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GENERALIZED QUADRATIC MAPPINGS IN 2d

VARIABLES

Yeol Je Cho∗, Sang Han Lee and Choonkil Park

Abstract. Let X,Y be vector spaces. It is shown that if an even
mapping f : X → Y satisfies f(0) = 0, and

2(2d−2Cd−1 −2d−2 Cd)f

 2d∑
j=1

xj

+
∑

ι(j)=0,1,
∑2d

j=1 ι(j)=d

f

 2d∑
j=1

(−1)ι(j)xj


= 2(2d−1Cd +2d−2 Cd−1 −2d−2 Cd)

2d∑
j=1

f(xj)

for all x1, · · · , x2d ∈ X, then the even mapping f : X → Y is
quadratic.

Furthermore, we prove the Hyers-Ulam stability of the above
functional equation in Banach spaces.

1. Introduction and preliminaries

In 1940, S.M. Ulam [14] raised the following question: Under what
conditions does there exist an additive mapping near an approximately
additive mapping?

Let X and Y be Banach spaces with norms || · || and ∥·∥, respectively.
Hyers [3] showed that if ϵ > 0 and f : X → Y such that

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ

for all x, y ∈ X, then there exists a unique additive mapping T : X → Y
such that

∥f(x)− T (x)∥ ≤ ϵ
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for all x ∈ X.
Consider f : X → Y to be a mapping such that f(tx) is continuous

in t ∈ R for each fixed x ∈ X. Assume that there exist constants ϵ ≥ 0
and p ∈ [0, 1) such that

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ(||x||p + ||y||p)

for all x, y ∈ X. Th.M. Rassias [6] showed that there exists a unique
R-linear mapping T : X → Y such that

∥f(x)− T (x)∥ ≤ 2ϵ

2− 2p
||x||p

for all x ∈ X. Găvruta [4] generalized the Rassias’ result.
A square norm on an inner product space satisfies the important

parallelogram equality

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2.

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution
of the quadratic functional equation is said to be a quadratic function.
The Hyers-Ulam stability problem of the quadratic functional equation
was proved by Skof [13] for mappings f : X → Y , where X is a normed
space and Y is a Banach space. Cholewa [1] noticed that the theorem
of Skof is still true if the relevant domain X is replaced by an Abelian
group. In [2], Czerwik proved the Hyers-Ulam stability of the quadratic
functional equation. Several functional equations have been investigated
in [5]–[12].

In this paper, we solve the functional equation

2(2d−2Cd−1 −2d−2 Cd)f

(
2d∑
j=1

xj

)
+

∑
ι(j)=0,1,

∑2d
j=1 ι(j)=d

f

(
2d∑
j=1

(−1)ι(j)xj

)

= 2(2d−1Cd +2d−2 Cd−1 −2d−2 Cd)
2d∑
j=1

f(xj),(1.1)

and prove the Hyers-Ulam stability of the functional equation (1.1)
in Banach spaces.
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2. Stability of generalized quadratic mappings in 2d variables

Throughout this section, assume that X and Y are vector spaces.

Lemma 2.1. If an even mapping f : X → Y satisfies f(0) = 0 and
(1.1), then the mapping f : X → Y is quadratic.

Proof. Letting x1 = x, x2 = y and x3 = · · · = x2d = 0 in (1.1), we get

2(2d−2Cd−1 −2d−2 Cd)f(x+ y) + 22d−2Cdf(x+ y) + 22d−2Cd−1f(x− y)

= 2(2d−1Cd +2d−2 Cd−1 −2d−2 Cd)(f(x) + f(y))

for all x, y ∈ X. So

2d−2Cd−1(f(x+y)+f(x−y)) = (2d−1Cd+2d−2Cd−1−2d−2Cd)(f(x)+f(y))

for all x, y ∈ X. Since 2d−1Cd +2d−2 Cd−1 −2d−2 Cd = 22d−2Cd−1,

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X. Thus the even mapping f : X → Y is quadratic.

From now on, assume that X is a normed vector space with norm
|| · || and that Y is a Banach space with norm ∥ · ∥.

For a given mapping f : X → Y , we define

Df(x1, · · · , x2d) : = 2(2d−2Cd−1 −2d−2 Cd)f

(
2d∑
j=1

xj

)

+
∑

ι(j)=0,1,
∑2d

j=1 ι(j)=d

f

(
2d∑
j=1

(−1)ι(j)xj

)

− 2(2d−1Cd +2d−2 Cd−1 −2d−2 Cd)
2d∑
j=1

f(xj)

for all x1, · · · , x2d ∈ X.

Theorem 2.2. Let f : X → Y be an even mapping satisfying f(0) =
0 for which there exists a function φ : X2d → [0,∞) such that

φ̃(x1, · · · , x2d) : =
∞∑
j=1

9jφ
(x1

3j
, · · · , x2d

3j

)
< ∞,(2.1)

∥Df(x1, · · · , x2d)∥ ≤ φ(x1, · · · , x2d)(2.2)
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for all x1, · · · , x2d ∈ X. Then there exists a unique quadratic mapping
Q : X → Y such that

∥f(x)−Q(x)∥ ≤ 1

182d−3Cd−1

φ̃(x, x, x, 0, · · · , 0︸ ︷︷ ︸
2d− 3 times

)(2.3)

for all x ∈ X.

Proof. Letting x1 = x2 = x3 = x and x4 = · · · = x2d = 0 in (2.2), we
get

∥2(2d−2Cd−1 − 2d−2Cd +2d−3 Cd)f(3x)

− 6(2d−1Cd +2d−2 Cd−1 −2d−2 Cd −2d−3 Cd−1)f(x)∥
≤ φ(x, x, x, 0, · · · , 0︸ ︷︷ ︸

2d− 3 times

)

for all x ∈ X. Since

2d−1Cd +2d−2 Cd−1 −2d−2 Cd −2d−3 Cd−1 = 3(2d−2Cd−1 −2d−2 Cd +2d−3 Cd)

= 32d−3Cd−1,

∥22d−3Cd−1f(3x)− 182d−3Cd−1)f(x)∥(2.4)

= ∥22d−3Cd−1(f(3x)− 9f(x))∥
≤ φ(x, x, x, 0, · · · , 0︸ ︷︷ ︸

2d− 3 times

)

for all x ∈ X. So∥∥∥f(x)− 9f
(x
3

)∥∥∥ ≤ 1

22d−3Cd−1

φ(
x

3
,
x

3
,
x

3
, 0, · · · , 0︸ ︷︷ ︸
2d− 3 times

)

for all x ∈ X. Hence∥∥∥9lf ( x
3l

)
− 9mf

( x

3m

)∥∥∥(2.5)

≤
m−1∑
j=l

9j

22d−3Cd−1

φ(
x

3j+1
,

x

3j+1
,

x

3j+1
, 0, · · · , 0︸ ︷︷ ︸
2d− 3 times

)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows
from (2.1) and (2.5) that the sequence {9nf( x

3n
)} is a Cauchy sequence
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for all x ∈ X. Since Y is complete, the sequence {9nf( x
3n
)} converges.

So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

9nf(
x

3n
)

for all x ∈ X.
By (2.1) and (2.2),

∥DQ(x1, · · · , x2d)∥ = lim
n→∞

9n
∥∥∥Df

(x1

3n
, · · · , x2d

3n

)∥∥∥
≤ lim

n→∞
9nφ

(x1

3n
, · · · , x2d

3n

)
= 0

for all x1, · · · , x2d ∈ X. So DQ(x1, · · · , x2d) = 0. By Lemma 2.1, the
mapping Q : X → Y is quadratic. Moreover, letting l = 0 and passing
the limit m → ∞ in (2.5), we get the inequality (2.3).

Now, let Q′ : X → Y be another quadratic mapping satisfying (2.3).
Then we have

∥Q(x)−Q′(x)∥ = 9n
∥∥∥Q( x

3n

)
−Q′

( x

3n

)∥∥∥
≤ 9n

(∥∥∥Q( x

3n

)
− f

( x

3n

)∥∥∥+ ∥∥∥Q′
( x

3n

)
− f

( x

3n

)∥∥∥)
≤ 2 · 9n

182d−3Cd−1

φ̃(
x

3n
,
x

3n
n

,
x

3
, 0, · · · , 0︸ ︷︷ ︸
2d− 3 times

),

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that
Q(x) = Q′(x) for all x ∈ X. This proves the uniqueness of Q.

Corollary 2.3. Let p > 2 and θ be positive real numbers, and let
f : X → Y be an even mapping satisfying f(0) = 0 and

∥Df(x1, · · · , x2d)∥ ≤ θ
2d∑
j=1

||xj||p(2.6)

for all x1, · · · , x2d ∈ X. Then there exists a unique quadratic mapping
Q : X → Y such that

∥f(x)−Q(x)∥ ≤ 3θ

2(3p − 9)2d−3Cd−1

||x||p

for all x ∈ X.

Proof. Defining φ(x1, · · · , x2d) = θ
∑2d

j=1 ||xj||p in Theorem 2.2, we
get the desired result, as desired.
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Theorem 2.4. Let f : X → Y be an even mapping satisfying f(0) =
0 for which there exists a function φ : X2d → [0,∞) satisfying (2.2) and

φ̃(x1, · · · , x2d) :=
∞∑
j=0

1

9j
φ(3jx1, · · · , 3jx2d) < ∞(2.7)

for all x1, · · · , x2d ∈ X. Then there exists a unique quadratic mapping
Q : X → Y such that

∥f(x)−Q(x)∥ ≤ 1

182d−3Cd−1

φ̃(x, x, x, 0, · · · , 0︸ ︷︷ ︸
2d− 3 times

)(2.8)

for all x ∈ X.

Proof. It follows from (2.4) that∥∥∥∥f(x)− 1

9
f(3x)

∥∥∥∥ ≤ 1

182d−3Cd−1

φ(x, x, x, 0, · · · , 0︸ ︷︷ ︸
2d− 3 times

)

for all x ∈ X. Hence∥∥∥∥ 19l f(3lx)− 1

9m
f(3mx)

∥∥∥∥(2.9)

≤
m−1∑
j=l

1

9j · 182d−3Cd−1

φ(3jx, 3jx, 3jx, 0, · · · , 0︸ ︷︷ ︸
2d− 3 times

)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows
from (2.7) and (2.9) that the sequence { 1

9n
f(3nx)} is a Cauchy sequence

for all x ∈ X. Since Y is complete, the sequence { 1
9n
f(3nx)} converges.

So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1

9n
f(3nx)

for all x ∈ X.
By (2.2) and (2.7),

∥DQ(x1, · · · , x2d)∥ = lim
n→∞

1

9n
∥Df(3nx1, · · · , 3nx2d)∥

≤ lim
n→∞

1

9n
φ(3nx1, · · · , 3nx2d) = 0

for all x1, · · · , x2d ∈ X. So DQ(x1, · · · , x2d) = 0. By Lemma 2.1, the
mapping Q : X → Y is quadratic. Moreover, letting l = 0 and passing
the limit m → ∞ in (2.9), we get the inequality (2.8).
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The rest of the proof is similar to the proof of Theorem 2.2.

Corollary 2.5. Let p < 2 and θ be positive real numbers, and let
f : X → Y be an even mapping satisfying f(0) = 0 and (2.6). Then
there exists a unique quadratic mapping Q : X → Y such that

∥f(x)−Q(x)∥ ≤ 3θ

2(9− 3p)(2d−3Cd−1)
||x||p

for all x ∈ X.

Proof. Defining φ(x1, · · · , x2d) = θ
∑2d

j=1 ||xj||p in Theorem 2.4, we
get the desired result, as desired.
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