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R-NOTION OF CONJUGACY IN PARTIAL TRANSFORMATION

SEMIGROUP

Aftab Hussain Shah and Mohd Rafiq Parray∗

Abstract. In this paper, we present a new definition of conjugacy that can be
applied to an arbitrary semigroup and it does not reduce to the universal relation
in semigroups with a zero. We compare the new notion of conjugacy with exist-
ing notions, characterize the conjugacy in subsemigroups of partial transformations
through digraphs and restrictive partial homomorphisms.

1. Introduction

Let G be a group. For x, y ∈ G, we say x is conjugate to y if there exists p ∈ G
such that y = p−1xp which is equivalent to xp = py. Using the latter formulation one
may try to extend the notion of conjugacy to semigroups in the following way: define
a relation ∼l on a semigroup S by

x ∼l y ⇔ ∃ p ∈ S1 such that xp = py

where S1 is S with an identity adjoined. If x ∼l y, we say x is left conjugate to
y [1,9,10]. The relation ∼l is always reflexive and transitive in any semigroup but
not symmetric in general. The relation ∼l gets reduced to a universal relation in a
semigroup with zero. However the relation ∼l is an equivalence relation on a free
semigroup. Lallement [4] has defined the conjugate elements of a free semigroup S as
those related by ∼l and showed that ∼l is equal to the following equivalence on the
free semigroup S:

x ∼p y ⇔ ∃ u, v ∈ S1 such that x = uv and y = vu

The relation ∼p is always reflexive and symmetric but not transitive in general. The
relation ∼l has been restricted to ∼o in [1 ], and ∼p has been extended to ∼∗p (the tran-
sitive closure of ∼p) in [2, 3], in such a way that the modified relations are equivalences
on an arbitrary semigroup S.

Otto in [1] introduced the ∼o notion of conjugacy in semigroup S defined as:

x ∼o y ⇔ ∃ p, q ∈ S1 such that xp = py and yq = qx,
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The relation ∼o is not useful for semigroups S with zero since for every such S,
we have ∼o= S × S. This deficiency has been remedied in [6], where the following
relation has been defined on an arbitrary semigroup S,

x ∼c y ⇔ ∃ p ∈ P1(x), q ∈ P1(y) such that xp = py and yq = qx,

where for x 6= 0, P(x) = {p ∈ S1 : (mx)p 6= 0 for all mx ∈ S1(x)\{0}} and P(0) = {1}.
The relation ∼c is an equivalence relation on any semigroup S and it does not get
reduce to S × S if S has a zero, and it is equal to ∼o if S does not have a zero.

Further, J. Konieczny in [7] introduced the ∼n notion of conjugacy in semigroups.
If S is a semigroup and let x, y ∈ S. Then,

x ∼n y ⇔ ∃ p, q ∈ S1 such that xp = py, yq = qx, x = pyq and y = qxp.

This relation is an equivalence relation in any semigroup and does not get reduced to
a universal relation in a semigroup with zero.

The aim of this paper is to introduce a new definition of conjugacy in an arbitrary
semigroup. The new conjugacy is an equivalence relation ∼r (the r-conjugacy) on any
semigroup S.

J.Araujo et.al in [6] characterized ∼c conjugacy in constant rich subsemigroups of
P(T ) (the semigroup of partial maps on a non empty set T ) with the help of rp-hom
of their digraphs. In this paper we prove similar results for ∼r notion of conjugacy
for any subsemigroup of P(T ) without the assumption of constant rich on S.

2. The notion ∼r

If S is a semigroup and let x, y ∈ S. Then,

x ∼r y ⇔ ∃ p, q, u, v ∈ S1 such that xp = py, yq = qx, x = pyu and y = qxv.

Theorem 2.1. If S is a semigroup then

(1) ∼r is an equivalence relation in any semigroup.
(2) [0]r = {0}.
(3) If S is a group then ∼r reduces to the usual notion of conjugacy.

Proof. (1) Let x ∼r y then there exists p, q, u, v ∈ S1 such that xp = py, yq =
qx, x = pyu and y = qxv.

(i) Reflexivity: We take p = q = u = v = 1 and we get the required.
(ii) Symmetry: This condition is by definition of notion.

(iii) Transitivity: Let x ∼r y and y ∼r z then there exists p1, q1, u1, v1 and
p2, q2, u2, v2 such that xp1 = p1y, yq1 = q1x, x = p1yu1 and y = q1xv1 and
xp2 = p2y, yq2 = q2x, x = p2yu2 and y = q2xv2. Now xp1p2 = p1yp2 = p1p2z,
zq2q1 = q2yq1 = q2q1x, x = p1yu1 = p1p2zu2u1 and z = q2yv2 = q2q1xv1v2.
Hence x ∼r z.

(2) Let x 6= 0 and let x ∼r 0 then there exists p, q, u, v ∈ S1 such that xp = p0, 0q =
qx, x = p0u and 0 = qxv. This means x = 0. So we get [0]r = {0}.

(3) Let x ∼r y then there exists p, q, u, v ∈ S1 such that xp = py, yq = qx, x = pyu
and y = qxv. From xp = py we can pre-multiply by p−1 both sides to get y = g−1xg
which is the usual notion of conjugacy.

Theorem 2.2. Let S be a semigroup then ∼n⊆∼r⊆∼c⊆∼o.
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Proof. Let x, y ∈ S1 and let x ∼n y then there exists p, q ∈ S1 such that xp =
py, yq = qx, x = pyq and y = qxp. we can take u = q and v = p so x ∼r y. Thus
∼n⊆∼r. Next we prove ∼r⊆∼c. Let x ∼r y then there exist p, q, u, v ∈ S1 such that
xp = py, yq = qx, x = pyu and y = qxv. If x = 0 then y = 0 since [0]r = 0 and so
x ∼c y. Suppose x 6= 0 and let m ∈ S1 be such that mx 6= 0. Then (mx)p 6= 0 since
if (mx)p = 0 then mpy = 0 which further implies mpyu = 0 which implies mx = 0
which is a contradiction. Hence (mx)p 6= 0. Similarly, if m ∈ S1 is such that my 6= 0
then (my)q 6= 0. So, p ∈ P1(x) and q ∈ P1(y). Hence x ∼c y. Since ∼c⊆∼o is obvious.
Hence we get the required result.

3. ∼r notion of conjugacy through digraphs in P(T )

Definition 3.1. Let T be any set and R be a binary relation on T then Γ = (T,R)
is called a directed graph (or a digraph). Any p ∈ T is called a vertex and any
(p, q) ∈ R is called an arc of Γ.
For example, Let T = {1, 2, 3, 4} and R = {(1, 2), (2, 3)}. Then the digraph Γ is as
under,

1• −→ 2• −→ 3• 4• .

Definition 3.2. A vertex p ∈ T for which there exists no q in T such that
(p, q) ∈ R is called a terminal vertex of Γ. A vertex p ∈ T is said to be initial vertex
if there is no q ∈ T for which (q, p) ∈ R while as a vertex p ∈ T is said to be a non
initial vertex if (q, p) ∈ R for some q ∈ T .

For any σ ∈ P(T ), Γ(σ) = (T,Rσ) represents a digraph, where for all p, q ∈
T, (p, q) ∈ Rσ if and only if p ∈ dom(σ) and pσ = q. For example, If T = {1, 2, 3}
and Rσ = {(1, 2), (2, 1)}. Then the digraph Γ(σ) is represented as

1• −→ 2• −→ 1• .

For a non-empty set T , we fix an element � /∈ T . For σ ∈ P(T ) and t ∈ T , we
will write tσ = �, if and only if t /∈ dom(σ). we also assume that �σ = �. With this
notation it makes sense to write sσ = tτ or sσ 6= tτ (σ, τ ∈ P(T ), s, t ∈ T ) even when
s /∈ dom(σ) or t /∈ dom(τ). For any σ ∈ P(T ) span(σ) represents dom(σ) ∪ im(σ).

For semigroups U and S, we write U ≤ S to mean that U is a subsemigroup of S.

Definition 3.3. Let Γ1 = (T1, R1) and Γ2 = (T2, R2) be digraphs. A mapping
α from T1 to T2 is called a homomorphism from Γ1 to Γ2 if for all p, q ∈ T1, (p, q) ∈
R1 implies (pα, qα) ∈ R2. A partial mapping α from T1 to T2 is called a partial
homomorphism from Γ1 to Γ2 if for all p, q ∈ dom(α), (p, q) ∈ R1 implies (pα, qα) ∈
R2.

Definition 3.4. A partial homomorphism α from T1 to T2 is called a restrictive
partial homomorphism from Γ1 to Γ2 if it satisfies the following conditions:

(a) If (p, q) ∈ R1, then p, q ∈ dom(α) and (pα, qα) ∈ R2.
(b) If p is a terminal vertex in Γ1 and p ∈ dom(α), then pα is a terminal vertex in

Γ2.

We say that Γ1 is rp-homomorphic to Γ2 if there is an rp-homomorphism from Γ1 to
Γ2.

Throughout this paper by an rp-hom we shall mean an rp-homomorphism between
any two digraphs and by hom we shall mean a homomorphism.
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The next theorem provides necessary and sufficient condition for two elements of
subsemigroup of P(T ) to be ∼r related.

Theorem 3.5. Let S ≤ P(T ) and σ, τ ∈ S. Then σ ∼r τ if and only if there are
α, β, φ, ψ ∈ S1 for which α is an rp-hom from Γ(σ) to Γ(τ) and β is an rp-hom from
Γ(τ) to Γ(σ) with qαφ = q for every non initial vertex q of Γ(σ) and kβψ = k for
every non initial vertex k of Γ(τ).

Proof. Suppose σ ∼r τ in S. If σ = 0 then τ = 0 and so α = idT ∈ S1 is an rp-hom
from Γ(σ) to Γ(τ) and β = idT ∈ S1 is an rp-hom from Γ(τ) to Γ(σ). Next suppose
σ 6= 0 and let σ ∼r τ in S then σα = ατ, τβ = βσ, σ = ατφ and τ = βσψ for some
α, β, φ, ψ ∈ S1. Let (p, q) ∈ σ. Then pατφ = q, (pα)τφ = q which implies p ∈ domα.
Again

(3.1) qαφ = (pσ)αφ = pσαφ = pατφ = pσ = q

which implies q ∈ domα. Next (pα)τ = pατ = pσα = qα (by 3.1) 6= �, (pα, qα) ∈
Γ(τ). Again let p be a terminal vertex of Γ(σ) and p ∈ domα then as σα = ατ ,
(pα)τ = pατ = pσα = �α = �. Thus pα is a terminal vertex in Γ(τ). So α is an
rp-hom from Γ(σ) to Γ(τ). Again by using τβ = βσ and τ = βσψ we can prove the
β is an rp-hom from Γ(τ) to Γ(σ).

Conversely let there are α, β, φ, ψ ∈ S1 for which α is an rp-hom from Γ(σ) to Γ(τ)
and β is an rp-hom from Γ(τ) to Γ(σ) with qαφ = q for every non initial vertex q of
Γ(σ) and kβψ = k for every non initial vertex k of Γ(τ). We show σ ∼r τ in S. Let
p ∈ T . The following cases arise.
Case 1: Suppose p /∈ domσ, then pσ = �. Then p(σα) = (pσ)α = �α = �. If
p /∈ domα then p(ατ) = (pα)τ = �. So, σα = ατ . Also pατφ = �, so σ = ατφ. If
p ∈ domα then as p is a terminal vertex of Γ(σ) and since α is an rp-hom from Γ(σ)
to Γ(τ) we have p(ατ) = � so pατφ = � i.e, σ = ατφ in this case.
Case 2: Suppose p ∈ domσ and let q = pσ. Then by definition of rp-hom p, q ∈ domα
and (pα)τ = qα. Hence p(σα) = (pσ)α = qα and p(ατ) = (pα)τ = qα. So, σα = ατ .
Also, pατφ = pσαφ = qαφ = q as qαφ = q for any non initial vertex q of Γ(σ). So,
σ = ατφ.
By symmetry β is an rp-hom from Γ(τ) to Γ(σ) such that τβ = βσ and τ = βσψ.
Thus σ ∼r τ . This proves the Theorem.

If σ, τ ∈ T (T ) (the semigroup of full transformations on T). Then every rp-hom
from Γ(σ) to Γ(τ) is hom. So we have the following corollary.

Corollary 3.6. Let S ≤ T (T ) and σ, τ ∈ S. Then σ ∼r τ if and only if there
are α, β, φ, ψ ∈ S1 such that α is a hom from Γ(σ) to Γ(τ) and β is a hom from Γ(τ)
to Γ(σ) with qαφ = q for every non initial vertex q of Γ(σ) and kβψ = k for every
non initial vertex k of Γ(τ).

4. ∼r notion of conjugacy through connected partial transformations

Definition 4.1. Let · · ·, p−2, p−1, p0, p1, p2, · · · be pairwise distinct elements of T .
The following maps introduced by J. Araujo et al in [6] are very important for our
study.

(1) A σ ∈ P(T ) is called a cycle of length k if σ = (p0p1p2 · · · pk−1) where (k ≥ 1).
i.e., pj = pj−1σ, j = 1, 2, · · ·, k and p0 = pk−1σ and we write it as
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p0 → p1 → p2 → · · · → pk−1 →p0.
(2) A σ ∈ P(T ) is called a right ray if σ = [p0 p1 p2 · · · >. i.e., pj = pj−1σ, j ≥ 1

and we write it as

p0 → p1 → p2 → · · · .

(3) A σ ∈ P(T ) is called a double ray if σ =< · · · p−1 p0 p1 · · · >. i.e., pj = pj−1σ,
j ∈ Z and we write it as

· · · → p−1 → p0 → p1 → p2 → · · · .

(4) A σ ∈ P(T ) is called a left ray, if σ =< · · · p2 p1 p0]. i.e., pjσ = pj−1, j ≥ 1
and we write it as

· · · → p2 → p1 → p0.

(5) A σ ∈ P(T ) is called a chain of length k if σ = [p0 p1 p2 · · · pk]. i.e., pj = pj−1σ,
j = 1, 2, · · ·, k and we write it as

p0 → p1 → p2 → · · · → pk.

These are called as basic partial maps.

Definition 4.2. Any element κ 6= 0 in P(T ) is said to be connected if for some
non negative integers m,n, pκm = qκn 6= � for all p, q ∈ span(κ).

For example, Let T = {1, 2, 3, 4, 5}. Define κ ∈ P(T ) by κ = {(1, 2), (2, 3), (3, 4)},
then the diagraph of κ is as under

1• −→ 2• −→ 3• −→ 4•.
Then κ is connected.

Definition 4.3. For σ, τ ∈ P(T ), if dom(τ) ⊆ dom(σ) and pτ = pσ for every p ∈
dom(τ) then τ is said to be contained in σ written as τ ⊆ σ. They are disjoint if
dom(σ)∩ dom(τ) = ∅ and completely disjoint if span(σ)∩ span(τ) = ∅.

For example, [p q r s · ·· > and [a b c p] in P(Z) are disjoint while as [a b · ·· > and
[u v] are completely disjoint.

Definition 4.4. Let C be a set of pairwise disjoint elements of P(T ). Then, for
x ∈ T

x(
⋃
κ∈C

κ) =

{
xκ if x ∈ dom(κ) for some κ ∈ C

� otherwise.

is called the join of the elements of C denoted by
⋃
κ∈C

κ.

Definition 4.5. Let σ ∈ P(T ) and let ν be a basic partial map with ν ⊂ σ then
ν is maximal in σ if x /∈ dom(ν) implies x /∈ dom(σ) and x /∈ im(ν) implies x /∈ im(σ)
for every x ∈ span(ν).

For example, Let σ = [p q r s · ·· > ∪ [a b c p] ∈ P(Z). Then σ contains infinitely
many right rays. For example, [c p q r · ·· > but only two of them namely [p q r s · ·· >
and [a b c p q r s · ·· > are maximal in σ.
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Proposition 4.6. [6, Proposition 4.5] Let σ ∈ P(T ) with σ 6= 0. Then there
exists a unique set C of pairwise completely disjoint, connected maps contained in σ
such that σ =

⋃
κ∈C

κ.

The componenents of C in Proposition 4.6 are called as connected components of
σ. Through out this paper by c-component we shall mean a connected component.

Example 4.7. Let T = {1, 2, 3, 4, 5} and σ ∈ P(T ) be defined as σ = {(1, 2), (2, 3),
(4, 5)}. Clearly σ has a unique representation in terms of of pairwise completely dis-
joint, connected maps contained in σ. i.e., σ = ∪σi∈C σi where C = {σ1, σ2} and
σ1 = {(1, 2), (2, 3)} and σ2 = {(4, 5)}.

For any c-component κ of σ ∈ P(T ), ακ denotes the restriction of σ on Span(κ).

Lemma 4.8. Let S ≤ P(T ) and σ, τ ∈ S with σ ∼r τ then there exists α, β ∈ S1

such that dom(α) = span(σ) and dom(β) = span(τ).

Proof. Let σ ∼r τ then there exists α, β, φ, ψ ∈ S1 such that σα = ατ, τβ = βσ, σ =
ατφ and τ = βσψ. By Theorem 3.5, α is an rp-hom from Γ(σ) to Γ(τ) and β is an
rp-hom from Γ(τ) to Γ(σ). We have to show that dom(α) = span(σ). Let x ∈ span(σ)
which means x ∈ dom(σ) ∪ im(σ). If x ∈ dom(σ) then there exists y ∈ T such that
(x, y) ∈ σ. Since α is an rp-hom from Γ(σ) to Γ(τ). Therefore x, y ∈ dom(α). So in
this case span(σ) ⊆ dom(α). Similarly if x ∈ im(σ) then span(σ) ⊆ dom(α). Next
we have to show dom(α) ⊆ span(σ). Since σ = ατφ, implies dom(α) = dom(σ) ⊆
span(σ) implies dom(α) ⊆ span(σ). By similar arguments we can show that dom(β)
= span(τ).

The next Proposition is the interconnection of c-components and ∼r notion of
conjugacy.

Proposition 4.9. Let S ≤ P(T ) and σ, τ ∈ S. Then, σ ∼r τ if and only if

(1) For every c-component κ of σ there exist a c-component λ of τ and an rp-hom
ακ ∈ P(T ) from Γ(κ) to Γ(λ) with dom(ακ) = span(κ). Similar holds from τ to
σ.

(2) ∪κ∈C ακ ∈ S1, where C is the collection of c-components of σ. Similar holds for
τ .

(3) There is α, β, φ, ψ ∈ S1 such that qαφ = q for any non initial vertex q of Γ(σ)
and kβψ = k for every non initial vertex k of Γ(τ).

Proof. If σ = 0 then τ = 0 and the result follows trivially. Suppose σ 6= 0 then τ 6= 0
and let σ ∼r τ , then there is α, β, φ, ψ ∈ S1 such that σα = ατ, τβ = βσ, σ = ατφ
and τ = βσψ and so by Theorem 3.5, α is an rp-hom from Γ(σ) to Γ(τ) and β is
an rp-hom from Γ(τ) to Γ(σ). By Lemma 4.8 domα = span(σ). By Proposition
4.6 σ = ∪κ∈Cκ and τ = ∪λ∈C′λ for some sets C,C ′ of pairwise completely disjoint
connected maps contained in σ and τ respectively. Let κ be a c-component of σ and
let p ∈ span(κ), since α is an rp-hom this means pα ∈ λ for some c-component λ
of τ . We claim that (span(κ))α ⊆ span(λ). Let z ∈ span(κ) then by definition of
connectedness there exists r, s ≥ 0 such that pσr = pκr = zκs = zσs 6= �. Since
σ ∼r τ we have (zα)τ s = (zσs)α = (pσr)α = (pα)τ r 6= � which implies pα and zα are
in the span of same c-component of τ . So zα ∈ span(λ). The claim has been proved.
Let ακ = α|span(κ). Then ακ is an rp-hom from Γ(κ) to Γ(λ) with dom(ακ) = span(κ).
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Also ∪κ∈Cακ = α ∈ S1 (by the definition of ακ) and by dom(α) = span(σ)). Similar
holds from τ to σ.

Conversely, suppose that (1), (2) and (3) are satisfied. Let α =
⋃
κ∈C

ακ. Note that α

is well defined since ακ and ακ′ are disjoint if κ 6= κ
′
. Suppose (q, z) ∈ σ. Then q, z ∈

span(κ) for some c-component κ of σ. Thus q, z ∈ dom(ακ) and qα = qακ → zακ =

zα, implying qα
τ−→ zα.

Suppose q is a terminal vertex in Γ(σ) and q ∈ dom(σ). Then there is a unique
c-component κ of σ such that q is a terminal vertex in Γ(κ). Then qα = qακ is a
terminal vertex in Γ(λ) and so a terminal vertex in Γ(τ). Hence α is an rp-hom from
Γ(σ) to Γ(τ). Further dom(α) = span(σ), (by the definition of α) and α ∈ S1 (by (2)).
By symmetry, we can similarly prove for β. Then by condition (3) and by Theorem
3.5 we have σ ∼r τ .

Definition 4.10. Let X be a nonempty subset of the set Z+ of positive integers.
Then X is partially ordered by the relation |(divides). Order the elements of X
according to usual less than relation as x1 < x2 < x3 · ··, we define a subset sac(X) of
X as follows : for every integer n, 1 ≤ n < |X|+ 1,

sac(X) = {xn ∈ X: for all i < n, xn is not a multiple of xi}.
The set sac(X) is a maximal anti-chain of the poset (X, |). We will call sac(X), the
standard anti-chain of X.

For example, if X = {2, 4, 7} then sac(X) = {2, 7}.

Let σ be in P(T ) such that σ contains a cycle. Let X denote the set of lengths
of cycles in σ. The standard anti-chain of (X, |) will be called the cycle set of σ and
denoted by cs(σ).

Definition 4.11. A connected partial map κ is said to be of rro type (right rays
only) if it has a maximal right ray but no cycles, double rays, left rays or maximal
chains, and is of cho type (chains only) if it has a maximal chain but no cycles or
rays.

Lemma 4.12. [6, Lemma 4.11] Let κ ∈ P(T ) such that κ contains a maximal left
ray or it is of cho type. Then κ contains a unique terminal vertex.

Definition 4.13. Let κ ∈ P(T ) be connected such that κ has a maximal left ray
or is of cho type. The unique terminal vertex of κ established by Lemma 4.12 will be
called the root of κ.

A relation R on a non empty set E is called well founded if every nonempty subset
D ⊆ E contains an R-minimal element that is, p ∈ D exists such that there is no
q ∈ D with (q, p) ∈ R. Let R be a well-founded relation on a set E. Then there is a
unique function π defined on E having values as ordinals so that

π(p) = sup{π(q) + 1 : (q, p) ∈ R}.

for every p ∈ E is called the rank of p in < E,R > [11, Theorem 2.27] which proves
(1) and (2). The condition (3) follows from Theorem 3.5.
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Let κ ∈ P(T ) be connected of rro type or cho then πκ(p) denotes the rank of p
under the relation κ.

Example 4.14. Let T = {x, y, c, · · ·, x1, y1, z1 · ··} and let κ = [x, y, z, · · · >∈ P(T ).
Then π(x) = 0, π(y) = 1 and so on.

Let < uq >q≥0 and < vq >q≥0 be sequences of ordinals. Then we say that < vq >
dominates < uq > if

vq+r ≥ uq for every q ≥ 0 and for some r ≥ 0.

Let κ ∈ P(T ) be connected of rro type and µ = [p0p1p2 · ·· > be a maximal right
ray in κ. We denote by < µκq >q≥0 the sequence of ordinals with

µκq = πκ(pq) for every q ≥ 0.

For example, let T = {p0, p1, p2, · · ·, q0, q1, q2, · · ·} and let κ = [p0p1p2p3 · ·· >
∪[q0p2]∪ [q1q2p2]∪ [q3q4q5p2]∪ [q6q7q8q9p2]∪ · · · ∈ P(T ) and µ = [p0p1p2 · ·· >∈ κ, then
the sequence < µκq > is < 0, 1, ω, ω + 1, ω + 2, ω + 3, · · · >.

The next results (Proposition 4.15 to Proposition 4.20) are from Araujo et.al [6] and
are required to prove the Theorem 4.23.

Proposition 4.15. Let κ, λ ∈ P(T ) be connected such that κ has a cycle (p0p1 ·
· · pk−1). Then Γ(κ) is rp-hom to Γ(λ) if and only if λ has a cycle (q0q1...qm−1) such
that m|k.

Lemma 4.16. Let κ, λ ∈ P(T ) be connected such that λ has a cycle (q0 q1 ... qm−1).
Suppose κ has a double ray or is of rro type. Then Γ(κ) is rp-hom to Γ(λ).

Lemma 4.17. Let κ, λ ∈ P(T ) be connected. Suppose that λ has a double ray
and κ either has a double ray or has rro type. Then Γ(κ) is rp-hom to Γ(λ).

Lemma 4.18. Let κ, λ ∈ P(T ) be connected. Suppose that λ has a maximal left
ray and κ either has a maximal left ray or is of cho type. Then Γ(κ) is rp-hom Γ(λ).

Proposition 4.19. Let κ, λ ∈ P(T ) be connected of cho type with roots p0 and
q0 respectively. Then Γ(κ) is rp-hom to Γ(λ) if and only if π(x0) ≤ π(y0).

Proposition 4.20. Let κ, λ ∈ P(T ) be connected of rro type. Then Γ(κ) is
rp-hom to Γ(λ) if and only if there are maximal right ray µ in κ and η in λ such that
< ηλn > dominates < µκn >.

Lemma 4.21. Let κ, λ ∈ P(T ) be connected with κ being of rro type and suppose
κ ∼r λ, then λ cannot have a maximal left ray or is of cho type.

Proof. Let κ ∼r λ then by Theorem 3.5 there exists α which is an rp-hom from
Γ(κ) to Γ(λ). Let [a0a1a2 · ·· > be a right ray in κ. Suppose to the contrary that λ
has a maximal left ray or is of cho type. Let b0 be the root of λ. By definition of
connectedness there exists k ≥ 0 such that (a0α)λk = b0. As κ ∼r λ, κα = αλ and
so (a0α)λk+1 = (a0κ

k+1)α = ak+1α. But (a0α)λk+1 = (a0α)λkλ = b0λ = � and so
ak+1α = � which is a contradiction. Hence the result follows.

Lemma 4.22. Let σ, τ ∈ P(T ) such that σ ∼r τ . If σ contains a cycle of length r,
then τ has a cycle of length s such that s|r.
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Proof. Let σ contains a cycle of length r and let σ ∼r τ . By Proposition 4.6, σ =
∪κ∈Cκ where C is the set of pairwise completely disjoint connected maps contained in
σ and τ = ∪λ∈C′λ where C ′ is the set of pairwise completely disjoint connected maps
contained in τ . By Proposition 4.9, for a c-component κ of σ containing a cycle of
length r there exists a c-component λ of τ such that Γ(κ) is rp-hom to Γ(λ). Then
by Proposition 4.15, λ has a cycle of length s such that s|r. So if σ contains a cycle
of length r, then τ has a cycle of length s such that s|r.

By Theorem 3.5 and the above discussed results we now prove a result on ∼r notion
of conjugacy in sybsemigroups of P(T ).

Theorem 4.23. Let σ, τ ∈ P(T ). Then σ ∼r τ in S if and only if σ = τ = 0 or
σ, τ 6= 0 and the following conditions hold:

(1) There is α, β, φ, ψ ∈ S1 such that qαφ = q for any non initial vertex q of Γ(σ)
and kβψ = k for every non initial vertex k of Γ(τ);

(2) cs(σ) = cs(τ);
(3) σ contains a double ray but no cycle if and only if τ contains a double ray but

no cycle;
(4) If σ contains a c-component κ of rro type but no cycles or double rays then τ

contains a c-component λ of rro type but no cycles or double rays and <ηλp>
dominates <µκp> for some maximal right rays µ in κ and η in λ;

(5) If τ contains a c-component λ of rro type but no cycles or double rays then σ
contains a c-component κ of rro type but no cycles or double rays and <µκp>

dominates <ηλp> for some maximal right rays η in λ and µ in κ;
(6) σ contains a maximal left ray if and only if τ contains a maximal left ray;
(7) If σ contains a c-component κ of cho type with root p0 but no maximal left rays

then τ contains a c-component λ of cho type with root q0 but no maximal left
rays, and πκ(p0) ≤ πλ(q0);

(8) If τ contains a c-component λ of cho type with root q0 but no maximal left ray
then σ contains a c-component κ of cho type with root p0 but no maximal left
rays, and πλ(q0) ≤ πκ(p0).

Proof. Let σ ∼r τ in S. Suppose σ = τ = 0 then condition (1) to (8) holds trivially.
Suppose σ, τ 6= 0 then by Theorem 3.5 there exists α, β, φ, ψ ∈ S1 such that α is an
rp-hom from Γ(σ) to Γ(τ) and β is an rp-hom from Γ(τ) to Γ(σ) with qαφ = q for
any non initial vertex q of Γ(σ) and kβψ = k for every non initial vertex k of Γ(τ).
By Lemma 4.8, we can assume that dom(α) = span(σ).

(2) Suppose σ has a cycle. Then, by Lemma 4.22, τ also has a cycle. Let r ∈ cs(σ).
Then σ has a cycle of length r, and so again by Lemma 4.22, τ has a cycle of
length s such that s|r. By the definition of cs(τ), there is s1 ∈ cs(τ) such that
s1|s. Thus τ has a cycle of length s1 and so by Lemma 4.22, σ has a cycle of
length r1 such that r1|s1. Hence r1|s1|s|r. Since cs(σ) is an anti-chain, r1|r and
r ∈ cs(σ) implies r1 = r. Thus r = r1 = s1 and so r ∈ cs(τ). We have proved
that cs(σ) ⊆ cs(τ). The converse follows by symmetry. Hence cs(τ) = cs(σ). If
neither σ nor τ has a cycle, then cs(σ) = cs(τ) = φ.

(3) Suppose σ has a double ray but no cycles. Then by Lemma 4.22 τ cannot have
a cycle. Also since Γ(σ) is rp-hom to Γ(τ), so we have < · · ·p−1 p0 p1 · ·· >. The
elements · · ·p−1α, p0α, p1α,· · · are pairwise distinct (since otherwise τ would
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have a cycle), and so <· · ·p−1α p0α p1α· · ·> is a double ray in τ . The converse
is true by symmetry.

(4) Suppose σ has a c-component κ of rro type but no cycle or a double ray. By
Proposition 4.9, there is a c-component κ of τ so that Γ(κ) is rp-hom to Γ(λ).
By (1) and (2), λ does not have a cycle nor a double ray. By Lemma 4.21, λ
does not have a maximal left ray or is of cho type. Hence λ is rro type. By
Proposition 4.20, there are maximal right rays µ in κ and η in λ such that < ηλp >
dominates < µκp >.

(5) It follows by symmetry of (3).
(6) Suppose σ has a maximal left ray < · · ·p2 p1 p0]. Then since Γ(σ) is rp-hom to

Γ(τ) we have · · · τ−→ p2α
τ−→ p1α

τ−→ p0α and p0α is a teriminal vertex in Γ(τ),
which implies that < · · ·p2α p1α p0α] is a maximal left ray in τ . The converse
is true by symmetry.

(7) Suppose σ has a c-component κ of cho type with root p0 but no maximal left
ray. By Proposition 4.9 and its proof, there is a c-component λ of τ such that
ακ = α|(span(κ)) is an rp-hom from Γ(κ) to Γ(λ). Since p0 is a teriminal vertex
in κ, q0 = p0ακ is a terminal vertex in λ. Since τ has no maximal left ray
(by(3)), λ is of cho type and q0 is the root of λ. Therefore by Proposition 4.20,
πκ(p0) ≤ πλ(q0).

(8) Proof follows by symmetry of (6).

Conversely, if σ = τ = 0, then σ ∼r τ . Suppose σ, τ 6= 0 and all conditions from (1)
to (8) hold. Let κ be a c-component of σ. We will prove that Γ(κ) is rp-hom to Γ(λ)
for some c-component λ of τ . The result then follows by Proposition 4.9.
Suppose κ has a cycle of length r, since by (1), cs(σ) = cs(τ), τ has a cycle υ of length
s such that s|r. Let κ be the c-component of τ containing υ. Then Γ(κ) is rp-hom to
Γ(λ) by Proposition 4.15.
Suppose κ has a double ray. If some c-component λ of τ has a cycle, then Γ(κ) is
rp-hom to Γ(λ) by Lemma 4.16. Suppose τ does not have a cycle. Then, by (1) and
(2), both σ and τ have a double ray but not a cycle. Let λ be a c-component of τ
containing a double ray. Then Γ(κ) is rp-hom to Γ(λ) by Lemma 4.17.
Suppose κ is of rro type. If τ has some c-component λ with a cycle or a double ray,
then Γ(κ) is rp-hom to Γ(λ) by Lemma 4.16 and Lemma 4.17. Suppose τ does not
have a cycle or a double ray. Then by (3), there is a c-component λ in τ of rro type
such that < ηλp > dominates < µκp > for some maximal right rays µ in κ and η in λ.
Hence Γ(κ) is rp-hom to Γ(λ) by Proposition 4.20.
Suppose κ has a maximal left ray. Then by (5) there is some c-component λ of τ has
a maximal left ray. Then Γ(κ) is rp-hom to Γ(λ) by Lemma 4.18.
Suppose κ is of cho type with root p0. If τ has some c-component λ having a maximal
left ray then Γ(κ) is rp-hom to Γ(λ) by Lemma 4.18. Suppose τ does not have a
maximal left ray. Then by (5), σ does not have a maximal left ray, and so by (6),
there is a c-component λ in τ of cho type with root q0 such that πκ(p0) ≤ πκ(q0).
Hence Γ(κ) is rp-hom to Γ(λ), by Proposition 4.20.
We have proved that for every c-component κ of σ there exists a c-component λ of
τ and an rp-hom ακ ∈ P(T ) from Γ(κ) to Γ(λ). We may assume that for every c-
component κ of σ, dom(ακ) = span(κ). Hence Γ(κ) is rp-hom to Γ(τ) by Proposition
4.9. By symmetry, Γ(τ) is rp-hom to Γ(σ). Then by (8) and Theorem 3.5 we get
σ ∼r τ .
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