1

4
p1z +

(
p2
4
− 5p21

32

)
z2

+

(
13p31
128
− 5p1p2

16
+
p3
4

)
z3 +

(
−141p41

2048
+

39p21p2
128

− 5p3p1
16
− 5p22

32
+
p4
4

)
z4 + .....

On comparing (10), it yields

1 + 2a2z + 2a3z
2 + (4a4 − 2a2a3)z

3 + (4a5 − 2a23)z
4 + ... = 1 +

1

4
p1z +

(
p2
4
− 5p21

32

)
z2

(11) +

(
13p31
128
− 5p1p2

16
+
p3
4

)
z3 +

(
−141p41

2048
+

39p21p2
128

− 5p3p1
16
− 5p22

32
+
p4
4

)
z4 + ....

Equating the coefficients of z, z2, z3 and z4 in (11) and on simplifying, we obtain

(12) a2 =
p1
8
...,

(13) a3 =
p2
8
− 5p21

64
...,

(14) a4 =
21p31
1024

− 9p1p2
128

+
p3
16
...,

and

(15) a5 = − 1

16

[
29

128
p41 +

p22
2

+
5p3p1

4
− 34

32
p21p2 − p4

]
...

Using (2) in (12), it gives (6).
From (13), we have

|a3| =
1

8

∣∣∣∣p2 − 5

8
p21

∣∣∣∣ .
By using (5), it yields

|a3| ≤
1

8
.2max

{
1,

1

4

}
,

which gives (7).
On applying Lemma 3 in (14), (8) can be easily obtained.
Using Lemma 4 in (15), the result (9) is obvious.

Theorem 2.2. If f ∈ S∗s (L), then

(16) |a3 − ρa22| ≤
1

4
max

{
1,

∣∣∣∣1 + ρ

4

∣∣∣∣} ...
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Proof. From (12) and (13), we have

(17) |a3 − ρa22| =
1

8

∣∣∣∣p2 − (5

8
+

1

8
ρ

)
p21

∣∣∣∣ ...
An application of (5) in (17) leads us to (16).
For ρ = 1, (16) gives

(18) |a3 − a22| ≤
1

4
...

Theorem 2.3. If f ∈ S∗s (L), then

(19) |a2a3 − a4| ≤
1

8
...

Proof. From (12),(13) and (14), we have

(20) |a2a3 − a4| =
∣∣∣∣ 31

1024
p31 −

11

128
p1p2 +

1

16
p3

∣∣∣∣ ...
By implementing the triangle inequality and Lemma 3 in (20), it leads us to (19).

Theorem 2.4. If f ∈ S∗s (L), then

(21) |a2a4 − a23| ≤
1

16
...

The bound is sharp.

Proof. Using (12), (13) and (14), we have

|a2a4 − a23| =
1

8192

∣∣−29p41 + 88p21p2 + 64p1p3 − 128p22
∣∣ .

Substituting for p2 and p3 from Lemma 2 and letting p1 = p, we get

|a2a4−a23| =
1

8192

∣∣∣∣−p4 +12p2(4−p2)x+32p(4−p2)(1−|x|2)z−16(4−p2)(8−p2)x2
∣∣∣∣.

Since |p| = |p1| ≤ 2, by using (2), we may assume that p ∈ [0, 2]. Then by using
triangle inequality and |z| ≤ 1 with |x| = t ∈ [0, 1], we obtain
|a2a4 − a23|

≤ 1

8192

[
p4 + 32p(4− p2) + 12p2(4− p2)t+ 16(4− p2)(8− 2p− p2)t2

]
= F (p, t).

Then

∂F

∂t
=

1

8192

[
12(4− p2)p2 + 32t(4− p2)(8− 2p− p2)

]
≥ 0.

Therefore F (p, t) is an increasing function of t.

So max.F (p, t) = F (p, 1) =
1

8192
[5p4 − 144p2 + 512] = G(p).

Now G′(p) = 0 gives p = 0. Also G′′(p) =
1

8192
[60p2 − 288] which is negative for each

p ∈ [0, 2].

This implies max.G(p) = G(0) =
512

8192
.
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Hence |a2a4 − a23| ≤
1

16
.

The result is sharp for p1 = 0, p2 = ±2 and p3 = 0.

Theorem 2.5. If f ∈ S∗s (L), then

(22) |H3(1)| ≤ 1

16
...

Proof. By using (7), (8), (9), (18), (19) and (21) in (1), the result (22) is obvious.

3. The class Ks(L)

Theorem 3.1. If f(z) ∈ Ks(L), then

(23) |a2| ≤
1

8
...,

(24) |a3| ≤
1

12
...,

(25) |a4| ≤
1

32
...

and

(26) |a5| ≤
1

40
...

Proof. As f ∈ Ks(L), therefore

(27)
2(zf ′(z))′

(f(z)− f(−z))′
=
√

1 + w(z)...

On expanding as in Theorem 2.1, (27) yields

1+4a2z+6a3z
2+(16a4−12a2a3)z

3+(20a5−18a23)z
4+ ... = 1+

1

4
p1z+

(
p2
4
− 5p21

32

)
z2

(28) +

(
13p31
128
− 5p1p2

16
+
p3
4

)
z3 +

(
−141p41

2048
+

39p21p2
128

− 5p3p1
16
− 5p22

32
+
p4
4

)
z4 + ...

Equating the coefficients of z, z2, z3 and z4 in (28) and on simplifying, we obtain

(29) a2 =
p1
16
...,

(30) a3 =
p2
24
− 5p21

192
...,

(31) a4 =
1

4096
[21p31 − 72p1p2 + 64p3]...,

and

(32) a5 =
1

80

[
− 29

128
p41 +

17

16
p21p2 −

5p3p1
4
− p22

2
+ p4

]
...
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By using Lemma 1, Lemma 3 and Lemma 4 in (29), (30), (31) and (32) and following
the procedure of Theorem 2.1, the results (23), (24), (25) and (26) can be easily
obtained.

Theorem 3.2. If f ∈ Ks(L), then

(33) |a3 − ρa22| ≤
1

12
max

{
1,

∣∣∣∣4 + 3ρ

16

∣∣∣∣} ...
Proof. From (29) and (30), we have

(34) |a3 − ρa22| =
1

24

∣∣∣∣p2 − (20 + 3ρ

32

)
p21

∣∣∣∣ ...
By using (5) in (34), the result (33) is obvious.
For ρ = 1, (33) transforms to

(35) |a3 − a22| ≤
1

12
...

Theorem 3.3. If f ∈ Ks(L), then

(36) |a2a3 − a4| ≤
1

32
...

Proof. By using (29), (30) and (31) and on the lines of Theorem 2.3, the proof is
obvious.

Theorem 3.4. If f ∈ Ks(L), then

(37) |a2a4 − a23| ≤
1

144
...

The result is sharp.

Proof. By using (29), (30) and (31) and following the procedure of Theorem 2.4,
the result (37) can be easily obtained.
The bound is sharp for p1 = 0, p2 = ±2 and p3 = 0.

Theorem 3.5. If f ∈ Ks(L), then

(38) |H3(1)| ≤ 503

138240
...

Proof. By using (24), (25), (26), (35), (36) and (37) in (1), it yields result (38).
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