R-NOTION OF CONJUGACY IN PARTIAL TRANSFORMATION SEMIGROUP

AFTAB HUSSAIN SHAH AND MOHD RAFIQ PARRAY*

ABSTRACT. In this paper, we present a new definition of conjugacy that can be applied to an arbitrary semigroup and it does not reduce to the universal relation in semigroups with a zero. We compare the new notion of conjugacy with existing notions, characterize the conjugacy in subsemigroups of partial transformations through digraphs and restrictive partial homomorphisms.

1. Introduction

Let G be a group. For $x, y \in G$, we say x is conjugate to y if there exists $p \in G$ such that $y = p^{-1}xp$ which is equivalent to xp = py. Using the latter formulation one may try to extend the notion of conjugacy to semigroups in the following way: define a relation \sim_l on a semigroup S by

$$x \sim_l y \Leftrightarrow \exists p \in S^1$$
 such that $xp = py$

where S^1 is S with an identity adjoined. If $x \sim_l y$, we say x is left conjugate to y [1,9,10]. The relation \sim_l is always reflexive and transitive in any semigroup but not symmetric in general. The relation \sim_l gets reduced to a universal relation in a semigroup with zero. However the relation \sim_l is an equivalence relation on a free semigroup. Lallement [4] has defined the conjugate elements of a free semigroup S as those related by \sim_l and showed that \sim_l is equal to the following equivalence on the free semigroup S:

$$x \sim_p y \Leftrightarrow \exists u, v \in S^1$$
 such that $x = uv$ and $y = vu$

The relation \sim_p is always reflexive and symmetric but not transitive in general. The relation \sim_l has been restricted to \sim_o in [1], and \sim_p has been extended to \sim_p^* (the transitive closure of \sim_p) in [2, 3], in such a way that the modified relations are equivalences on an arbitrary semigroup S.

Otto in [1] introduced the \sim_o notion of conjugacy in semigroup S defined as:

$$x \sim_o y \Leftrightarrow \exists p, q \in S^1$$
 such that $xp = py$ and $yq = qx$,

2010 Mathematics Subject Classification: $20M07,\,20M15,\,20M20.$

Received October 24, 2021. Revised January 24, 2022. Accepted February 22, 2022.

Key words and phrases: Conjugacy, rp-hom, digraphs.

^{*} Corresponding Author.

⁽c) The Kangwon-Kyungki Mathematical Society, 2022.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

The relation \sim_o is not useful for semigroups S with zero since for every such S, we have $\sim_o = S \times S$. This deficiency has been remedied in [6], where the following relation has been defined on an arbitrary semigroup S,

 $x \sim_c y \Leftrightarrow \exists p \in \mathbb{P}^1(x), q \in \mathbb{P}^1(y)$ such that xp = py and yq = qx,

where for $x \neq 0$, $\mathbb{P}(x) = \{p \in S^1 : (mx)p \neq 0 \text{ for all } mx \in S^1(x) \setminus \{0\}\}$ and $\mathbb{P}(0) = \{1\}$. The relation \sim_c is an equivalence relation on any semigroup S and it does not get reduce to $S \times S$ if S has a zero, and it is equal to \sim_o if S does not have a zero.

Further, J. Konieczny in [7] introduced the \sim_n notion of conjugacy in semigroups. If S is a semigroup and let $x, y \in S$. Then,

$$x \sim_n y \Leftrightarrow \exists p, q \in S^1$$
 such that $xp = py, yq = qx, x = pyq$ and $y = qxp$.

This relation is an equivalence relation in any semigroup and does not get reduced to a universal relation in a semigroup with zero.

The aim of this paper is to introduce a new definition of conjugacy in an arbitrary semigroup. The new conjugacy is an equivalence relation \sim_r (the *r*-conjugacy) on any semigroup S.

J.Araujo et.al in [6] characterized \sim_c conjugacy in constant rich subsemigroups of $\mathcal{P}(T)$ (the semigroup of partial maps on a non empty set T) with the help of rp-hom of their digraphs. In this paper we prove similar results for \sim_r notion of conjugacy for any subsemigroup of $\mathcal{P}(T)$ without the assumption of constant rich on S.

2. The notion \sim_r

If S is a semigroup and let $x, y \in S$. Then,

 $x \sim_r y \Leftrightarrow \exists p, q, u, v \in S^1$ such that xp = py, yq = qx, x = pyu and y = qxv.

THEOREM 2.1. If S is a semigroup then

- (1) \sim_r is an equivalence relation in any semigroup.
- (2) $[0]_r = \{0\}.$

(3) If S is a group then \sim_r reduces to the usual notion of conjugacy.

Proof. (1) Let $x \sim_r y$ then there exists $p, q, u, v \in S^1$ such that xp = py, yq = qx, x = pyu and y = qxv.

- (i) **Reflexivity:** We take p = q = u = v = 1 and we get the required.
- (ii) **Symmetry:** This condition is by definition of notion.
- (iii) **Transitivity:** Let $x \sim_r y$ and $y \sim_r z$ then there exists p_1, q_1, u_1, v_1 and p_2, q_2, u_2, v_2 such that $xp_1 = p_1y, yq_1 = q_1x, x = p_1yu_1$ and $y = q_1xv_1$ and $xp_2 = p_2y, yq_2 = q_2x, x = p_2yu_2$ and $y = q_2xv_2$. Now $xp_1p_2 = p_1yp_2 = p_1p_2z$, $zq_2q_1 = q_2yq_1 = q_2q_1x, x = p_1yu_1 = p_1p_2zu_2u_1$ and $z = q_2yv_2 = q_2q_1xv_1v_2$. Hence $x \sim_r z$.

(2) Let $x \neq 0$ and let $x \sim_r 0$ then there exists $p, q, u, v \in S^1$ such that xp = p0, 0q = qx, x = p0u and 0 = qxv. This means x = 0. So we get $[0]_r = \{0\}$.

(3) Let $x \sim_r y$ then there exists $p, q, u, v \in S^1$ such that xp = py, yq = qx, x = pyuand y = qxv. From xp = py we can pre-multiply by p^{-1} both sides to get $y = g^{-1}xg$ which is the usual notion of conjugacy.

THEOREM 2.2. Let S be a semigroup then $\sim_n \subseteq \sim_r \subseteq \sim_c \subseteq \sim_o$.

110

Proof. Let $x, y \in S^1$ and let $x \sim_n y$ then there exists $p, q \in S^1$ such that xp = py, yq = qx, x = pyq and y = qxp. we can take u = q and v = p so $x \sim_r y$. Thus $\sim_n \subseteq \sim_r$. Next we prove $\sim_r \subseteq \sim_c$. Let $x \sim_r y$ then there exist $p, q, u, v \in S^1$ such that xp = py, yq = qx, x = pyu and y = qxv. If x = 0 then y = 0 since $[0]_r = 0$ and so $x \sim_c y$. Suppose $x \neq 0$ and let $m \in S^1$ be such that $mx \neq 0$. Then $(mx)p \neq 0$ since if (mx)p = 0 then mpy = 0 which further implies mpyu = 0 which implies mx = 0 which is a contradiction. Hence $(mx)p \neq 0$. Similarly, if $m \in S^1$ is such that $my \neq 0$ then $(my)q \neq 0$. So, $p \in \mathbb{P}^1(x)$ and $q \in \mathbb{P}^1(y)$. Hence $x \sim_c y$. Since $\sim_c \subseteq \sim_o$ is obvious. Hence we get the required result.

3. \sim_r notion of conjugacy through digraphs in $\mathcal{P}(T)$

DEFINITION 3.1. Let T be any set and R be a binary relation on T then $\Gamma = (T, R)$ is called a *directed graph* (or a *digraph*). Any $p \in T$ is called a *vertex* and any $(p,q) \in R$ is called an *arc* of Γ .

For example, Let $T = \{1, 2, 3, 4\}$ and $R = \{(1, 2), (2, 3)\}$. Then the digraph Γ is as under,

 $\stackrel{1}{\bullet} \longrightarrow \stackrel{2}{\bullet} \longrightarrow \stackrel{3}{\bullet} \stackrel{4}{\bullet} .$

DEFINITION 3.2. A vertex $p \in T$ for which there exists no q in T such that $(p,q) \in R$ is called a *terminal vertex* of Γ . A vertex $p \in T$ is said to be initial vertex if there is no $q \in T$ for which $(q,p) \in R$ while as a vertex $p \in T$ is said to be a non initial vertex if $(q,p) \in R$ for some $q \in T$.

For any $\sigma \in \mathcal{P}(T)$, $\Gamma(\sigma) = (T, R_{\sigma})$ represents a digraph, where for all $p, q \in T, (p,q) \in R_{\sigma}$ if and only if $p \in \text{dom}(\sigma)$ and $p\sigma = q$. For example, If $T = \{1, 2, 3\}$ and $R_{\sigma} = \{(1,2), (2,1)\}$. Then the digraph $\Gamma(\sigma)$ is represented as

 $\stackrel{1}{\bullet} \longrightarrow \stackrel{2}{\bullet} \longrightarrow \stackrel{1}{\bullet}$.

For a non-empty set T, we fix an element $\diamond \notin T$. For $\sigma \in \mathcal{P}(T)$ and $t \in T$, we will write $t\sigma = \diamond$, if and only if $t \notin \operatorname{dom}(\sigma)$. we also assume that $\diamond \sigma = \diamond$. With this notation it makes sense to write $s\sigma = t\tau$ or $s\sigma \neq t\tau$ $(\sigma, \tau \in \mathcal{P}(T), s, t \in T)$ even when $s \notin \operatorname{dom}(\sigma)$ or $t \notin \operatorname{dom}(\tau)$. For any $\sigma \in \mathcal{P}(T)$ span (σ) represents $\operatorname{dom}(\sigma) \cup \operatorname{im}(\sigma)$.

For semigroups U and S, we write $U \leq S$ to mean that U is a subsemigroup of S.

DEFINITION 3.3. Let $\Gamma_1 = (T_1, R_1)$ and $\Gamma_2 = (T_2, R_2)$ be digraphs. A mapping α from T_1 to T_2 is called a *homomorphism* from Γ_1 to Γ_2 if for all $p, q \in T_1, (p, q) \in R_1$ implies $(p\alpha, q\alpha) \in R_2$. A partial mapping α from T_1 to T_2 is called a *partial homomorphism* from Γ_1 to Γ_2 if for all $p, q \in dom(\alpha), (p, q) \in R_1$ implies $(p\alpha, q\alpha) \in R_2$.

DEFINITION 3.4. A partial homomorphism α from T_1 to T_2 is called a *restrictive* partial homomorphism from Γ_1 to Γ_2 if it satisfies the following conditions:

- (a) If $(p,q) \in R_1$, then $p,q \in \text{dom}(\alpha)$ and $(p\alpha,q\alpha) \in R_2$.
- (b) If p is a terminal vertex in Γ_1 and $p \in \text{dom}(\alpha)$, then $p\alpha$ is a terminal vertex in Γ_2 .

We say that Γ_1 is *rp-homomorphic* to Γ_2 if there is an rp-homomorphism from Γ_1 to Γ_2 .

Throughout this paper by an rp-hom we shall mean an rp-homomorphism between any two digraphs and by hom we shall mean a homomorphism. The next theorem provides necessary and sufficient condition for two elements of subsemigroup of $\mathcal{P}(T)$ to be \sim_r related.

THEOREM 3.5. Let $S \leq \mathcal{P}(T)$ and $\sigma, \tau \in S$. Then $\sigma \sim_r \tau$ if and only if there are $\alpha, \beta, \phi, \psi \in S^1$ for which α is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$ and β is an rp-hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$ with $q\alpha\phi = q$ for every non initial vertex q of $\Gamma(\sigma)$ and $k\beta\psi = k$ for every non initial vertex k of $\Gamma(\tau)$.

Proof. Suppose $\sigma \sim_r \tau$ in S. If $\sigma = 0$ then $\tau = 0$ and so $\alpha = \mathrm{id}_T \in S^1$ is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$ and $\beta = \mathrm{id}_T \in S^1$ is an rp-hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$. Next suppose $\sigma \neq 0$ and let $\sigma \sim_r \tau$ in S then $\sigma \alpha = \alpha \tau, \tau \beta = \beta \sigma, \sigma = \alpha \tau \phi$ and $\tau = \beta \sigma \psi$ for some $\alpha, \beta, \phi, \psi \in S^1$. Let $(p, q) \in \sigma$. Then $p \alpha \tau \phi = q$, $(p \alpha) \tau \phi = q$ which implies $p \in \mathrm{dom}\alpha$. Again

(3.1)
$$q\alpha\phi = (p\sigma)\alpha\phi = p\sigma\alpha\phi = p\alpha\tau\phi = p\sigma = q$$

which implies $q \in \text{dom}\alpha$. Next $(p\alpha)\tau = p\alpha\tau = p\sigma\alpha = q\alpha$ (by 3.1) $\neq \diamond$, $(p\alpha, q\alpha) \in \Gamma(\tau)$. Again let p be a terminal vertex of $\Gamma(\sigma)$ and $p \in \text{dom}\alpha$ then as $\sigma\alpha = \alpha\tau$, $(p\alpha)\tau = p\alpha\tau = p\sigma\alpha = \diamond\alpha = \diamond$. Thus $p\alpha$ is a terminal vertex in $\Gamma(\tau)$. So α is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$. Again by using $\tau\beta = \beta\sigma$ and $\tau = \beta\sigma\psi$ we can prove the β is an rp-hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$.

Conversely let there are $\alpha, \beta, \phi, \psi \in S^1$ for which α is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$ and β is an rp-hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$ with $q\alpha\phi = q$ for every non initial vertex q of $\Gamma(\sigma)$ and $k\beta\psi = k$ for every non initial vertex k of $\Gamma(\tau)$. We show $\sigma \sim_r \tau$ in S. Let $p \in T$. The following cases arise.

Case 1: Suppose $p \notin \text{dom}\sigma$, then $p\sigma = \diamond$. Then $p(\sigma\alpha) = (p\sigma)\alpha = \diamond\alpha = \diamond$. If $p \notin \text{dom}\alpha$ then $p(\alpha\tau) = (p\alpha)\tau = \diamond$. So, $\sigma\alpha = \alpha\tau$. Also $p\alpha\tau\phi = \diamond$, so $\sigma = \alpha\tau\phi$. If $p \in \text{dom}\alpha$ then as p is a terminal vertex of $\Gamma(\sigma)$ and since α is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$ we have $p(\alpha\tau) = \diamond$ so $p\alpha\tau\phi = \diamond$ i.e, $\sigma = \alpha\tau\phi$ in this case.

Case 2: Suppose $p \in \text{dom}\sigma$ and let $q = p\sigma$. Then by definition of rp-hom $p, q \in \text{dom}\alpha$ and $(p\alpha)\tau = q\alpha$. Hence $p(\sigma\alpha) = (p\sigma)\alpha = q\alpha$ and $p(\alpha\tau) = (p\alpha)\tau = q\alpha$. So, $\sigma\alpha = \alpha\tau$. Also, $p\alpha\tau\phi = p\sigma\alpha\phi = q\alpha\phi = q$ as $q\alpha\phi = q$ for any non initial vertex q of $\Gamma(\sigma)$. So, $\sigma = \alpha\tau\phi$.

By symmetry β is an rp-hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$ such that $\tau\beta = \beta\sigma$ and $\tau = \beta\sigma\psi$. Thus $\sigma \sim_r \tau$. This proves the Theorem.

If $\sigma, \tau \in \mathcal{T}(T)$ (the semigroup of full transformations on T). Then every rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$ is hom. So we have the following corollary.

COROLLARY 3.6. Let $S \leq \mathcal{T}(T)$ and $\sigma, \tau \in S$. Then $\sigma \sim_r \tau$ if and only if there are $\alpha, \beta, \phi, \psi \in S^1$ such that α is a hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$ and β is a hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$ with $q\alpha\phi = q$ for every non initial vertex q of $\Gamma(\sigma)$ and $k\beta\psi = k$ for every non initial vertex k of $\Gamma(\tau)$.

4. \sim_r notion of conjugacy through connected partial transformations

DEFINITION 4.1. Let $\dots, p_{-2}, p_{-1}, p_0, p_1, p_2, \dots$ be pairwise distinct elements of T. The following maps introduced by J. Araujo et al in [6] are very important for our study.

(1) A $\sigma \in \mathcal{P}(T)$ is called a *cycle* of length k if $\sigma = (p_0 p_1 p_2 \cdots p_{k-1})$ where $(k \ge 1)$. i.e., $p_j = p_{j-1}\sigma$, $j = 1, 2, \cdots, k$ and $p_0 = p_{k-1}\sigma$ and we write it as r-notion of conjugacy in partial transformation semigroup

$$p_0 \to p_1 \to p_2 \to \cdots \to p_{k-1} \to p_0$$

(2) A $\sigma \in \mathcal{P}(T)$ is called a *right ray* if $\sigma = [p_0 \ p_1 \ p_2 \cdots > .$ i.e., $p_j = p_{j-1}\sigma, \ j \ge 1$ and we write it as

$$p_0 \rightarrow p_1 \rightarrow p_2 \rightarrow \cdots$$

(3) A $\sigma \in \mathcal{P}(T)$ is called a *double ray* if $\sigma = \langle \cdots p_{-1} p_0 p_1 \cdots \rangle$. i.e., $p_j = p_{j-1}\sigma$, $j \in \mathbb{Z}$ and we write it as

$$\cdots \rightarrow p_{-1} \rightarrow p_0 \rightarrow p_1 \rightarrow p_2 \rightarrow \cdots$$

(4) A $\sigma \in \mathcal{P}(T)$ is called a *left ray*, if $\sigma = \langle \cdots p_2 p_1 p_0]$. i.e., $p_j \sigma = p_{j-1}, j \ge 1$ and we write it as

$$\cdots \rightarrow p_2 \rightarrow p_1 \rightarrow p_0$$

(5) A $\sigma \in \mathcal{P}(T)$ is called a *chain* of length k if $\sigma = [p_0 \ p_1 \ p_2 \cdots p_k]$. i.e., $p_j = p_{j-1}\sigma$, $j = 1, 2, \cdots, k$ and we write it as

$$p_0 \to p_1 \to p_2 \to \cdots \to p_k.$$

These are called as *basic partial maps*.

DEFINITION 4.2. Any element $\kappa \neq 0$ in $\mathcal{P}(T)$ is said to be *connected* if for some non negative integers $m, n, p\kappa^m = q\kappa^n \neq \diamond$ for all $p, q \in \text{span}(\kappa)$.

For example, Let $T = \{1, 2, 3, 4, 5\}$. Define $\kappa \in \mathcal{P}(T)$ by $\kappa = \{(1, 2), (2, 3), (3, 4)\}$, then the diagraph of κ is as under

$$\stackrel{1}{\bullet} \longrightarrow \stackrel{2}{\bullet} \longrightarrow \stackrel{3}{\bullet} \longrightarrow \stackrel{4}{\bullet}.$$

Then κ is connected.

DEFINITION 4.3. For $\sigma, \tau \in \mathcal{P}(T)$, if dom $(\tau) \subseteq \text{dom}(\sigma)$ and $p\tau = p\sigma$ for every $p \in \text{dom}(\tau)$ then τ is said to be *contained* in σ written as $\tau \subseteq \sigma$. They are *disjoint* if dom $(\sigma) \cap \text{dom}(\tau) = \emptyset$ and *completely disjoint* if span $(\sigma) \cap \text{span}(\tau) = \emptyset$.

For example, $[p \ q \ r \ s \cdots > \text{and} \ [a \ b \ c \ p] \text{ in } \mathcal{P}(\mathbb{Z})$ are disjoint while as $[a \ b \ \cdots > \text{ and} \ [u \ v]$ are completely disjoint.

DEFINITION 4.4. Let C be a set of pairwise disjoint elements of $\mathcal{P}(T)$. Then, for $x \in T$

$$x(\bigcup_{\kappa \in C} \kappa) = \begin{cases} x\kappa \text{ if } x \in \operatorname{dom}(\kappa) \text{ for some } \kappa \in C \\ \diamond \text{ otherwise.} \end{cases}$$

is called the *join* of the elements of C denoted by $\bigcup_{\kappa \in C} \kappa$.

DEFINITION 4.5. Let $\sigma \in \mathcal{P}(T)$ and let ν be a basic partial map with $\nu \subset \sigma$ then ν is maximal in σ if $x \notin \operatorname{dom}(\nu)$ implies $x \notin \operatorname{dom}(\sigma)$ and $x \notin \operatorname{im}(\nu)$ implies $x \notin \operatorname{im}(\sigma)$ for every $x \in \operatorname{span}(\nu)$.

For example, Let $\sigma = [p \ q \ r \ s \cdots > \cup [a \ b \ c \ p] \in \mathcal{P}(\mathbb{Z})$. Then σ contains infinitely many right rays. For example, $[c \ p \ q \ r \cdots > but only two of them namely <math>[p \ q \ r \ s \cdots > and [a \ b \ c \ p \ q \ r \ s \cdots > are maximal in \sigma.$

PROPOSITION 4.6. [6, Proposition 4.5] Let $\sigma \in \mathcal{P}(T)$ with $\sigma \neq 0$. Then there exists a unique set C of pairwise completely disjoint, connected maps contained in σ such that $\sigma = \bigcup_{\kappa \in C} \kappa$.

The components of C in Proposition 4.6 are called as connected *components* of σ . Through out this paper by c-component we shall mean a connected component.

EXAMPLE 4.7. Let $T = \{1, 2, 3, 4, 5\}$ and $\sigma \in \mathcal{P}(T)$ be defined as $\sigma = \{(1, 2), (2, 3), (4, 5)\}$. (4,5)}. Clearly σ has a unique representation in terms of of pairwise completely disjoint, connected maps contained in σ . i.e., $\sigma = \bigcup_{\sigma_i \in C} \sigma_i$ where $C = \{\sigma_1, \sigma_2\}$ and $\sigma_1 = \{(1, 2), (2, 3)\}$ and $\sigma_2 = \{(4, 5)\}$.

For any c-component κ of $\sigma \in \mathcal{P}(T)$, α_{κ} denotes the restriction of σ on Span (κ) .

LEMMA 4.8. Let $S \leq \mathcal{P}(T)$ and $\sigma, \tau \in S$ with $\sigma \sim_r \tau$ then there exists $\alpha, \beta \in S^1$ such that $\operatorname{dom}(\alpha) = \operatorname{span}(\sigma)$ and $\operatorname{dom}(\beta) = \operatorname{span}(\tau)$.

Proof. Let $\sigma \sim_r \tau$ then there exists $\alpha, \beta, \phi, \psi \in S^1$ such that $\sigma \alpha = \alpha \tau, \tau \beta = \beta \sigma, \sigma = \alpha \tau \phi$ and $\tau = \beta \sigma \psi$. By Theorem 3.5, α is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$ and β is an rp-hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$. We have to show that dom $(\alpha) = \operatorname{span}(\sigma)$. Let $x \in \operatorname{span}(\sigma)$ which means $x \in \operatorname{dom}(\sigma) \cup \operatorname{im}(\sigma)$. If $x \in \operatorname{dom}(\sigma)$ then there exists $y \in T$ such that $(x, y) \in \sigma$. Since α is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$. Therefore $x, y \in \operatorname{dom}(\alpha)$. So in this case $\operatorname{span}(\sigma) \subseteq \operatorname{dom}(\alpha)$. Similarly if $x \in \operatorname{im}(\sigma)$ then $\operatorname{span}(\sigma) \subseteq \operatorname{dom}(\alpha)$. Next we have to show $\operatorname{dom}(\alpha) \subseteq \operatorname{span}(\sigma)$. Since $\sigma = \alpha \tau \phi$, implies $\operatorname{dom}(\alpha) = \operatorname{dom}(\sigma) \subseteq \operatorname{span}(\sigma)$ implies $\operatorname{dom}(\alpha) \subseteq \operatorname{span}(\sigma)$. By similar arguments we can show that $\operatorname{dom}(\beta) = \operatorname{span}(\tau)$.

The next Proposition is the interconnection of c-components and \sim_r notion of conjugacy.

PROPOSITION 4.9. Let $S \leq \mathcal{P}(T)$ and $\sigma, \tau \in S$. Then, $\sigma \sim_r \tau$ if and only if

- (1) For every c-component κ of σ there exist a c-component λ of τ and an rp-hom $\alpha_{\kappa} \in \mathcal{P}(T)$ from $\Gamma(\kappa)$ to $\Gamma(\lambda)$ with $dom(\alpha_{\kappa}) = span(\kappa)$. Similar holds from τ to σ .
- (2) $\bigcup_{\kappa \in C} \alpha_{\kappa} \in S^1$, where C is the collection of c-components of σ . Similar holds for τ .
- (3) There is $\alpha, \beta, \phi, \psi \in S^1$ such that $q\alpha\phi = q$ for any non initial vertex q of $\Gamma(\sigma)$ and $k\beta\psi = k$ for every non initial vertex k of $\Gamma(\tau)$.

Proof. If $\sigma = 0$ then $\tau = 0$ and the result follows trivially. Suppose $\sigma \neq 0$ then $\tau \neq 0$ and let $\sigma \sim_r \tau$, then there is $\alpha, \beta, \phi, \psi \in S^1$ such that $\sigma \alpha = \alpha \tau, \tau \beta = \beta \sigma, \sigma = \alpha \tau \phi$ and $\tau = \beta \sigma \psi$ and so by Theorem 3.5, α is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$ and β is an rp-hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$. By Lemma 4.8 dom $\alpha = \operatorname{span}(\sigma)$. By Proposition 4.6 $\sigma = \bigcup_{\kappa \in C} \kappa$ and $\tau = \bigcup_{\lambda \in C'} \lambda$ for some sets C, C' of pairwise completely disjoint connected maps contained in σ and τ respectively. Let κ be a c-component of σ and let $p \in \operatorname{span}(\kappa)$, since α is an rp-hom this means $p\alpha \in \lambda$ for some c-component λ of τ . We claim that $(\operatorname{span}(\kappa))\alpha \subseteq \operatorname{span}(\lambda)$. Let $z \in \operatorname{span}(\kappa)$ then by definition of connectedness there exists $r, s \geq 0$ such that $p\sigma^r = p\kappa^r = z\kappa^s = z\sigma^s \neq \diamond$. Since $\sigma \sim_r \tau$ we have $(z\alpha)\tau^s = (z\sigma^s)\alpha = (p\sigma^r)\alpha = (p\alpha)\tau^r \neq \diamond$ which implies $p\alpha$ and $z\alpha$ are in the span of same c-component of τ . So $z\alpha \in \operatorname{span}(\lambda)$. The claim has been proved. Let $\alpha_{\kappa} = \alpha|_{\operatorname{span}(\kappa)}$. Then α_{κ} is an rp-hom from $\Gamma(\kappa)$ to $\Gamma(\lambda)$ with dom $(\alpha_{\kappa}) = \operatorname{span}(\kappa)$. Also $\bigcup_{\kappa \in C} \alpha_{\kappa} = \alpha \in S^1$ (by the definition of α_{κ}) and by dom(α) = span(σ)). Similar holds from τ to σ .

Conversely, suppose that (1), (2) and (3) are satisfied. Let $\alpha = \bigcup_{\kappa \in C} \alpha_{\kappa}$. Note that α is well defined since α_{κ} and $\alpha_{\kappa'}$ are disjoint if $\kappa \neq \kappa'$. Suppose $(q, z) \in \sigma$. Then $q, z \in \operatorname{span}(\kappa)$ for some c-component κ of σ . Thus $q, z \in \operatorname{dom}(\alpha_{\kappa})$ and $q\alpha = q\alpha_{\kappa} \to z\alpha_{\kappa} = z\alpha$, implying $q\alpha \xrightarrow{\tau} z\alpha$.

Suppose q is a terminal vertex in $\Gamma(\sigma)$ and $q \in \text{dom}(\sigma)$. Then there is a unique c-component κ of σ such that q is a terminal vertex in $\Gamma(\kappa)$. Then $q\alpha = q\alpha_{\kappa}$ is a terminal vertex in $\Gamma(\lambda)$ and so a terminal vertex in $\Gamma(\tau)$. Hence α is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$. Further dom $(\alpha) = \text{span}(\sigma)$, (by the definition of α) and $\alpha \in S^1$ (by (2)). By symmetry, we can similarly prove for β . Then by condition (3) and by Theorem 3.5 we have $\sigma \sim_r \tau$.

DEFINITION 4.10. Let X be a nonempty subset of the set \mathbb{Z}_+ of positive integers. Then X is partially ordered by the relation |(divides)|. Order the elements of X according to usual less than relation as $x_1 < x_2 < x_3 \cdots$, we define a subset sac(X) of X as follows : for every integer $n, 1 \leq n < |X| + 1$,

 $\operatorname{sac}(X) = \{x_n \in X: \text{ for all } i < n, x_n \text{ is not a multiple of } x_i\}.$

The set sac(X) is a maximal anti-chain of the poset (X, |). We will call sac(X), the standard anti-chain of X.

For example, if $X = \{2, 4, 7\}$ then $sac(X) = \{2, 7\}$.

Let σ be in $\mathcal{P}(T)$ such that σ contains a cycle. Let X denote the set of lengths of cycles in σ . The standard anti-chain of (X, |) will be called the *cycle set* of σ and denoted by $cs(\sigma)$.

DEFINITION 4.11. A connected partial map κ is said to be of rro type (right rays only) if it has a maximal right ray but no cycles, double rays, left rays or maximal chains, and is of cho type (chains only) if it has a maximal chain but no cycles or rays.

LEMMA 4.12. [6, Lemma 4.11] Let $\kappa \in \mathcal{P}(T)$ such that κ contains a maximal left ray or it is of cho type. Then κ contains a unique terminal vertex.

DEFINITION 4.13. Let $\kappa \in \mathcal{P}(T)$ be connected such that κ has a maximal left ray or is of cho type. The unique terminal vertex of κ established by Lemma 4.12 will be called the root of κ .

A relation R on a non empty set E is called well founded if every nonempty subset $D \subseteq E$ contains an R-minimal element that is, $p \in D$ exists such that there is no $q \in D$ with $(q, p) \in R$. Let R be a well-founded relation on a set E. Then there is a unique function π defined on E having values as ordinals so that

$$\pi(p) = \sup\{\pi(q) + 1 : (q, p) \in R\}.$$

for every $p \in E$ is called the rank of p in $\langle E, R \rangle$ [11, Theorem 2.27] which proves (1) and (2). The condition (3) follows from Theorem 3.5.

Let $\kappa \in \mathcal{P}(T)$ be connected of rro type or cho then $\pi_{\kappa}(p)$ denotes the rank of p under the relation κ .

EXAMPLE 4.14. Let $T = \{x, y, c, \dots, x_1, y_1, z_1 \dots\}$ and let $\kappa = [x, y, z, \dots \ge \mathcal{P}(T)$. Then $\pi(x) = 0, \pi(y) = 1$ and so on.

Let $< u_q>_{q\geq 0}$ and $< v_q>_{q\geq 0}$ be sequences of ordinals. Then we say that $< v_q>$ dominates $< u_q>$ if

 $v_{q+r} \ge u_q$ for every $q \ge 0$ and for some $r \ge 0$.

Let $\kappa \in \mathcal{P}(T)$ be connected of rro type and $\mu = [p_0 p_1 p_2 \cdots > be a maximal right ray in <math>\kappa$. We denote by $\langle \mu_q^{\kappa} \rangle_{q \geq 0}$ the sequence of ordinals with

 $\mu_q^{\kappa} = \pi_{\kappa}(p_q)$ for every $q \ge 0$.

For example, let $T = \{p_0, p_1, p_2, \dots, q_0, q_1, q_2, \dots\}$ and let $\kappa = [p_0 p_1 p_2 p_3 \dots > \cup [q_0 p_2] \cup [q_1 q_2 p_2] \cup [q_3 q_4 q_5 p_2] \cup [q_6 q_7 q_8 q_9 p_2] \cup \dots \in \mathcal{P}(T)$ and $\mu = [p_0 p_1 p_2 \dots > \in \kappa$, then the sequence $< \mu_q^{\kappa} > \text{is } < 0, 1, \omega, \omega + 1, \omega + 2, \omega + 3, \dots >$.

The next results (Proposition 4.15 to Proposition 4.20) are from Araujo et.al [6] and are required to prove the Theorem 4.23.

PROPOSITION 4.15. Let $\kappa, \lambda \in \mathcal{P}(T)$ be connected such that κ has a cycle $(p_0p_1 \cdot \cdots \cdot p_{k-1})$. Then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ if and only if λ has a cycle $(q_0q_1...q_{m-1})$ such that m|k.

LEMMA 4.16. Let $\kappa, \lambda \in \mathcal{P}(T)$ be connected such that λ has a cycle $(q_0 q_1 \dots q_{m-1})$. Suppose κ has a double ray or is of rro type. Then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$.

LEMMA 4.17. Let κ , $\lambda \in \mathcal{P}(T)$ be connected. Suppose that λ has a double ray and κ either has a double ray or has rro type. Then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$.

LEMMA 4.18. Let $\kappa, \lambda \in \mathcal{P}(T)$ be connected. Suppose that λ has a maximal left ray and κ either has a maximal left ray or is of cho type. Then $\Gamma(\kappa)$ is rp-hom $\Gamma(\lambda)$.

PROPOSITION 4.19. Let $\kappa, \lambda \in \mathcal{P}(T)$ be connected of the type with roots p_0 and q_0 respectively. Then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ if and only if $\pi(x_0) \leq \pi(y_0)$.

PROPOSITION 4.20. Let $\kappa, \lambda \in \mathcal{P}(T)$ be connected of rro type. Then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ if and only if there are maximal right ray μ in κ and η in λ such that $<\eta_n^{\lambda} > \text{dominates} < \mu_n^{\kappa} >.$

LEMMA 4.21. Let $\kappa, \lambda \in \mathcal{P}(T)$ be connected with κ being of rro type and suppose $\kappa \sim_r \lambda$, then λ cannot have a maximal left ray or is of cho type.

Proof. Let $\kappa \sim_r \lambda$ then by Theorem 3.5 there exists α which is an rp-hom from $\Gamma(\kappa)$ to $\Gamma(\lambda)$. Let $[a_0a_1a_2\cdots >$ be a right ray in κ . Suppose to the contrary that λ has a maximal left ray or is of cho type. Let b_0 be the root of λ . By definition of connectedness there exists $k \geq 0$ such that $(a_0\alpha)\lambda^k = b_0$. As $\kappa \sim_r \lambda$, $\kappa\alpha = \alpha\lambda$ and so $(a_0\alpha)\lambda^{k+1} = (a_0\kappa^{k+1})\alpha = a_{k+1}\alpha$. But $(a_0\alpha)\lambda^{k+1} = (a_0\alpha)\lambda^k\lambda = b_0\lambda = \diamond$ and so $a_{k+1}\alpha = \diamond$ which is a contradiction. Hence the result follows.

LEMMA 4.22. Let $\sigma, \tau \in \mathcal{P}(T)$ such that $\sigma \sim_r \tau$. If σ contains a cycle of length r, then τ has a cycle of length s such that s|r.

116

Proof. Let σ contains a cycle of length r and let $\sigma \sim_r \tau$. By Proposition 4.6, $\sigma = \bigcup_{\kappa \in C} \kappa$ where C is the set of pairwise completely disjoint connected maps contained in σ and $\tau = \bigcup_{\lambda \in C'} \lambda$ where C' is the set of pairwise completely disjoint connected maps contained in τ . By Proposition 4.9, for a c-component κ of σ containing a cycle of length r there exists a c-component λ of τ such that $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$. Then by Proposition 4.15, λ has a cycle of length s such that s|r. So if σ contains a cycle of length r, then τ has a cycle of length s such that s|r.

By Theorem 3.5 and the above discussed results we now prove a result on \sim_r notion of conjugacy in sybsemigroups of $\mathcal{P}(T)$.

THEOREM 4.23. Let $\sigma, \tau \in \mathcal{P}(T)$. Then $\sigma \sim_r \tau$ in S if and only if $\sigma = \tau = 0$ or $\sigma, \tau \neq 0$ and the following conditions hold:

- (1) There is $\alpha, \beta, \phi, \psi \in S^1$ such that $q\alpha\phi = q$ for any non initial vertex q of $\Gamma(\sigma)$ and $k\beta\psi = k$ for every non initial vertex k of $\Gamma(\tau)$;
- (2) $cs(\sigma) = cs(\tau);$
- (3) σ contains a double ray but no cycle if and only if τ contains a double ray but no cycle;
- (4) If σ contains a c-component κ of rro type but no cycles or double rays then τ contains a c-component λ of rro type but no cycles or double rays and $\langle \eta_p^{\lambda} \rangle$ dominates $\langle \mu_p^{\kappa} \rangle$ for some maximal right rays μ in κ and η in λ ;
- (5) If τ contains a c-component λ of rro type but no cycles or double rays then σ contains a c-component κ of rro type but no cycles or double rays and $\langle \mu_p^{\kappa} \rangle$ dominates $\langle \eta_p^{\lambda} \rangle$ for some maximal right rays η in λ and μ in κ ;
- (6) σ contains a maximal left ray if and only if τ contains a maximal left ray;
- (7) If σ contains a c-component κ of cho type with root p_0 but no maximal left rays then τ contains a c-component λ of cho type with root q_0 but no maximal left rays, and $\pi_{\kappa}(p_0) \leq \pi_{\lambda}(q_0)$;
- (8) If τ contains a c-component λ of cho type with root q_0 but no maximal left ray then σ contains a c-component κ of cho type with root p_0 but no maximal left rays, and $\pi_{\lambda}(q_0) \leq \pi_{\kappa}(p_0)$.

Proof. Let $\sigma \sim_r \tau$ in S. Suppose $\sigma = \tau = 0$ then condition (1) to (8) holds trivially. Suppose $\sigma, \tau \neq 0$ then by Theorem 3.5 there exists $\alpha, \beta, \phi, \psi \in S^1$ such that α is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$ and β is an rp-hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$ with $q\alpha\phi = q$ for any non initial vertex q of $\Gamma(\sigma)$ and $k\beta\psi = k$ for every non initial vertex k of $\Gamma(\tau)$. By Lemma 4.8, we can assume that dom $(\alpha) = \operatorname{span}(\sigma)$.

- (2) Suppose σ has a cycle. Then, by Lemma 4.22, τ also has a cycle. Let $r \in cs(\sigma)$. Then σ has a cycle of length r, and so again by Lemma 4.22, τ has a cycle of length s such that s|r. By the definition of $cs(\tau)$, there is $s_1 \in cs(\tau)$ such that $s_1|s$. Thus τ has a cycle of length s_1 and so by Lemma 4.22, σ has a cycle of length r_1 such that $r_1|s_1$. Hence $r_1|s_1|s|r$. Since $cs(\sigma)$ is an anti-chain, $r_1|r$ and $r \in cs(\sigma)$ implies $r_1 = r$. Thus $r = r_1 = s_1$ and so $r \in cs(\tau)$. We have proved that $cs(\sigma) \subseteq cs(\tau)$. The converse follows by symmetry. Hence $cs(\tau) = cs(\sigma)$. If neither σ nor τ has a cycle, then $cs(\sigma) = cs(\tau) = \phi$.
- (3) Suppose σ has a double ray but no cycles. Then by Lemma 4.22 τ cannot have a cycle. Also since $\Gamma(\sigma)$ is rp-hom to $\Gamma(\tau)$, so we have $\langle \cdots p_{-1} p_0 p_1 \cdots \rangle$. The elements $\cdots p_{-1}\alpha$, $p_0\alpha$, $p_1\alpha$, \cdots are pairwise distinct (since otherwise τ would

have a cycle), and so $\langle \cdots p_{-1} \alpha p_0 \alpha p_1 \alpha \cdots \rangle$ is a double ray in τ . The converse is true by symmetry.

- (4) Suppose σ has a c-component κ of rro type but no cycle or a double ray. By Proposition 4.9, there is a c-component κ of τ so that $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$. By (1) and (2), λ does not have a cycle nor a double ray. By Lemma 4.21, λ does not have a maximal left ray or is of cho type. Hence λ is rro type. By Proposition 4.20, there are maximal right rays μ in κ and η in λ such that $< \eta_p^{\lambda} >$ dominates $< \mu_p^{\kappa} >$.
- (5) It follows by symmetry of (3).
- (6) Suppose σ has a maximal left ray $\langle \cdots p_2 \ p_1 \ p_0]$. Then since $\Gamma(\sigma)$ is rp-hom to $\Gamma(\tau)$ we have $\cdots \xrightarrow{\tau} p_2 \alpha \xrightarrow{\tau} p_1 \alpha \xrightarrow{\tau} p_0 \alpha$ and $p_0 \alpha$ is a teriminal vertex in $\Gamma(\tau)$, which implies that $\langle \cdots p_2 \alpha \ p_1 \alpha \ p_0 \alpha]$ is a maximal left ray in τ . The converse is true by symmetry.
- (7) Suppose σ has a c-component κ of cho type with root p_0 but no maximal left ray. By Proposition 4.9 and its proof, there is a c-component λ of τ such that $\alpha_{\kappa} = \alpha |(\operatorname{span}(\kappa))|$ is an rp-hom from $\Gamma(\kappa)$ to $\Gamma(\lambda)$. Since p_0 is a terminal vertex in κ , $q_0 = p_0 \alpha_{\kappa}$ is a terminal vertex in λ . Since τ has no maximal left ray (by(3)), λ is of cho type and q_0 is the root of λ . Therefore by Proposition 4.20, $\pi_{\kappa}(p_0) \leq \pi_{\lambda}(q_0)$.
- (8) Proof follows by symmetry of (6).

Conversely, if $\sigma = \tau = 0$, then $\sigma \sim_r \tau$. Suppose $\sigma, \tau \neq 0$ and all conditions from (1) to (8) hold. Let κ be a c-component of σ . We will prove that $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ for some c-component λ of τ . The result then follows by Proposition 4.9.

Suppose κ has a cycle of length r, since by (1), $cs(\sigma) = cs(\tau)$, τ has a cycle v of length s such that s|r. Let κ be the c-component of τ containing v. Then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ by Proposition 4.15.

Suppose κ has a double ray. If some c-component λ of τ has a cycle, then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ by Lemma 4.16. Suppose τ does not have a cycle. Then, by (1) and (2), both σ and τ have a double ray but not a cycle. Let λ be a c-component of τ containing a double ray. Then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ by Lemma 4.17.

Suppose κ is of rro type. If τ has some c-component λ with a cycle or a double ray, then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ by Lemma 4.16 and Lemma 4.17. Suppose τ does not have a cycle or a double ray. Then by (3), there is a c-component λ in τ of rro type such that $\langle \eta_p^{\lambda} \rangle$ dominates $\langle \mu_p^{\kappa} \rangle$ for some maximal right rays μ in κ and η in λ . Hence $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ by Proposition 4.20.

Suppose κ has a maximal left ray. Then by (5) there is some c-component λ of τ has a maximal left ray. Then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ by Lemma 4.18.

Suppose κ is of cho type with root p_0 . If τ has some c-component λ having a maximal left ray then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ by Lemma 4.18. Suppose τ does not have a maximal left ray. Then by (5), σ does not have a maximal left ray, and so by (6), there is a c-component λ in τ of cho type with root q_0 such that $\pi_{\kappa}(p_0) \leq \pi_{\kappa}(q_0)$. Hence $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$, by Proposition 4.20.

We have proved that for every c-component κ of σ there exists a c-component λ of τ and an rp-hom $\alpha_{\kappa} \in \mathcal{P}(T)$ from $\Gamma(\kappa)$ to $\Gamma(\lambda)$. We may assume that for every ccomponent κ of σ , dom $(\alpha_{\kappa}) = \operatorname{span}(\kappa)$. Hence $\Gamma(\kappa)$ is rp-hom to $\Gamma(\tau)$ by Proposition 4.9. By symmetry, $\Gamma(\tau)$ is rp-hom to $\Gamma(\sigma)$. Then by (8) and Theorem 3.5 we get $\sigma \sim_r \tau$.

References

- F. Otto, Conjugacy in monoids with a special Church-Rosser presentation is decidable, Semigroup Forum 29 (1984), 223–240.
- [2] G. Kudryavtseva and V. Mazorchuk, On conjugation in some transformation and Brauer-type semigroups, Publ. Math. Debrecen 70 (2007), 19–43.
- [3] G. Kudryavtseva and V. Mazorchuk, On three approaches to conjugacy in semigroups, Semigroup Forum 78 (2009), 14–20.
- [4] G. Lallement, Semigroups and Combinatorial Applications (John Wiley and Sons, New York, 1979).
- [5] J. Araujo, M. Kinyon, J. Konieczny and A. Malheiro, Four notions of conjugacy for abstract semigroups, to appear in Proc. Roy. Soc. Edinburgh Sect. A, preprint (2015), arXiv:1503.00915v2.
- [6] J. Araujo, J. Konieczny and A. Malheiro, *Conjugation in semigroups*, J. Algebra 403 (2014), 93–134.
- [7] J. Koneicny, A new definition of conjugacy for semigroups, J. Algebra and Appl. 17, 1850032(2018)[20 pages].
- [8] J. M. Howie, Fundamentals of Semigroup Theory (Oxford University Press, New York, 1995).
- [9] T. Jech, Set Theory, Third Edition, Springer-Verlag, New York, 2006.

Aftab Hussain Shah

Department of Mathematics, Central University of Kashmir City Ganderbal, Kashmir *E-mail*: aftab@cukashmir.ac.in

Mohd Rafiq Parray

Department of Mathematics, Central University of Kashmir City Ganderbal, Kashmir *E-mail*: parrayrafiq@cukashmir.ac.in