R-NOTION OF CONJUGACY IN PARTIAL TRANSFORMATION SEMIGROUP

Aftab Hussain Shah and Mohd Rafiq Parray*

Abstract

In this paper, we present a new definition of conjugacy that can be applied to an arbitrary semigroup and it does not reduce to the universal relation in semigroups with a zero. We compare the new notion of conjugacy with existing notions, characterize the conjugacy in subsemigroups of partial transformations through digraphs and restrictive partial homomorphisms.

1. Introduction

Let G be a group. For $x, y \in G$, we say x is conjugate to y if there exists $p \in G$ such that $y=p^{-1} x p$ which is equivalent to $x p=p y$. Using the latter formulation one may try to extend the notion of conjugacy to semigroups in the following way: define a relation \sim_{l} on a semigroup S by

$$
x \sim_{l} y \Leftrightarrow \exists p \in S^{1} \text { such that } x p=p y
$$

where S^{1} is S with an identity adjoined. If $x \sim_{l} y$, we say x is left conjugate to y [1,9,10]. The relation \sim_{l} is always reflexive and transitive in any semigroup but not symmetric in general. The relation \sim_{l} gets reduced to a universal relation in a semigroup with zero. However the relation \sim_{l} is an equivalence relation on a free semigroup. Lallement [4] has defined the conjugate elements of a free semigroup S as those related by \sim_{l} and showed that \sim_{l} is equal to the following equivalence on the free semigroup S :

$$
x \sim_{p} y \Leftrightarrow \exists u, v \in S^{1} \text { such that } x=u v \text { and } y=v u
$$

The relation \sim_{p} is always reflexive and symmetric but not transitive in general. The relation \sim_{l} has been restricted to \sim_{o} in [1], and \sim_{p} has been extended to \sim_{p}^{*} (the transitive closure of \sim_{p}) in $[2,3]$, in such a way that the modified relations are equivalences on an arbitrary semigroup S.

Otto in [1] introduced the \sim_{o} notion of conjugacy in semigroup S defined as:

$$
x \sim_{o} y \Leftrightarrow \exists p, q \in S^{1} \text { such that } x p=p y \text { and } y q=q x
$$

Received October 24, 2021. Revised January 24, 2022. Accepted February 22, 2022.
2010 Mathematics Subject Classification: 20M07, 20M15, 20M20.
Key words and phrases: Conjugacy, rp-hom, digraphs.

* Corresponding Author.
(C) The Kangwon-Kyungki Mathematical Society, 2022.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

The relation \sim_{o} is not useful for semigroups S with zero since for every such S, we have $\sim_{o}=S \times S$. This deficiency has been remedied in [6], where the following relation has been defined on an arbitrary semigroup S,

$$
x \sim_{c} y \Leftrightarrow \exists p \in \mathbb{P}^{1}(x), q \in \mathbb{P}^{1}(y) \text { such that } x p=p y \text { and } y q=q x,
$$

where for $x \neq 0, \mathbb{P}(x)=\left\{p \in S^{1}:(m x) p \neq 0\right.$ for all $\left.m x \in S^{1}(x) \backslash\{0\}\right\}$ and $\mathbb{P}(0)=\{1\}$. The relation \sim_{c} is an equivalence relation on any semigroup S and it does not get reduce to $S \times S$ if S has a zero, and it is equal to \sim_{o} if S does not have a zero.

Further, J. Konieczny in [7] introduced the \sim_{n} notion of conjugacy in semigroups. If S is a semigroup and let $x, y \in S$. Then,

$$
x \sim_{n} y \Leftrightarrow \exists p, q \in S^{1} \text { such that } x p=p y, y q=q x, x=p y q \text { and } y=q x p .
$$

This relation is an equivalence relation in any semigroup and does not get reduced to a universal relation in a semigroup with zero.

The aim of this paper is to introduce a new definition of conjugacy in an arbitrary semigroup. The new conjugacy is an equivalence relation \sim_{r} (the r-conjugacy) on any semigroup S.
J.Araujo et.al in [6] characterized \sim_{c} conjugacy in constant rich subsemigroups of $\mathcal{P}(T)$ (the semigroup of partial maps on a non empty set T) with the help of rp-hom of their digraphs. In this paper we prove similar results for \sim_{r} notion of conjugacy for any subsemigroup of $\mathcal{P}(T)$ without the assumption of constant rich on S.

2. The notion \sim_{r}

If S is a semigroup and let $x, y \in S$. Then,

$$
x \sim_{r} y \Leftrightarrow \exists p, q, u, v \in S^{1} \text { such that } x p=p y, y q=q x, x=p y u \text { and } y=q x v .
$$

Theorem 2.1. If S is a semigroup then
(1) \sim_{r} is an equivalence relation in any semigroup.
(2) $[0]_{r}=\{0\}$.
(3) If S is a group then \sim_{r} reduces to the usual notion of conjugacy.

Proof. (1) Let $x \sim_{r} y$ then there exists $p, q, u, v \in S^{1}$ such that $x p=p y, y q=$ $q x, x=p y u$ and $y=q x v$.
(i) Reflexivity: We take $p=q=u=v=1$ and we get the required.
(ii) Symmetry: This condition is by definition of notion.
(iii) Transitivity: Let $x \sim_{r} y$ and $y \sim_{r} z$ then there exists $p_{1}, q_{1}, u_{1}, v_{1}$ and $p_{2}, q_{2}, u_{2}, v_{2}$ such that $x p_{1}=p_{1} y, y q_{1}=q_{1} x, x=p_{1} y u_{1}$ and $y=q_{1} x v_{1}$ and $x p_{2}=p_{2} y, y q_{2}=q_{2} x, x=p_{2} y u_{2}$ and $y=q_{2} x v_{2}$. Now $x p_{1} p_{2}=p_{1} y p_{2}=p_{1} p_{2} z$, $z q_{2} q_{1}=q_{2} y q_{1}=q_{2} q_{1} x, x=p_{1} y u_{1}=p_{1} p_{2} z u_{2} u_{1}$ and $z=q_{2} y v_{2}=q_{2} q_{1} x v_{1} v_{2}$. Hence $x \sim_{r} z$.
(2) Let $x \neq 0$ and let $x \sim_{r} 0$ then there exists $p, q, u, v \in S^{1}$ such that $x p=p 0,0 q=$ $q x, x=p 0 u$ and $0=q x v$. This means $x=0$. So we get $[0]_{r}=\{0\}$.
(3) Let $x \sim_{r} y$ then there exists $p, q, u, v \in S^{1}$ such that $x p=p y, y q=q x, x=p y u$ and $y=q x v$. From $x p=p y$ we can pre-multiply by p^{-1} both sides to get $y=g^{-1} x g$ which is the usual notion of conjugacy.

THEOREM 2.2. Let S be a semigroup then $\sim_{n} \subseteq \sim_{r} \subseteq \sim_{c} \subseteq \sim_{o}$.

Proof. Let $x, y \in S^{1}$ and let $x \sim_{n} y$ then there exists $p, q \in S^{1}$ such that $x p=$ $p y, y q=q x, x=p y q$ and $y=q x p$. we can take $u=q$ and $v=p$ so $x \sim_{r} y$. Thus $\sim_{n} \subseteq \sim_{r}$. Next we prove $\sim_{r} \subseteq \sim_{c}$. Let $x \sim_{r} y$ then there exist $p, q, u, v \in S^{1}$ such that $x p=p y, y q=q x, x=p y u$ and $y=q x v$. If $x=0$ then $y=0$ since $[0]_{r}=0$ and so $x \sim_{c} y$. Suppose $x \neq 0$ and let $m \in S^{1}$ be such that $m x \neq 0$. Then $(m x) p \neq 0$ since if $(m x) p=0$ then $m p y=0$ which further implies $m p y u=0$ which implies $m x=0$ which is a contradiction. Hence $(m x) p \neq 0$. Similarly, if $m \in S^{1}$ is such that $m y \neq 0$ then $(m y) q \neq 0$. So, $p \in \mathbb{P}^{1}(x)$ and $q \in \mathbb{P}^{1}(y)$. Hence $x \sim_{c} y$. Since $\sim_{c} \subseteq \sim_{o}$ is obvious. Hence we get the required result.

3. \sim_{r} notion of conjugacy through digraphs in $\mathcal{P}(T)$

Definition 3.1. Let T be any set and R be a binary relation on T then $\Gamma=(T, R)$ is called a directed graph (or a digraph). Any $p \in T$ is called a vertex and any $(p, q) \in R$ is called an arc of Γ.
For example, Let $T=\{1,2,3,4\}$ and $R=\{(1,2),(2,3)\}$. Then the digraph Γ is as under,

Definition 3.2. A vertex $p \in T$ for which there exists no q in T such that $(p, q) \in R$ is called a terminal vertex of Γ. A vertex $p \in T$ is said to be initial vertex if there is no $q \in T$ for which $(q, p) \in R$ while as a vertex $p \in T$ is said to be a non initial vertex if $(q, p) \in R$ for some $q \in T$.

For any $\sigma \in \mathcal{P}(T), \Gamma(\sigma)=\left(T, R_{\sigma}\right)$ represents a digraph, where for all $p, q \in$ $T,(p, q) \in R_{\sigma}$ if and only if $p \in \operatorname{dom}(\sigma)$ and $p \sigma=q$. For example, If $T=\{1,2,3\}$ and $R_{\sigma}=\{(1,2),(2,1)\}$. Then the digraph $\Gamma(\sigma)$ is represented as

For a non-empty set T, we fix an element $\diamond \notin T$. For $\sigma \in \mathcal{P}(T)$ and $t \in T$, we will write $t \sigma=\diamond$, if and only if $t \notin \operatorname{dom}(\sigma)$. we also assume that $\diamond \sigma=\diamond$. With this notation it makes sense to write $s \sigma=t \tau$ or $s \sigma \neq t \tau(\sigma, \tau \in \mathcal{P}(T), s, t \in T)$ even when $s \notin \operatorname{dom}(\sigma)$ or $t \notin \operatorname{dom}(\tau)$. For any $\sigma \in \mathcal{P}(T) \operatorname{span}(\sigma)$ represents $\operatorname{dom}(\sigma) \cup \operatorname{im}(\sigma)$.

For semigroups U and S, we write $U \leq S$ to mean that U is a subsemigroup of S.
Definition 3.3. Let $\Gamma_{1}=\left(T_{1}, R_{1}\right)$ and $\Gamma_{2}=\left(T_{2}, R_{2}\right)$ be digraphs. A mapping α from T_{1} to T_{2} is called a homomorphism from Γ_{1} to Γ_{2} if for all $p, q \in T_{1},(p, q) \in$ R_{1} implies $(p \alpha, q \alpha) \in R_{2}$. A partial mapping α from T_{1} to T_{2} is called a partial homomorphism from Γ_{1} to Γ_{2} if for all $p, q \in \operatorname{dom}(\alpha),(p, q) \in R_{1}$ implies $(p \alpha, q \alpha) \in$ R_{2}.

Definition 3.4. A partial homomorphism α from T_{1} to T_{2} is called a restrictive partial homomorphism from Γ_{1} to Γ_{2} if it satisfies the following conditions:
(a) If $(p, q) \in R_{1}$, then $p, q \in \operatorname{dom}(\alpha)$ and $(p \alpha, q \alpha) \in R_{2}$.
(b) If p is a terminal vertex in Γ_{1} and $p \in \operatorname{dom}(\alpha)$, then $p \alpha$ is a terminal vertex in Γ_{2}.
We say that Γ_{1} is rp-homomorphic to Γ_{2} if there is an rp-homomorphism from Γ_{1} to Γ_{2}.

Throughout this paper by an rp-hom we shall mean an rp-homomorphism between any two digraphs and by hom we shall mean a homomorphism.

The next theorem provides necessary and sufficient condition for two elements of subsemigroup of $\mathcal{P}(T)$ to be \sim_{r} related.

Theorem 3.5. Let $S \leq \mathcal{P}(T)$ and $\sigma, \tau \in S$. Then $\sigma \sim_{r} \tau$ if and only if there are $\alpha, \beta, \phi, \psi \in S^{1}$ for which α is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$ and β is an rp-hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$ with $q \alpha \phi=q$ for every non initial vertex q of $\Gamma(\sigma)$ and $k \beta \psi=k$ for every non initial vertex k of $\Gamma(\tau)$.

Proof. Suppose $\sigma \sim_{r} \tau$ in S. If $\sigma=0$ then $\tau=0$ and so $\alpha=\operatorname{id}_{T} \in S^{1}$ is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$ and $\beta=\mathrm{id}_{T} \in S^{1}$ is an rp-hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$. Next suppose $\sigma \neq 0$ and let $\sigma \sim_{r} \tau$ in S then $\sigma \alpha=\alpha \tau, \tau \beta=\beta \sigma, \sigma=\alpha \tau \phi$ and $\tau=\beta \sigma \psi$ for some $\alpha, \beta, \phi, \psi \in S^{1}$. Let $(p, q) \in \sigma$. Then $p \alpha \tau \phi=q,(p \alpha) \tau \phi=q$ which implies $p \in \operatorname{dom} \alpha$. Again

$$
\begin{equation*}
q \alpha \phi=(p \sigma) \alpha \phi=p \sigma \alpha \phi=p \alpha \tau \phi=p \sigma=q \tag{3.1}
\end{equation*}
$$

which implies $q \in \operatorname{dom} \alpha$. Next $(p \alpha) \tau=p \alpha \tau=p \sigma \alpha=q \alpha$ (by 3.1) $\neq \diamond,(p \alpha, q \alpha) \in$ $\Gamma(\tau)$. Again let p be a terminal vertex of $\Gamma(\sigma)$ and $p \in \operatorname{dom} \alpha$ then as $\sigma \alpha=\alpha \tau$, $(p \alpha) \tau=p \alpha \tau=p \sigma \alpha=\diamond \alpha=\diamond$. Thus $p \alpha$ is a terminal vertex in $\Gamma(\tau)$. So α is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$. Again by using $\tau \beta=\beta \sigma$ and $\tau=\beta \sigma \psi$ we can prove the β is an rp-hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$.

Conversely let there are $\alpha, \beta, \phi, \psi \in S^{1}$ for which α is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$ and β is an rp-hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$ with $q \alpha \phi=q$ for every non initial vertex q of $\Gamma(\sigma)$ and $k \beta \psi=k$ for every non initial vertex k of $\Gamma(\tau)$. We show $\sigma \sim_{r} \tau$ in S. Let $p \in T$. The following cases arise.
Case 1: Suppose $p \notin \operatorname{dom} \sigma$, then $p \sigma=\diamond$. Then $p(\sigma \alpha)=(p \sigma) \alpha=\diamond \alpha=\diamond$. If $p \notin$ dom α then $p(\alpha \tau)=(p \alpha) \tau=\diamond$. So, $\sigma \alpha=\alpha \tau$. Also $p \alpha \tau \phi=\diamond$, so $\sigma=\alpha \tau \phi$. If $p \in \operatorname{dom} \alpha$ then as p is a terminal vertex of $\Gamma(\sigma)$ and since α is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$ we have $p(\alpha \tau)=\diamond$ so $p \alpha \tau \phi=\diamond$ i.e, $\sigma=\alpha \tau \phi$ in this case.
Case 2: Suppose $p \in \operatorname{dom} \sigma$ and let $q=p \sigma$. Then by definition of rp-hom $p, q \in \operatorname{dom} \alpha$ and $(p \alpha) \tau=q \alpha$. Hence $p(\sigma \alpha)=(p \sigma) \alpha=q \alpha$ and $p(\alpha \tau)=(p \alpha) \tau=q \alpha$. So, $\sigma \alpha=\alpha \tau$. Also, $p \alpha \tau \phi=p \sigma \alpha \phi=q \alpha \phi=q$ as $q \alpha \phi=q$ for any non initial vertex q of $\Gamma(\sigma)$. So, $\sigma=\alpha \tau \phi$.
By symmetry β is an rp -hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$ such that $\tau \beta=\beta \sigma$ and $\tau=\beta \sigma \psi$. Thus $\sigma \sim_{r} \tau$. This proves the Theorem.

If $\sigma, \tau \in \mathcal{T}(T)$ (the semigroup of full transformations on T). Then every rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$ is hom. So we have the following corollary.

Corollary 3.6. Let $S \leq \mathcal{T}(T)$ and $\sigma, \tau \in S$. Then $\sigma \sim_{r} \tau$ if and only if there are $\alpha, \beta, \phi, \psi \in S^{1}$ such that α is a hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$ and β is a hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$ with $q \alpha \phi=q$ for every non initial vertex q of $\Gamma(\sigma)$ and $k \beta \psi=k$ for every non initial vertex k of $\Gamma(\tau)$.

4. \sim_{r} notion of conjugacy through connected partial transformations

Definition 4.1. Let $\cdots, p_{-2}, p_{-1}, p_{0}, p_{1}, p_{2}, \cdots$ be pairwise distinct elements of T. The following maps introduced by J. Araujo et al in [6] are very important for our study.
(1) A $\sigma \in \mathcal{P}(T)$ is called a cycle of length k if $\sigma=\left(p_{0} p_{1} p_{2} \cdots p_{k-1}\right)$ where $(k \geq 1)$. i.e., $p_{j}=p_{j-1} \sigma, j=1,2, \cdots, k$ and $p_{0}=p_{k-1} \sigma$ and we write it as

$$
p_{0} \rightarrow p_{1} \rightarrow p_{2} \rightarrow \cdots \rightarrow p_{k-1} \rightarrow p_{0}
$$

(2) A $\sigma \in \mathcal{P}(T)$ is called a right ray if $\sigma=\left[p_{0} p_{1} p_{2} \cdots>\right.$. i.e., $p_{j}=p_{j-1} \sigma, j \geq 1$ and we write it as

$$
p_{0} \rightarrow p_{1} \rightarrow p_{2} \rightarrow \cdots
$$

(3) A $\sigma \in \mathcal{P}(T)$ is called a double ray if $\sigma=<\cdots p_{-1} p_{0} p_{1} \cdots>$. i.e., $p_{j}=p_{j-1} \sigma$, $j \in \mathbb{Z}$ and we write it as

$$
\cdots \rightarrow p_{-1} \rightarrow p_{0} \rightarrow p_{1} \rightarrow p_{2} \rightarrow \cdots
$$

(4) A $\sigma \in \mathcal{P}(T)$ is called a left ray, if $\left.\sigma=<\cdots p_{2} p_{1} p_{0}\right]$. i.e., $p_{j} \sigma=p_{j-1}, j \geq 1$ and we write it as

$$
\cdots \rightarrow p_{2} \rightarrow p_{1} \rightarrow p_{0} .
$$

(5) A $\sigma \in \mathcal{P}(T)$ is called a chain of length k if $\sigma=\left[p_{0} p_{1} p_{2} \cdots p_{k}\right]$. i.e., $p_{j}=p_{j-1} \sigma$, $j=1,2, \cdots, k$ and we write it as

$$
p_{0} \rightarrow p_{1} \rightarrow p_{2} \rightarrow \cdots \rightarrow p_{k}
$$

These are called as basic partial maps.
Definition 4.2. Any element $\kappa \neq 0$ in $\mathcal{P}(T)$ is said to be connected if for some non negative integers $m, n, p \kappa^{m}=q \kappa^{n} \neq \diamond$ for all $p, q \in \operatorname{span}(\kappa)$.

For example, Let $T=\{1,2,3,4,5\}$. Define $\kappa \in \mathcal{P}(T)$ by $\kappa=\{(1,2),(2,3),(3,4)\}$, then the diagraph of κ is as under

Then κ is connected.
Definition 4.3. For $\sigma, \tau \in \mathcal{P}(T)$, if $\operatorname{dom}(\tau) \subseteq \operatorname{dom}(\sigma)$ and $p \tau=p \sigma$ for every $p \in$ $\operatorname{dom}(\tau)$ then τ is said to be contained in σ written as $\tau \subseteq \sigma$. They are disjoint if $\operatorname{dom}(\sigma) \cap \operatorname{dom}(\tau)=\emptyset$ and completely disjoint if $\operatorname{span}(\sigma) \cap \operatorname{span}(\tau)=\emptyset$.

For example, $\left[\begin{array}{ll}\text { q } & r \\ s & \cdots>\end{array}\right.$ and $[a b c p]$ in $\mathcal{P}(\mathbb{Z})$ are disjoint while as $[a b \cdots>$ and $\left[\begin{array}{ll}u & v\end{array}\right]$ are completely disjoint.

Definition 4.4. Let C be a set of pairwise disjoint elements of $\mathcal{P}(T)$. Then, for $x \in T$

$$
x\left(\bigcup_{\kappa \in C} \kappa\right)=\left\{\begin{array}{l}
x \kappa \text { if } x \in \operatorname{dom}(\kappa) \text { for some } \kappa \in C \\
\diamond \text { otherwise } .
\end{array}\right.
$$

is called the join of the elements of C denoted by $\bigcup_{\kappa \in C} \kappa$.
Definition 4.5. Let $\sigma \in \mathcal{P}(T)$ and let ν be a basic partial map with $\nu \subset \sigma$ then ν is maximal in σ if $x \notin \operatorname{dom}(\nu)$ implies $x \notin \operatorname{dom}(\sigma)$ and $x \notin \operatorname{im}(\nu)$ implies $x \notin \operatorname{im}(\sigma)$ for every $x \in \operatorname{span}(\nu)$.

For example, Let $\sigma=\left[\begin{array}{lll}p q & s & \cdots>\end{array} \cup[a b c p] \in \mathcal{P}(\mathbb{Z})\right.$. Then σ contains infinitely many right rays. For example, $[c p q r \cdots>$ but only two of them namely $[p q r s \cdots>$ and $[a b c p q r s \cdots>$ are maximal in σ.

Proposition 4.6. [6, Proposition 4.5] Let $\sigma \in \mathcal{P}(T)$ with $\sigma \neq 0$. Then there exists a unique set C of pairwise completely disjoint, connected maps contained in σ such that $\sigma=\bigcup_{\kappa \in C} \kappa$.

The componenents of C in Proposition 4.6 are called as connected components of σ. Through out this paper by c-component we shall mean a connected component.

Example 4.7. Let $T=\{1,2,3,4,5\}$ and $\sigma \in \mathcal{P}(T)$ be defined as $\sigma=\{(1,2),(2,3)$, $(4,5)\}$. Clearly σ has a unique representation in terms of of pairwise completely disjoint, connected maps contained in σ. i.e., $\sigma=\cup_{\sigma_{i} \in C} \sigma_{i}$ where $C=\left\{\sigma_{1}, \sigma_{2}\right\}$ and $\sigma_{1}=\{(1,2),(2,3)\}$ and $\sigma_{2}=\{(4,5)\}$.

For any c-component κ of $\sigma \in \mathcal{P}(T), \alpha_{\kappa}$ denotes the restriction of σ on $\operatorname{Span}(\kappa)$.
Lemma 4.8. Let $S \leq \mathcal{P}(T)$ and $\sigma, \tau \in S$ with $\sigma \sim_{r} \tau$ then there exists $\alpha, \beta \in S^{1}$ such that $\operatorname{dom}(\alpha)=\operatorname{span}(\sigma)$ and $\operatorname{dom}(\beta)=\operatorname{span}(\tau)$.

Proof. Let $\sigma \sim_{r} \tau$ then there exists $\alpha, \beta, \phi, \psi \in S^{1}$ such that $\sigma \alpha=\alpha \tau, \tau \beta=\beta \sigma, \sigma=$ $\alpha \tau \phi$ and $\tau=\beta \sigma \psi$. By Theorem 3.5, α is an $\operatorname{rp-hom}$ from $\Gamma(\sigma)$ to $\Gamma(\tau)$ and β is an rp-hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$. We have to show that $\operatorname{dom}(\alpha)=\operatorname{span}(\sigma)$. Let $x \in \operatorname{span}(\sigma)$ which means $x \in \operatorname{dom}(\sigma) \cup \operatorname{im}(\sigma)$. If $x \in \operatorname{dom}(\sigma)$ then there exists $y \in T$ such that $(x, y) \in \sigma$. Since α is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$. Therefore $x, y \in \operatorname{dom}(\alpha)$. So in this case $\operatorname{span}(\sigma) \subseteq \operatorname{dom}(\alpha)$. Similarly if $x \in \operatorname{im}(\sigma)$ then $\operatorname{span}(\sigma) \subseteq \operatorname{dom}(\alpha)$. Next we have to show $\operatorname{dom}(\alpha) \subseteq \operatorname{span}(\sigma)$. Since $\sigma=\alpha \tau \phi$, implies $\operatorname{dom}(\alpha)=\operatorname{dom}(\sigma) \subseteq$ $\operatorname{span}(\sigma)$ implies $\operatorname{dom}(\alpha) \subseteq \operatorname{span}(\sigma)$. By similar arguments we can show that dom (β) $=\operatorname{span}(\tau)$.

The next Proposition is the interconnection of c-components and \sim_{r} notion of conjugacy.

Proposition 4.9. Let $S \leq \mathcal{P}(T)$ and $\sigma, \tau \in S$. Then, $\sigma \sim_{r} \tau$ if and only if
(1) For every c-component κ of σ there exist a c-component λ of τ and an rp-hom $\alpha_{\kappa} \in \mathcal{P}(T)$ from $\Gamma(\kappa)$ to $\Gamma(\lambda)$ with dom $\left(\alpha_{\kappa}\right)=\operatorname{span}(\kappa)$. Similar holds from τ to σ.
(2) $\cup_{\kappa \in C} \alpha_{\kappa} \in S^{1}$, where C is the collection of c-components of σ. Similar holds for τ.
(3) There is $\alpha, \beta, \phi, \psi \in S^{1}$ such that $q \alpha \phi=q$ for any non initial vertex q of $\Gamma(\sigma)$ and $k \beta \psi=k$ for every non initial vertex k of $\Gamma(\tau)$.

Proof. If $\sigma=0$ then $\tau=0$ and the result follows trivially. Suppose $\sigma \neq 0$ then $\tau \neq 0$ and let $\sigma \sim_{r} \tau$, then there is $\alpha, \beta, \phi, \psi \in S^{1}$ such that $\sigma \alpha=\alpha \tau, \tau \beta=\beta \sigma, \sigma=\alpha \tau \phi$ and $\tau=\beta \sigma \psi$ and so by Theorem 3.5, α is an $\operatorname{rp-hom}$ from $\Gamma(\sigma)$ to $\Gamma(\tau)$ and β is an rp-hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$. By Lemma 4.8 dom $\alpha=\operatorname{span}(\sigma)$. By Proposition $4.6 \sigma=\cup_{\kappa \in C} \kappa$ and $\tau=\cup_{\lambda \in C^{\prime}} \lambda$ for some sets C, C^{\prime} of pairwise completely disjoint connected maps contained in σ and τ respectively. Let κ be a c-component of σ and let $p \in \operatorname{span}(\kappa)$, since α is an rp-hom this means $p \alpha \in \lambda$ for some c-component λ of τ. We claim that $(\operatorname{span}(\kappa)) \alpha \subseteq \operatorname{span}(\lambda)$. Let $z \in \operatorname{span}(\kappa)$ then by definition of connectedness there exists $r, s \geq 0$ such that $p \sigma^{r}=p \kappa^{r}=z \kappa^{s}=z \sigma^{s} \neq \diamond$. Since $\sigma \sim_{r} \tau$ we have $(z \alpha) \tau^{s}=\left(z \sigma^{s}\right) \alpha=\left(p \sigma^{r}\right) \alpha=(p \alpha) \tau^{r} \neq \diamond$ which implies $p \alpha$ and $z \alpha$ are in the span of same c-component of τ. So $z \alpha \in \operatorname{span}(\lambda)$. The claim has been proved. Let $\alpha_{\kappa}=\left.\alpha\right|_{\operatorname{span}(\kappa)}$. Then α_{κ} is an rp-hom from $\Gamma(\kappa)$ to $\Gamma(\lambda)$ with $\operatorname{dom}\left(\alpha_{\kappa}\right)=\operatorname{span}(\kappa)$.

Also $\cup_{\kappa \in C} \alpha_{\kappa}=\alpha \in S^{1}$ (by the definition of α_{κ}) and by $\operatorname{dom}(\alpha)=\operatorname{span}(\sigma)$). Similar holds from τ to σ.

Conversely, suppose that (1), (2) and (3) are satisfied. Let $\alpha=\bigcup_{\kappa \in C} \alpha_{\kappa}$. Note that α is well defined since α_{κ} and $\alpha_{\kappa^{\prime}}$ are disjoint if $\kappa \neq \kappa^{\prime}$. Suppose $(q, z) \in \sigma$. Then $q, z \in$ $\operatorname{span}(\kappa)$ for some c-component κ of σ. Thus $q, z \in \operatorname{dom}\left(\alpha_{\kappa}\right)$ and $q \alpha=q \alpha_{\kappa} \rightarrow z \alpha_{\kappa}=$ $z \alpha$, implying $q \alpha \xrightarrow{\tau} z \alpha$.
Suppose q is a terminal vertex in $\Gamma(\sigma)$ and $q \in \operatorname{dom}(\sigma)$. Then there is a unique c-component κ of σ such that q is a terminal vertex in $\Gamma(\kappa)$. Then $q \alpha=q \alpha_{\kappa}$ is a terminal vertex in $\Gamma(\lambda)$ and so a terminal vertex in $\Gamma(\tau)$. Hence α is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$. Further $\operatorname{dom}(\alpha)=\operatorname{span}(\sigma)$, (by the definition of α) and $\alpha \in S^{1}$ (by (2)). By symmetry, we can similarly prove for β. Then by condition (3) and by Theorem 3.5 we have $\sigma \sim_{r} \tau$.

Definition 4.10. Let X be a nonempty subset of the set \mathbb{Z}_{+}of positive integers. Then X is partially ordered by the relation |(divides). Order the elements of X according to usual less than relation as $x_{1}<x_{2}<x_{3} \cdots$, we define a subset $\operatorname{sac}(X)$ of X as follows : for every integer $n, 1 \leq n<|X|+1$,

$$
\operatorname{sac}(X)=\left\{x_{n} \in X: \text { for all } i<n, x_{n} \text { is not a multiple of } x_{i}\right\}
$$

The set $\operatorname{sac}(X)$ is a maximal anti-chain of the poset (X, \mid). We will call $\operatorname{sac}(X)$, the standard anti-chain of X.

For example, if $X=\{2,4,7\}$ then $\operatorname{sac}(X)=\{2,7\}$.
Let σ be in $\mathcal{P}(T)$ such that σ contains a cycle. Let X denote the set of lengths of cycles in σ. The standard anti-chain of (X, \mid) will be called the cycle set of σ and denoted by $\operatorname{cs}(\sigma)$.

Definition 4.11. A connected partial map κ is said to be of rro type (right rays only) if it has a maximal right ray but no cycles, double rays, left rays or maximal chains, and is of cho type (chains only) if it has a maximal chain but no cycles or rays.

Lemma 4.12. [6, Lemma 4.11] Let $\kappa \in \mathcal{P}(T)$ such that κ contains a maximal left ray or it is of cho type. Then κ contains a unique terminal vertex.

Definition 4.13. Let $\kappa \in \mathcal{P}(T)$ be connected such that κ has a maximal left ray or is of cho type. The unique terminal vertex of κ established by Lemma 4.12 will be called the root of κ.

A relation R on a non empty set E is called well founded if every nonempty subset $D \subseteq E$ contains an R-minimal element that is, $p \in D$ exists such that there is no $q \in D$ with $(q, p) \in R$. Let R be a well-founded relation on a set E. Then there is a unique function π defined on E having values as ordinals so that

$$
\pi(p)=\sup \{\pi(q)+1:(q, p) \in R\}
$$

for every $p \in E$ is called the rank of p in $<E, R>$ [11, Theorem 2.27] which proves (1) and (2). The condition (3) follows from Theorem 3.5.

Let $\kappa \in \mathcal{P}(T)$ be connected of rro type or cho then $\pi_{\kappa}(p)$ denotes the rank of p under the relation κ.

Example 4.14. Let $T=\left\{x, y, c, \cdots, x_{1}, y_{1}, z_{1} \cdots\right\}$ and let $\kappa=[x, y, z, \cdots>\in \mathcal{P}(T)$. Then $\pi(x)=0, \pi(y)=1$ and so on.

Let $\left\langle u_{q}>_{q \geq 0}\right.$ and $<v_{q}>_{q \geq 0}$ be sequences of ordinals. Then we say that $\left\langle v_{q}\right\rangle$ dominates $\left.<u_{q}\right\rangle$ if

$$
v_{q+r} \geq u_{q} \text { for every } q \geq 0 \text { and for some } r \geq 0 .
$$

Let $\kappa \in \mathcal{P}(T)$ be connected of rro type and $\mu=\left[p_{0} p_{1} p_{2} \cdot \cdot>\right.$ be a maximal right ray in κ. We denote by $\left\langle\mu_{q}^{\kappa}>_{q \geq 0}\right.$ the sequence of ordinals with

$$
\mu_{q}^{\kappa}=\pi_{\kappa}\left(p_{q}\right) \text { for every } q \geq 0 .
$$

For example, let $T=\left\{p_{0}, p_{1}, p_{2}, \cdots, q_{0}, q_{1}, q_{2}, \cdots\right\}$ and let $\kappa=\left[p_{0} p_{1} p_{2} p_{3} \cdot \cdot>\right.$ $\cup\left[q_{0} p_{2}\right] \cup\left[q_{1} q_{2} p_{2}\right] \cup\left[q_{3} q_{4} q_{5} p_{2}\right] \cup\left[q_{6} q_{7} q_{8} q_{9} p_{2}\right] \cup \cdots \in \mathcal{P}(T)$ and $\mu=\left[p_{0} p_{1} p_{2} \cdots>\in \kappa\right.$, then the sequence $<\mu_{q}^{\kappa}>$ is $<0,1, \omega, \omega+1, \omega+2, \omega+3, \cdots>$.

The next results (Proposition 4.15 to Proposition 4.20) are from Araujo et.al [6] and are required to prove the Theorem 4.23.

Proposition 4.15. Let $\kappa, \lambda \in \mathcal{P}(T)$ be connected such that κ has a cycle ($p_{0} p_{1}$. $\left.\cdots p_{k-1}\right)$. Then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ if and only if λ has a cycle $\left(q_{0} q_{1} \ldots q_{m-1}\right)$ such that $m \mid k$.

Lemma 4.16. Let $\kappa, \lambda \in \mathcal{P}(T)$ be connected such that λ has a cycle ($q_{0} q_{1} \ldots q_{m-1}$). Suppose κ has a double ray or is of rro type. Then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$.

Lemma 4.17. Let $\kappa, \lambda \in \mathcal{P}(T)$ be connected. Suppose that λ has a double ray and κ either has a double ray or has rro type. Then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$.

Lemma 4.18. Let $\kappa, \lambda \in \mathcal{P}(T)$ be connected. Suppose that λ has a maximal left ray and κ either has a maximal left ray or is of cho type. Then $\Gamma(\kappa)$ is rp-hom $\Gamma(\lambda)$.

Proposition 4.19. Let $\kappa, \lambda \in \mathcal{P}(T)$ be connected of cho type with roots p_{0} and q_{0} respectively. Then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ if and only if $\pi\left(x_{0}\right) \leq \pi\left(y_{0}\right)$.

Proposition 4.20. Let $\kappa, \lambda \in \mathcal{P}(T)$ be connected of rro type. Then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ if and only if there are maximal right ray μ in κ and η in λ such that $<\eta_{n}^{\lambda}>$ dominates $\left\langle\mu_{n}^{\kappa}\right\rangle$.

Lemma 4.21. Let $\kappa, \lambda \in \mathcal{P}(T)$ be connected with κ being of rro type and suppose $\kappa \sim_{r} \lambda$, then λ cannot have a maximal left ray or is of cho type.

Proof. Let $\kappa \sim_{r} \lambda$ then by Theorem 3.5 there exists α which is an rp-hom from $\Gamma(\kappa)$ to $\Gamma(\lambda)$. Let $\left[a_{0} a_{1} a_{2} \cdots>\right.$ be a right ray in κ. Suppose to the contrary that λ has a maximal left ray or is of cho type. Let b_{0} be the root of λ. By definition of connectedness there exists $k \geq 0$ such that $\left(a_{0} \alpha\right) \lambda^{k}=b_{0}$. As $\kappa \sim_{r} \lambda, \kappa \alpha=\alpha \lambda$ and so $\left(a_{0} \alpha\right) \lambda^{k+1}=\left(a_{0} \kappa^{k+1}\right) \alpha=a_{k+1} \alpha$. But $\left(a_{0} \alpha\right) \lambda^{k+1}=\left(a_{0} \alpha\right) \lambda^{k} \lambda=b_{0} \lambda=\diamond$ and so $a_{k+1} \alpha=\diamond$ which is a contradiction. Hence the result follows.

Lemma 4.22. Let $\sigma, \tau \in \mathcal{P}(T)$ such that $\sigma \sim_{r} \tau$. If σ contains a cycle of length r, then τ has a cycle of length s such that $s \mid r$.

Proof. Let σ contains a cycle of length r and let $\sigma \sim_{r} \tau$. By Proposition 4.6, $\sigma=$ $\cup_{\kappa \in C} \kappa$ where C is the set of pairwise completely disjoint connected maps contained in σ and $\tau=\cup_{\lambda \in C^{\prime}} \lambda$ where C^{\prime} is the set of pairwise completely disjoint connected maps contained in τ. By Proposition 4.9, for a c-component κ of σ containing a cycle of length r there exists a c-component λ of τ such that $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$. Then by Proposition 4.15, λ has a cycle of length s such that $s \mid r$. So if σ contains a cycle of length r, then τ has a cycle of length s such that $s \mid r$.

By Theorem 3.5 and the above discussed results we now prove a result on \sim_{r} notion of conjugacy in sybsemigroups of $\mathcal{P}(T)$.

Theorem 4.23. Let $\sigma, \tau \in \mathcal{P}(T)$. Then $\sigma \sim_{r} \tau$ in S if and only if $\sigma=\tau=0$ or $\sigma, \tau \neq 0$ and the following conditions hold:
(1) There is $\alpha, \beta, \phi, \psi \in S^{1}$ such that $q \alpha \phi=q$ for any non initial vertex q of $\Gamma(\sigma)$ and $k \beta \psi=k$ for every non initial vertex k of $\Gamma(\tau)$;
(2) $\operatorname{cs}(\sigma)=\operatorname{cs}(\tau)$;
(3) σ contains a double ray but no cycle if and only if τ contains a double ray but no cycle;
(4) If σ contains a c-component κ of rro type but no cycles or double rays then τ contains a c-component λ of rro type but no cycles or double rays and $\left\langle\eta_{p}^{\lambda}\right\rangle$ dominates $\left\langle\mu_{p}^{\kappa}\right\rangle$ for some maximal right rays μ in κ and η in λ;
(5) If τ contains a c-component λ of rro type but no cycles or double rays then σ contains a c-component κ of rro type but no cycles or double rays and $\left\langle\mu_{p}^{\kappa}\right\rangle$ dominates $\left\langle\eta_{p}^{\lambda}\right\rangle$ for some maximal right rays η in λ and μ in κ;
(6) σ contains a maximal left ray if and only if τ contains a maximal left ray;
(7) If σ contains a c-component κ of cho type with root p_{0} but no maximal left rays then τ contains a c-component λ of cho type with root q_{0} but no maximal left rays, and $\pi_{\kappa}\left(p_{0}\right) \leq \pi_{\lambda}\left(q_{0}\right)$;
(8) If τ contains a c-component λ of cho type with root q_{0} but no maximal left ray then σ contains a c-component κ of cho type with root p_{0} but no maximal left rays, and $\pi_{\lambda}\left(q_{0}\right) \leq \pi_{\kappa}\left(p_{0}\right)$.

Proof. Let $\sigma \sim_{r} \tau$ in S. Suppose $\sigma=\tau=0$ then condition (1) to (8) holds trivially. Suppose $\sigma, \tau \neq 0$ then by Theorem 3.5 there exists $\alpha, \beta, \phi, \psi \in S^{1}$ such that α is an rp-hom from $\Gamma(\sigma)$ to $\Gamma(\tau)$ and β is an rp-hom from $\Gamma(\tau)$ to $\Gamma(\sigma)$ with $q \alpha \phi=q$ for any non initial vertex q of $\Gamma(\sigma)$ and $k \beta \psi=k$ for every non initial vertex k of $\Gamma(\tau)$. By Lemma 4.8, we can assume that $\operatorname{dom}(\alpha)=\operatorname{span}(\sigma)$.
(2) Suppose σ has a cycle. Then, by Lemma 4.22, τ also has a cycle. Let $r \in \operatorname{cs}(\sigma)$. Then σ has a cycle of length r, and so again by Lemma 4.22, τ has a cycle of length s such that $s \mid r$. By the definition of $\operatorname{cs}(\tau)$, there is $s_{1} \in \operatorname{cs}(\tau)$ such that $s_{1} \mid s$. Thus τ has a cycle of length s_{1} and so by Lemma 4.22, σ has a cycle of length r_{1} such that $r_{1} \mid s_{1}$. Hence $r_{1}\left|s_{1}\right| s \mid r$. Since $\operatorname{cs}(\sigma)$ is an anti-chain, $r_{1} \mid r$ and $r \in \operatorname{cs}(\sigma)$ implies $r_{1}=r$. Thus $r=r_{1}=s_{1}$ and so $r \in \operatorname{cs}(\tau)$. We have proved that $\operatorname{cs}(\sigma) \subseteq \operatorname{cs}(\tau)$. The converse follows by symmetry. Hence $\operatorname{cs}(\tau)=\operatorname{cs}(\sigma)$. If neither σ nor τ has a cycle, then $\operatorname{cs}(\sigma)=\operatorname{cs}(\tau)=\phi$.
(3) Suppose σ has a double ray but no cycles. Then by Lemma 4.22τ cannot have a cycle. Also since $\Gamma(\sigma)$ is rp-hom to $\Gamma(\tau)$, so we have $<\cdots p_{-1} p_{0} p_{1} \cdots>$. The elements $\cdots p_{-1} \alpha, p_{0} \alpha, p_{1} \alpha, \cdots$ are pairwise distinct (since otherwise τ would
have a cycle), and so $<\cdots p_{-1} \alpha p_{0} \alpha p_{1} \alpha \cdots>$ is a double ray in τ. The converse is true by symmetry.
(4) Suppose σ has a c-component κ of rro type but no cycle or a double ray. By Proposition 4.9, there is a c-component κ of τ so that $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$. By (1) and (2), λ does not have a cycle nor a double ray. By Lemma 4.21, λ does not have a maximal left ray or is of cho type. Hence λ is rro type. By Proposition 4.20, there are maximal right rays μ in κ and η in λ such that $\left\langle\eta_{p}^{\lambda}\right\rangle$ dominates $\left\langle\mu_{p}^{\kappa}>\right.$.
(5) It follows by symmetry of (3).
(6) Suppose σ has a maximal left ray $\left.<\cdots p_{2} p_{1} p_{0}\right]$. Then since $\Gamma(\sigma)$ is rp-hom to $\Gamma(\tau)$ we have $\cdots \xrightarrow{\tau} p_{2} \alpha \xrightarrow{\tau} p_{1} \alpha \xrightarrow{\tau} p_{0} \alpha$ and $p_{0} \alpha$ is a teriminal vertex in $\Gamma(\tau)$, which implies that $\left.<\cdots p_{2} \alpha p_{1} \alpha p_{0} \alpha\right]$ is a maximal left ray in τ. The converse is true by symmetry.
(7) Suppose σ has a c-component κ of cho type with root p_{0} but no maximal left ray. By Proposition 4.9 and its proof, there is a c-component λ of τ such that $\alpha_{\kappa}=\alpha \mid(\operatorname{span}(\kappa))$ is an rp-hom from $\Gamma(\kappa)$ to $\Gamma(\lambda)$. Since p_{0} is a teriminal vertex in $\kappa, q_{0}=p_{0} \alpha_{\kappa}$ is a terminal vertex in λ. Since τ has no maximal left ray (by(3)), λ is of cho type and q_{0} is the root of λ. Therefore by Proposition 4.20, $\pi_{\kappa}\left(p_{0}\right) \leq \pi_{\lambda}\left(q_{0}\right)$.
(8) Proof follows by symmetry of (6).

Conversely, if $\sigma=\tau=0$, then $\sigma \sim_{r} \tau$. Suppose $\sigma, \tau \neq 0$ and all conditions from (1) to (8) hold. Let κ be a c-component of σ. We will prove that $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ for some c-component λ of τ. The result then follows by Proposition 4.9.
Suppose κ has a cycle of length r, since by (1), $c s(\sigma)=c s(\tau), \tau$ has a cycle v of length s such that $s \mid r$. Let κ be the c-component of τ containing v. Then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ by Proposition 4.15.
Suppose κ has a double ray. If some c-component λ of τ has a cycle, then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ by Lemma 4.16. Suppose τ does not have a cycle. Then, by (1) and (2), both σ and τ have a double ray but not a cycle. Let λ be a c-component of τ containing a double ray. Then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ by Lemma 4.17.
Suppose κ is of rro type. If τ has some c-component λ with a cycle or a double ray, then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ by Lemma 4.16 and Lemma 4.17. Suppose τ does not have a cycle or a double ray. Then by (3), there is a c-component λ in τ of rro type such that $<\eta_{p}^{\lambda}>$ dominates $<\mu_{p}^{\kappa}>$ for some maximal right rays μ in κ and η in λ. Hence $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ by Proposition 4.20.
Suppose κ has a maximal left ray. Then by (5) there is some c-component λ of τ has a maximal left ray. Then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ by Lemma 4.18.
Suppose κ is of cho type with root p_{0}. If τ has some c-component λ having a maximal left ray then $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$ by Lemma 4.18. Suppose τ does not have a maximal left ray. Then by (5), σ does not have a maximal left ray, and so by (6), there is a c-component λ in τ of cho type with root q_{0} such that $\pi_{\kappa}\left(p_{0}\right) \leq \pi_{\kappa}\left(q_{0}\right)$. Hence $\Gamma(\kappa)$ is rp-hom to $\Gamma(\lambda)$, by Proposition 4.20.
We have proved that for every c-component κ of σ there exists a c-component λ of τ and an rp-hom $\alpha_{\kappa} \in \mathcal{P}(T)$ from $\Gamma(\kappa)$ to $\Gamma(\lambda)$. We may assume that for every ccomponent κ of σ, $\operatorname{dom}\left(\alpha_{\kappa}\right)=\operatorname{span}(\kappa)$. Hence $\Gamma(\kappa)$ is rp-hom to $\Gamma(\tau)$ by Proposition 4.9. By symmetry, $\Gamma(\tau)$ is rp-hom to $\Gamma(\sigma)$. Then by (8) and Theorem 3.5 we get $\sigma \sim_{r} \tau$.

References

[1] F. Otto, Conjugacy in monoids with a special Church-Rosser presentation is decidable, Semigroup Forum 29 (1984), 223-240.
[2] G. Kudryavtseva and V. Mazorchuk, On conjugation in some transformation and Brauer-type semigroups, Publ. Math. Debrecen 70 (2007), 19-43.
[3] G. Kudryavtseva and V. Mazorchuk, On three approaches to conjugacy in semigroups, Semigroup Forum 78 (2009), 14-20.
[4] G. Lallement, Semigroups and Combinatorial Applications (John Wiley and Sons, New York, 1979).
[5] J. Araujo, M. Kinyon, J. Konieczny and A. Malheiro, Four notions of conjugacy for abstract semigroups, to appear in Proc. Roy. Soc. Edinburgh Sect. A, preprint (2015), arXiv:1503.00915v2.
[6] J. Araujo, J. Konieczny and A. Malheiro, Conjugation in semigroups, J. Algebra 403 (2014), 93-134.
[7] J. Koneicny, A new definition of conjugacy for semigroups, J. Algebra and Appl. 17, 1850032(2018)[20 pages].
[8] J. M. Howie, Fundamentals of Semigroup Theory (Oxford University Press, New York, 1995).
[9] T. Jech, Set Theory, Third Edition, Springer-Verlag, New York, 2006.

Aftab Hussain Shah

Department of Mathematics, Central University of Kashmir
City Ganderbal, Kashmir
E-mail: aftab@cukashmir.ac.in

Mohd Rafiq Parray

Department of Mathematics, Central University of Kashmir
City Ganderbal, Kashmir
E-mail: parrayrafiq@cukashmir.ac.in

