ON THE LOWER LAYERS OF A \mathbb{Z}_p -EXTENSION

JANGHEON OH

ABSTRACT. It is shown that the *p*-part of the class number of the lower layers of a cyclotomic \mathbb{Z}_p -extension can grow exponentially.

1. Introduction

Fix a prime number p and let k be a number field. Suppose that K is a \mathbb{Z}_p -extension of k, so $K = \bigcup_{n \ge 0} k_n$ with $k_n \subset k_{n+1}$ and $Gal(k_n/k) \simeq \mathbb{Z}/p^n\mathbb{Z}$. Denote by L_n the p-Hilbert class field of the *n*-th layer k_n , A_n the galois group $Gal(L_n/k_n)$, and write $L_K = \bigcup_{n \ge 0} L_n$. Iwasawa theory [1] shows that there exists integers $\mu \ge 0, \lambda \ge 0, \nu$ such that for sufficiently large n, one has

$$h_n := |A_n| = p^{\mu p^n + \lambda n + \nu}$$

It is well-known that μ -invariant vanishes when K is a cyclotomic \mathbb{Z}_p -extension of an abelian number field k. It implies that the exponent of h_n grows linearly for higher layers. In this paper, we prove that h_n can grow exponentially in lower layers of a cyclotomic \mathbb{Z}_p -extension and give an example of it.

2. Proof of Theorems

Let

$$Y_K = Gal(L_K/K).$$

By Nakayama lemma, one can show that Y_K is a finitely generated torsion $\Lambda = \mathbb{Z}_p[[Gal(K/k)]]$ -module. The Iwasawa algebra Λ is isomorphic to the ring of the formal power series $\mathbb{Z}_p[[T]]$ in one variable over \mathbb{Z}_p . The isomorphism is given by identifying 1 + T with a topological generator γ of Gal(K/k). A polynomial $P(T) \in \mathbb{Z}_p[T]$ is called distinguished if $P(T) = T^n + a_{n-1}T^{n-1} + \cdots + a_0$ with $p|a_i$ for $0 \le i \le n-1$. By the *p*-adic Weierstrass preparation theorem, every element g(T) in $\mathbb{Z}_p[[T]]$ may be uniquely written in the form

$$g(T) = p^m U(T) P(T),$$

where m is a non-negative integer, U(T) is a unit, and P(T) is a distinguished polynomial.

Received December 18, 2021. Revised June 2, 2022. Accepted June 9, 2022.

²⁰¹⁰ Mathematics Subject Classification: 11R23.

Key words and phrases: Iwasawa invariants, class number.

⁽c) The Kangwon-Kyungki Mathematical Society, 2022.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Jangheon Oh

THEOREM 2.1. Suppose K/k is a \mathbb{Z}_p -extension in which exactly one prime ramfies and totally ramifies in K/k. Then

$$Gal(L_n/k_n) \simeq Y_K/((1+T)^{p^n} - 1)Y_K.$$

Proof See [4].

THEOREM 2.2. Let K be a \mathbb{Z}_p -extension of k with $\mu = 0$. Suppose that $h_0 = p$ and exactly one prime ramfies and totally ramifies in K/k. Then

 $h_n = p^{p^n}$ for *n* satisfying $p^n \leq \lambda$.

Proof Since only one prime ramfies and totally ramifies in K/k and $Gal(L_0/k_0)$ is cyclic, we see that Y_K is a cyclic Λ -module by Theorem 2.1 and Nakayama lemma. Moreover μ is zero, hence

$$Y_K \simeq \mathbb{Z}_p[[T]]/(P(T))$$

By Theorem 2.1 and the condition in Theorem 2.2, we have

$$\mathbb{Z}/p\mathbb{Z} \simeq A_0 \simeq Y_K/TY_K \simeq Z_p[[T]]/(P(T),T)$$

Hence we may assume

$$P(0) = p.$$

For n satisfying $p^n \leq \lambda$,

$$P(T) - ((1+T)^{p^n} - 1)T^{\lambda - p^n} = P(T) - T^{\lambda} + pTG(T)$$

= $p + b_1T + \dots + b_{\lambda - 1}T^{\lambda - 1} = pU(T),$

where $p|b_i$ for $1 \leq i \leq \lambda - 1$, $G(T) \in \mathbb{Z}_p[T]$ and U(T) is a unit in $\mathbb{Z}_p[T]$. Therefore we have

$$A_n \simeq Y_K / ((1+T)^{p^n} - 1) Y_K \simeq Z_p[[T]] / (P(T), (1+T)^{p^n} - 1)$$

$$\simeq Z_p[[T]] / (p, (1+T)^{p^n} - 1) \simeq Z_p[[T]] / (p, T^{p^n})$$

This completes the proof.

We give an example satisfying conditions of Theorem 2.2

EXAMPLE 1. For $k = \mathbb{Q}(\sqrt{-53301})$ and p = 3, p ramifies in k, $\lambda = 11$ and $h_k = 264 = 3*8*11$. When K is the cyclotomic \mathbb{Z}_3 -extension of k, all the assumptions in Theorem 2.2 are satisfied. So we see that

$$h_0 = 3, h_1 = 3^3, h_2 = 3^9.$$

References

- [1] K.Iwasawa, On \mathbb{Z}_{ℓ} -extensions of algebraic number fields, Ann.of Math. 98 (2) (1973), 246–326.
- [2] T.Kataoka, A consequence of Greenberg's generalized conjecture on Iwasawa invariants of Z_pextensions, Journal of Number Theory **172** (3) (2017), 200–233.
- [3] J.Minardi, Iwasawa modules for Z^d_p-extensions of algebraic number fields, Ph.D dissertation, University of Washington, 1986.
- [4] L.Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math., 83, Springer-Verlag, New York(1982).

Jangheon Oh

Department of Mathematics and Statistics, Sejong University, Seoul, Korea *E-mail*: oh@sejong.ac.kr

362