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COMMON FIXED POINT THEOREMS FOR COMPLEX-VALUED

MAPPINGS WITH APPLICATIONS

Samet Maldar∗ and Yunus Atalan

Abstract. The aim of this paper is to obtain some results which belong to fixed
point theory such as strong convergence, rate of convergence, stability, and data
dependence by using the new Jungck-type iteration method for a mapping defined
in complex-valued Banach spaces. In addition, some of these results are supported
by nontrivial numerical examples. Finally, it is shown that the sequence obtained
from the new iteration method converges to the solution of the functional integral
equation in complex-valued Banach spaces. The results obtained in this paper may
be interpreted as a generalization and improvement of the previously known results.

1. Introduction and Preliminaries

Fixed point theory is a dynamic field that has been studied theoretically and prac-
tically by many researchers. Iteration methods are used to show the existence or
uniqueness of fixed points of certain mapping classes [31, 32, 34]. In addition, fixed
point theory has become a useful tool in demonstrating the solution of some differen-
tial and integral equations [4, 10,13,33].

In the fixed point theory, many studies have been done in different spaces, such as
metric spaces [40], b-metric spaces [9, 23], quasi metric spaces [41], G-metric spaces
[25], convex metric spaces [11], partially ordered metric spaces [24, 38], hyperbolic
spaces [2,19], CAT spaces [12] and elliptic valued metric spaces [28]. Complex-valued
Banach spaces, one of them, were introduced in 2011 by Azam et al. [5].

The authors in [5], have achieved an extension of the Banach fixed point theorem
for complex-valued metric spaces. After that, many researchers have obtained some
remarkable and applicable results by studying this theory [1, 18, 26, 36]. Recall the
definition of partial order - on C as follows [5]:
Let C be the set of complex numbers and w1, w2 ∈ C. The - symbol has the following
condition:
w1 - w2 if only if Re(w1) ≤ Re(w2) and Im(w1) ≤ Im(w2).
It means that w1 - w2, if the following conditions are satisfied:

i. Re(w1) = Re(w2), Im(w1) < Im(w2)
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ii. Re(w1) < Re(w2), Im(w1) = Im(w2)
iii. Re(w1) < Re(w2), Im(w1) < Im(w2)
iv. Re(w1) = Re(w2), Im(w1) = Im(w2)

Definition 1.1. [5]: Let X be a nonempty set. Suppose that the mapping d :
X ×X → C satisfies in the following conditions:

i. 0 - d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y
ii. d(x, y) = d(y, x) for all x, y ∈ X
iii. d(x, y) - d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a complex-valued metric on X and (X, d) is called a complex-valued
metric space.

Definition 1.2. [26]: Let X be a linear space over a field K, where K = C (the
set of complex numbers). A complex-valued norm on X is a complex-valued function
‖ · ‖ : X → C satisfying in the following conditions:

i. ‖x‖ = 0 iff x = 0, x ∈ X
ii. ‖δx‖ = |δ| · ‖x‖, δ ∈ C, x ∈ X
iii. ‖x− y‖ - ‖x− z‖+ ‖z − y‖ for all x, y, z ∈ X.

Then, ‖ · ‖ is called a complex-valued norm on X and (X; ‖ · ‖) is called a complex-
valued linear normed space. If every Cauchy sequence is convergent in (X, ‖ · ‖), then
(X, ‖ · ‖) is called a complex-valued Banach space.

Example 1.3. [27]: Let E = [0, 1] and define ‖ · ‖ : E → C by

‖x− y‖ = |x− y|e
iπ
3 .(1)

Then, (E, ‖ · ‖) is a complex-valued Banach space.

Example 1.4. [27]: Let E = [0, 1] and define ‖ · ‖ : E → C by

‖x− y‖ = |x− y|i.(2)

Then, (E, ‖ · ‖) is a complex-valued Banach space.

Example 1.5. [26]: Let C[a, b] be all continuous complex-valued functions defined
on [a, b] and define ‖ · ‖ : C[a, b]→ C by

‖x− y‖∞ = max
s∈[a,b]

|x(s)− y(s)|eit(3)

where x, y ∈ C[a, b], t ∈ [0, π
2
]. Then, (C[a, b], ‖ · ‖) is a complex-valued Banach space.

Let X be Banach space, Y an arbitrary set and S, T :Y→X such that T (Y )⊆S(Y ).
For x0 ∈ Y , the following iteration method is called Jungck iteration method [15]:

(4) Sxn+1=f (T, xn)

for all n ∈ N. After the sequence has been defined by Jungck, many iteration methods
have been introduced in this context [3, 8, 14,16,17,20].

Jungck-SP iteration method [8], Jungck-CR iteration method [14], and Jungck
Agarwal iteration method [16] are given below respectively:

(5)

 Sxn+1 = (1− αn)Syn + αnTyn
Syn = (1− βn)Szn + βnTzn
Szn = (1− γn)Sxn + γnTxn
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and

(6)

 Sun+1 = (1− αn)Svn + αnTvn
Svn = (1− βn)Tun + βnTwn
Swn = (1− γn)Sun + γnTun

and

(7)

{
xn+1 = (1− αn)Txn + αnTyn
Syn = (1− βn)Sxn + βnTxn

in which {αn}∞n=0, {βn}
∞
n=0, {γn}

∞
n=0⊂[0, 1].

The iteration methods defined in [21] and [22] respectively, are as follows:

(8)

 xn+1 = (1−αn)
k

Txn +
(

1− (1−αn)
k

)
Tyn

yn = (1−βn)
k

xn +
(

1− (1−βn)
k

)
Txn

and

(9)


xn+1 = Tun

un = (1−αn)
k

Txn +
(

1− (1−αn)
k

)
Tyn

yn = Tzn

zn = (1−βn)
k

xn +
(

1− (1−βn)
k

)
Txn

where {αn}∞n=0, {βn}
∞
n=0⊂[0, 1] and k ∈ N.

By inspiring the above iteration methods (8) and (9), we have introduced new Jungck
type iteration methods as follows:

(10)

 Sxn+1 = (1−αn)
k

Txn +
(

1− (1−αn)
k

)
Tyn

Syn = (1−βn)
k

Sxn +
(

1− (1−βn)
k

)
Txn

and

(11)


Sxn+1 = Tun

Sun = (1−αn)
k

Txn +
(

1− (1−αn)
k

)
Tyn

Syn = Tzn

Szn = (1−βn)
k

Sxn +
(

1− (1−βn)
k

)
Txn

where {αn}∞n=0, {βn}
∞
n=0⊂[0, 1] and k ∈ N.

Definition 1.6. [30]: Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers
with the same limit c. We say that {an}∞n=0 converges faster than {bn}∞n=0 to c, if

lim
n→∞

d(an, c)

d(bn, c)
= 0.

Definition 1.7. [14]: Let X be a nonempty set and S,T :X→X be mappings. If
Tx=Sx, then x ∈ X is called coincidence point of T and S. If x=Tx=Sx, then x ∈ X
is called common fixed point of T and S. If p=Tx=Sx for some x ∈ X, then p is
called the point of coincidence of T and S. If TSx=STx for all x ∈ X, then a pair
(S, T ) is called commuting. If TSx=STx whenever Tx=Sx for some x ∈ X, then a
pair (S, T ) is called weakly compatible.
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Definition 1.8. [18]: For two non-self mappings S, T : E → E of complex-valued
metric space (E, d) satisfying the following condition:

i. T (E) ⊆ S(E)
ii.

(12) d(Tx, Ty) - λ · d(Sx, Sy) + µ ·
(
d(Sx, Tx) · d(Sy, Ty)

1 + d(Sx, Sy)

)
in which λ and µ are non-negative constants with λ+ µ < 1.

iii. S(E) is a complete subspace of E.

Then S and T have a coincidence point. Moreover, if S and T are weakly compatible,
then S and T have a unique common fixed point.

The mapping (12) has been given in normed spaces as follows:

Definition 1.9. (E, ‖ · ‖) is a complex-valued Banach space. For two nonself
mappings S, T : E → X satisfying the following condition:

(13) ‖Tx− Ty‖ - λ · ‖Sx− Sy‖+ µ ·
(
‖Sx− Tx‖ · ‖Sy − Ty‖

1 + ‖Sx− Sy‖

)
in which λ and µ are non-negative constants with λ+ µ < 1.

Example 1.10. Let E = [0, 1] and define operators S, T :E → C by Sx = Tx = x
8

with a coincidence point p = 0. Suppose λ = 1
8
, µ = 1

3
, k = 40. By using norm (1)

given by Example 1.3 one can see that S, T satisfy the condition (13). Since

‖Tx− Ty‖ - λ · ‖Sx− Sy‖+ µ ·
(
‖Sx− Tx‖ · ‖Sy − Ty‖

1 + ‖Sx− Sy‖

)
= ‖x

8
− y

8
‖+

( ‖x
8
− x

8
‖ · ‖y

8
− y

8
‖

1 + ‖x
8
− y

8
‖

)
=

1

8
· |x− y|e

iπ
3

=
1

8
· ‖x− y‖

It is clear that we have

‖Tx− Ty‖ -
1

8
· ‖x− y‖.(14)

Definition 1.11. [35]: Let S, T : E → X, T (Y )⊆S(Y ) and p = Tx = Sx. For
any x0 ∈ Y , let the sequence {Sxn}∞n=0 generated by the iteration method Sxn+1 =
f(T, xn) converges to p. Let {Syn}∞n=0 ⊂ X be an arbitrary sequence and set

(15) εn = d(Syn+1, f(T, yn))

for all n ∈ N. Then the iteration method f(T, xn) will be called (S, T )-stable if and
only if lim

n→∞
εn = 0 implies that lim

n→∞
‖Syn−p‖ = 0.

Definition 1.12. [37]: Let T , S : X → X be two operators. S is called an
approximate operator of T for all x ∈ X and a fixed ε > 0 if ‖Tx− Sx‖ ≤ ε.



Common fixed point theorems 209

Definition 1.13. [17]: Let (S, T ), (S̃, T̃ ) : Y → X be nonself-mapping pairs on
an arbitrary set Y such that T (Y ) ⊆ S(Y ) and T̃ (Y ) ⊆ S̃(Y ). We say that the
pair (S̃, T̃ ) is an approximate mapping pair of (S, T ) if for all x ∈ Y and for fixed
ε1 ≥ 0, ε2 ≥ 0, we have ∥∥∥Tx− T̃ x∥∥∥ ≤ ε1,

∥∥∥Sx− S̃x∥∥∥ ≤ ε2.

.

Definition 1.14. [6]: Let {xn}∞n=0 and {yn}∞n=0 be sequences in X. We say that
{yn}∞n=0 is an approximate sequence of {xn}∞n=0 if, for any k ∈ N, there exists ε (k)
such that

‖xn − yn‖ ≤ ε (k) , for all n ≥ k.

Definition 1.15. [7]: Let {xn}∞n=0 and {yn}∞n=0 be sequences in X. We say that
these sequences are equivalent if

lim
n→∞

‖xn − yn‖ = 0.

Lemma 1.16. [37]: Let {an}∞n=1 be a nonnegative real sequence and there exists
n0 ∈ N such that for all n ≥ n0 satisfying the following condition:

an+1 ≤ (1− µn)an + µnηn,

where µn ∈ (0, 1) such that
∞∑
n=1

µn = ∞ and ηn ≥ 0. Then the following inequality

holds:
0 ≤ lim

n→∞
sup an ≤ lim

n→∞
sup ηn.

Lemma 1.17. [39]: Let {bn}∞n=0 and {dn}∞n=0 be nonnegative real sequences satis-
fying the following inequality:

bn+1 ≤ (1− rn) bn + dn

where rn ∈ (0, 1) for all n ∈ N,
∞∑
n=0

rn = ∞ and limn→∞
dn
rn

= 0. Then bn → 0 as

n→∞.

2. Convergence and Rate of Convergence

In this section, we show that the new Jungck type iteration method (11) converges
to the unique common fixed point of complex-valued mappings S and T given in
(13). Furthermore, we prove that the iteration method (11) converges faster than the
iteration method (6) for this mapping. Finally, we give an example for comparison of
the speed of convergence among various iteration methods in the literature.

2.1. Convergence Theorems.

Theorem 2.1. Let E be nonempty closed convex subset of a complex-valued Ba-
nach space (X, ‖.‖) and S, T :E→X satisfy condition (13). Assume that T (E)⊆S (E),
S (E)⊆X, Txp=Sxp=p. Let {Sxn}∞n=0 be iterative sequence (11) with

∑∞
n=0 αn=∞.

Then, {Sxn}∞n=0 converges to p. Moreover, p is a unique common fixed point of S and
T provided that E = X. Also, S and T are weakly compatible.
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Proof. By using iterative sequence (11) and condition (13), we have

(16)

‖Sxn+1−p‖ - λ ‖ Sun − Sxp‖

+ µ

(
‖Sun − Tun‖ · ‖Sxp − Txp‖

1 + ‖Sun − Sxp‖

)
= λ ‖ Sun − Sxp‖

and

(17)

‖Syn − p‖ - λ ‖ Szn − Sxp‖

+ µ

(
‖Szn − Tzn‖ · ‖Sxp − Txp‖

1 + ‖Szn − Sxp‖

)
= λ ‖ Szn − Sxp‖

and

(18)

‖Szn − p‖ -
(1− βn)

k
‖Sxn − p‖+

(
1− (1− βn)

k

)
‖Txn − p‖

-
(1− βn)

k
‖Sxn − p‖

+

(
1− (1− βn)

k

)
(λ ‖ Sxn − Sxp‖

+µ

(
‖Sxn − Txn‖ · ‖Sxp − Txp‖

1 + ‖Sxn − Sxp‖

))
-

(
1− βn (1− λ)

k

)
‖Sxn − p‖

and

(19)

‖Sun − p‖ -
(1− αn)

k
‖Txn − p‖+

(
1− (1− αn)

k

)
‖Tyn − p‖

-
(1− αn)

k
(λ ‖ Sxn − Sxp‖

+ µ

(
‖Sxn − Txn‖ · ‖Sxp − Txp‖

1 + ‖Sxn − Sxp‖

))
+

(
1− (1− αn)

k

)
(λ ‖ Syn − Sxp‖

+µ

(
‖Syn − Tyn‖ · ‖Sxp − Txp‖

1 + ‖Syn − Sxp‖

))
= λ

(1− αn)

k
‖ Sxn − Sxp‖

+ λ

(
1− (1− αn)

k

)
‖ Syn − Sxp‖

- λ

(
1− αn (1− λ)

k

)
‖Sxn − p‖
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Substituting (17), (18), and (19) into (16), we have

‖Sxn+1−p‖ - λ2
(

1− αn (1− λ)

k

)
‖Sxn − p‖ .(20)

By induction, we obtain

‖Sxn+1−p‖ - λ2
(

1− αn (1− λ)

k

)
‖Sxn − p‖

‖Sxn−p‖ - λ2
(

1− αn (1− λ)

k

)
‖Sxn−1 − p‖

‖Sxn−1−p‖ - λ2
(

1− αn (1− λ)

k

)
‖Sxn−2 − p‖

and

(21)

‖Sxn+1−p‖ - λ2(n+1)

n∏
i=0

(
1− αi (1− λ)

k

)
‖Sx0 − p‖

- λ2(n+1)

n∏
i=0

e

(
1−αi(1−λ)

k

)
‖Sx0 − p‖

- λ2(n+1) 1

e
(1−λ)

∑n
i=0

α
i

k

‖Sx0 − p‖

Taking the limit on both sides of (21) and using λ2 < 1, we obtain

lim
n→∞

‖Sxn−p‖ = 0.(22)

We prove that p is a unique common fixed point of S and T . Assume that there
exist another point of coincide q of the pair (S, T ). Then, there exists xq, which is an
element of the set of coincidence points of S and T , such that Sxq = Txq = q.
Then

0 - ‖p− q‖ = ‖Txp−Txq‖ - λ ‖ Sxp − Sxq‖+ µ

(
‖Sxp − Txp‖ · ‖Sxq − Txq‖

1 + ‖Sxp − Sxq‖

)
- λ ‖ Sxp − Sxq‖ = λ ‖ p− q‖

Therefore,

0 - ‖p− q‖ = ‖Txp−Txq‖ - λ ‖ p− q‖

which implies that p = q. Also, S and T are weakly compatible and Sxp = Txp = p,
then Tp = TTxp = TSxp = STxp implies Tp = Sp. Hence, Tp is a point of
coincidence of the pair (S, T ) and because point of coincidence is unique, then Tp = p.
So, Sp = Tp = p and thus p is a unique common fixed point of S and T .

The following theorem indicates that the convergence result can be obtained with-
out the

∑∞
n=0 αn=∞ condition for the sequence of {αn}∞n=0⊂[0, 1] :

Theorem 2.2. Let S, T be the same as in Theorem 2.1 with Txp=Sxp=p. Let
{Sxn}∞n=0 be iterative sequence (11) with {αn}∞n=0, {βn}

∞
n=0⊂[0, 1]. Then, {Sxn}∞n=0

converges to p. Moreover, p is a unique common fixed point of S and T provided that
E = X. Also, S and T are weakly compatible.
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Proof. The proof is similar to that of Theorem 2.1. Consider the following inequal-
ity

‖Sxn+1−p‖ - λ2(n+1)

n∏
i=0

(
1− αi (1− λ)

k

)
‖Sx0 − p‖ .(23)

Since
(

1− αi(1−λ)
k

)
< 1, (for i = 0, 1, 2, ...n), λ < 1 and {αn}∞n=0, {βn}

∞
n=0⊂[0, 1] for

all n ∈ N, we have obtained in the following

‖Sxn+1−p‖ - λ2(n+1) ‖Sx0 − p‖(24)

Taking the limit in the inequality (24), it can be seen that lim
n→∞

‖Sxn−p‖ = 0. Hence

the condition
∑∞

n=0 αn=∞ is unnecessary.

Theorem 2.3. Let S, T be the same as in Theorem 2.1 with Txp=Sxp=p. Suppose
that {Sun}∞n=0 be iterative sequence (6) with

∑∞
n=0 αn=∞. Then, {Sun}∞n=0 converges

to p. Moreover, p is a unique common fixed point of S and T provided that E = X.
Also S and T are weakly compatible.

Proof. The proof is similar to that of Theorem 2.1. From iterative method (6) and
(13), we obtain

‖Sun+1−p‖ - λ[1− αn(1− λ)] ‖Sun − p‖(25)

By using (25), we get

(26) ‖Sun+1 − p‖ - λ(n+1)

n∏
i=0

[1− αi(1− λ)] ‖Su0 − p‖ .

Taking the limit both side of the inequality (26) and using Lemma 1.17, it can be
seen that lim

n→∞
‖Sun−p‖ = 0.

It can be shown similarly to the proof in Theorem 2.1 that p is a unique common
fixed point. Hence we omit it.

The following theorem indicates that the convergence result can be obtained with-
out the

∑∞
n=0 αn=∞ condition for the sequence of {αn}∞n=0⊂[0, 1]:

Theorem 2.4. Let S, T be the same as in Theorem 2.1 with Txp=Sup=p. Let
{Sun}∞n=0 be iterative sequence (6) with {αn}∞n=0, {βn}

∞
n=0⊂[0, 1]. Then, {Sun}∞n=0

converges to p. Moreover, p is a unique common fixed point of S and T provided that
E = X. Also, S and T are weakly compatible.

Proof. The proof is similar to that of Theorem 2.1. Consider the following inequal-
ity

‖Sun+1−p‖ - λ[1− αn(1− λ)] ‖Sun − p‖(27)

Since 1− αn(1− λ) < 1, λ < 1 and {αn}∞n=0, {βn}
∞
n=0, {γn}

∞
n=0⊂[0, 1] for all n ∈ N, we

have obtained in the following

‖Sun+1−p‖ - λ(n+1) ‖Su0 − p‖(28)

Taking the limit the inequality (28), it can be seen that lim
n→∞

‖Sun−p‖ = 0. Hence,

the condition
∑∞

n=0 αn=∞ is unnecessary.
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2.2. Convergence Rate Analysis. In this section, we prove that the new Jungck-
type iteration method (11) has a better convergence speed than the iteration method
(6). We also give some numerical examples to show the efficiency of the new Jungck-
type iteration method (11).

Theorem 2.5. Let S, T be the same as in Theorem 2.1 with Txp=Sxp=p. Let
{αn}∞n=0, {βn}

∞
n=0, and {γn}∞n=0 be real sequences in [0, 1] satisfying α1 ≤ αn < 1. For

given x0 = u0 ∈ E, consider the iterative sequences {Sxn}∞n=0 and {Sun}∞n=0 defined
by iteration method (11) and iteration method (6) respectively. Then, {Sxn}∞n=0

converges to p faster than {Sun}∞n=0 .

Proof. From iteration methods (11) and (6), we obtain the following inequalties
respectively,

(29) ‖Sxn+1 − p‖ - λ3(n+1)

n∏
i=0

(
1 +

(1− αi) (1− λ)

kλ

)
‖Sx0 − p‖

and

(30) ‖Sun+1 − p‖ - λ(n+1)

n∏
i=0

[1− αi(1− λ)] ‖Su0 − p‖ .

Applying assumption to (29) and (30) respectively, we obtain

(31) ‖Sxn+1 − p‖ - λ3(n+1) ‖Sx0 − p‖
(

1 +
(1− α1) (1− λ)

kλ

)n+1

,

and

(32) ‖Sun+1 − p‖ - λ(n+1) ‖Su0 − p‖ [1− α1(1− λ)]n+1.

Define

an = λ3(n+1) ‖Sx0 − p‖
(

1 +
(1− α1) (1− λ)

kλ

)n+1

bn = λn+1 ‖Su0 − p‖ [1− α1(1− λ)]n+1

and

ψn =
an
bn

=
λ3(n+1) ‖Sx0 − p‖

(
1 + (1−α1)(1−λ)

kλ

)n+1

λn+1 ‖Su0 − p‖ [1− α1(1− λ)]n+1

=

[
λ2

(
1 + (1−α1)(1−λ)

kλ

1− α1(1− λ)

)]n+1

Since k ∈ N, λ ∈ (0, 1) and α1 ≤ 1 we have

λ2
(

1 +
(1− α1) (1− λ)

kλ

)
<

(
λ+

(1− α1) (1− λ)

k

)
≤ (λ+ (1− α1) (1− λ))

= (1− α1(1− λ))

That is ψn < 1. Therefore limn→∞ ψn = 0. From Definition 1.6, we obtain that
{Sxn}∞n=1converges to p faster than {Sun}∞n=1.
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Remark 2.6. We can reconstruct Theorem 2.5 using Theorem 2.2 and Theorem
2.4. In this case, it can be seen that condition α1 ≤ αn ≤ 1 is unnecessary. From the
same process in the proof of Theorem 2.5, we obtain

ψn =
an
bn

=
λ2(n+1) ‖Sx0 − p‖
λn+1 ‖Su0 − p‖

= λn+1.

That is ψn < 1. Therefore limn→∞ ψn = 0. From Definition 1.6, we obtain that
{Sxn}∞n=1converges to p faster than {Sun}∞n=1.

Example 2.7. Let E = [0, 1] and define operators S, T :E → C by Sx = x
3
,

Tx = x
9

with unique common fixed point xp = 0. Let λ = 1
2
, µ = 9

64
, k = 40, and

αn = βn = γn = 1
n+1

for all n ∈ N. By using norm (1) given in Example 1.3, it can be
seen that S and T satisfy the condition (13). By taking the initial point 0.5 ∈ E for
all Jungck type iteration methods mentioned in this paper, we can get the following
table.

Table 1. Comparison rate of convergence among some iterative meth-
ods for the initial point 0.5

Iteration
Steps

Iteration
Method (11)

Iteration
Method 10

Iteration
Method (7)

Iteration
Method (6)

Iteration
Method (5)

1 0.50000000000000 0.50000000000000 0.50000000000000 0.50000000000000 0.50000000000000
2 0.00694251543210 0.05831597222222 0.09259259259259 0.13888888888889 0.14814814814815
3 0.00009994746154 0.00690792288237 0.02222730274856 0.04286694101509 0.06970482141950
4 0.00000146441154 0.00082457332947 0.00591699031501 0.01369360615760 0.04033843832147
5 0.00000002168052 0.00009887550413 0.00166377001747 0.00444281444224 0.02625882933104
6 0.00000000032319 0.00001189214445 0.00048383984047 0.00145351336691 0.01844241511316
7 0.00000000000484 0.00000143339442 0.00014393464642 0.00047791255828 0.01365905682552
8 0.00000000000007 0.00000017304940 0.00004352190553 0.00015764476749 0.01052095175623
9 0.00000000000000 0.00000002091785 0.00001332212980 0.00005211575990 0.00835187071032
...

...
...

...
...

...
16 0.00000000000000 0.00000000000001 0.00000000405106 0.00000006957238 0.00268613394733
17 0.00000000000000 0.00000000000000 0.00000000129441 0.00000002313040 0.00238234896661
...

...
...

...
...

...
28 0.00000000000000 0.00000000000000 0.00000000000001 0.00000000000004 0.00088501223256
29 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000001 0.00082536926532
30 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00077155835937
...

...
...

...
...

...
279 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000894565898
280 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000888213975

The following inferences can be seen from the Table 1.

• Iteration method (11) reached to xp = 0 at the 9th step,
• Iteration method (10) reached to xp = 0 at the 17th step,
• Iteration method (7) reached to xp = 0 at the 29th step,
• Iteration method (6) reached to xp = 0 at the 30th step,
• Iteration method (5) reached to xp = 0 after 280th step.

As a result of these data, we can say that the iterative sequence (11) converges to xp
faster than the iterative sequences mentioned in the Table 1.

Example 2.8. Let E = [1.5, 2.5] and define operators S, T :E → [54, 150] by
Sx = 24x2, Tx = x4 − 16x + 112 with a coincidence point xp = 2. Let k = 40 and
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αn = βn = γn = 1
n+1

for all n ∈ N. By using norm (2) given in Example 1.4, it can be
seen that S and T satisfy condition (13). By taking the initial point 1.5 ∈ E for all
Jungck type iterations mentioned in this paper, we can get the following table.

Table 2. Comparison rate of convergence among some iterative meth-
ods for the initial point 1.5

Iteration
Steps

Iteration
Method (11)

Iteration
Method (10)

Iteration
Method (7)

Iteration
Method (6)

Iteration
Method (5)

1 1,50000000000000 1,50000000000000 1,50000000000000 1,50000000000000 1,50000000000000
2 1,99978186529065 1,96405535251285 1,98313445464299 1,97084706544253 1,92414360280142
3 1,99999971980879 1,99382800620470 1,99820174201912 1,99576886918276 1,97222100856849
4 1,99999999962204 1,99888589901988 1,99977566913639 1,99933555113960 1,98632602352750
5 1,99999999999948 1,99979641935165 1,99996989128173 1,99989305177446 1,99211189792208
6 2,00000000000000 1,99996261914998 1,99999577905271 1,99998259058559 1,99497101700627
...

...
...

...
...

...
16 2,00000000000000 1,99999999999823 1,99999999999997 1,99999999999973 1,99955826358893
17 2,00000000000000 1,99999999999967 2,00000000000000 1,99999999999996 1,99962010453220
18 2,00000000000000 1,99999999999994 2,00000000000000 1,99999999999999 1,99967047124433
19 2,00000000000000 1,99999999999999 2,00000000000000 2,00000000000000 1,99971196249360
20 2,00000000000000 2,00000000000000 2,00000000000000 2,00000000000000 1,99974649229432
...

...
...

...
...

...
280 2,00000000000000 2,00000000000000 2,00000000000000 2,00000000000000 0,00204729288472

The following inferences can be seen from the Table 2

• Iteration method (11) reached to xp = 2 at the 6th step,
• Iteration method (10) reached to xp = 2 at the 20th step,
• Iteration method (7) reached to xp = 2 at the 17th step,
• Iteration method (6) reached to xp = 2 at the 19th step,
• Iteration method (5) reached to xp = 2 after 280th step.

As a result of these data, we can say that the iterative sequence (11) converges to xp
faster than the iterative sequences mentioned in the Table 2.

3. (S, T )-Stablity of New Jungck Type Iteration Method

In this section, we analyze the stablity of the iteration method (11) with respect
to operator of (S, T ).

Theorem 3.1. Let S, T be the same as in Theorem 2.1 with Txp=Sxp=p. Suppose
that {Sxn}∞n=0 be iterative sequence generated by (11) with the condition

∑∞
n=0 αn=∞,

converges to p. Then, the iteration method (11) is (S, T )-stable.

Proof. Let {Sωn}∞n=0 be an arbitrary sequence and lim
n→∞

εn = 0 such that εn =

‖Sωn+1 − f(T, ωn)‖. We have

(33)


Sωn+1 = Tυn

Sυn = (1−αn)
k

Tωn +
(

1− (1−αn)
k

)
Tϑn

Sϑn = T$n

S$n = (1−βn)
k

Sωn +
(

1− (1−βn)
k

)
Tωn.
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We will show that lim
n→∞

Sωn = p. We get

(34)

‖Tυn − Txp‖ - λ ‖ Sυn − Sxp‖

+ µ

(
‖Sυn − Tυn‖ · ‖Sxp − Txp‖

1 + ‖Sυn − Sxp‖

)
= λ ‖ Sυn − Sxp‖

and by doing calculations similar to the inequality (34), we have

‖Tϑn − Txp‖ - λ ‖ Sϑn − Sxp‖(35)

and

‖Sϑn − Sxp‖ = ‖T$n − Sxp‖ - λ ‖ S$n − Sxp‖(36)

and

‖Tωn − Txp‖ - λ ‖ Sωn − Sxp‖ .(37)

Using the iteration method (33) and the inequalities (35), (36), (37), (38), we get

(38)

‖ S$n − Sxp‖ -
(1− βn)

k
‖Sωn − Sxp‖

+

(
1− (1− βn)

k

)
‖Tωn − Txp‖

-
(1− βn)

k
‖ Sωn − Sxp‖

+ λ

(
1− (1− βn)

k

)
‖Sωn − Sxp‖

-

(
1− βn (1− λ)

k

)
‖Sωn − Sxp‖

and

(39)

‖ Sυn − Sxp‖ -
(1− αn)

k
‖Tωn − Txp‖

+

(
1− (1− αn)

k

)
‖Tϑn − Txp‖

- λ
(1− αn)

k
‖ Sωn − Sxp‖

+ λ

(
1− (1− αn)

k

)
‖ Sϑn − Sxp‖

- λ
(1− αn)

k
‖ Sωn − Sxp‖

+ λ2
(

1− (1− αn)

k

)
‖ S$n − Sxp‖

- λ

(
λ

(
1− (1− αn)

k

)(
1− βn (1− λ)

k

)
+

(1− αn)

k

)
‖Sωn − Sxp‖ .
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Combining (34), (38) and (39), we have

(40)

‖Sωn+1−Sxp‖ - ‖Sωn+1 − Tυn‖+ ‖Tυn − Sxp‖
- εn + ‖Tυn − Txp‖
- εn + λ ‖ Sυn − Sxp‖

- εn + λ2
(

(1− αn)

k
+ λ

(
1− (1− αn)

k

))
· ‖Sωn − Sxp‖

- εn + λ2
(

1− αn (1− λ)

k

)
‖Sωn − p‖ .

Taking the limit both side of the inequality (40) and using Lemma 1.17, we get
lim
n→∞

‖Sωn−p‖ = 0.

Suppose that lim
n→∞

‖Sωn−p‖ = 0. By using the inequalities (34), (39), we obtain

εn = ‖Sωn+1 − Tυn‖
- ‖Sωn+1 − p‖+ ‖Tυn − Txp‖
- ‖Sωn+1 − p‖+ λ ‖ Sυn − Sxp‖
- ‖Sωn+1 − p‖

+ λ2
(

(1− αn)

k
+ λ

(
1− (1− αn)

k

)(
1− βn (1− λ)

k

))
‖Sωn − Sxp‖ .

Taking the limit both side of the above inequality, we have lim
n→∞

εn = 0.

Example 3.2. Let E = [2, 6] and define ‖ · ‖ : E → C by using norm (2) given by
Example 1.4. If we take operators T and S as Tx = x+ 12 and Sx = x2, respectively,
it can be seen that these operators satisfy the condition (13) with a coincidence point
p = 4. Assume that αn = βn = 1

n+1
for all n ∈ N, and k = 40. If the iteration method

(11) generated through these operators and control sequences, we obtain

(41)

zn =

√
480 + 468n+ 40xn + 39nxn + nx2n

40 + 40n

yn =
√

12 + zn

un =

√
n(12 + xn)

40(1 + n)
+ (1− n

40(1 + n)
)
(
12 +

√
12 + zn

)
xn+1 =

√√√√12 +

√
n(12 + xn)

40(1 + n)
+ (1− n

40(1 + n)
)
(
12 +

√
12 + zn

)
Also, we take the sequence of {Sωn}∞n=0 as Sωn =

(
4 + 1

2n+1

)2
for all n ∈ N, then

we have limn→∞ ‖Sxn − Sωn‖ = 0. Hence, {Sωn}∞n=0 is approximate sequence of
{Sxn}∞n=0 according to Definition 1.14. The following equations can be obtained
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similar to the processes performed in (41) for {Sωn}∞n=0:

(42) ωn+1 =

√√√√12 +

√
n(17 + 32n)

40(1 + n)(1 + 2n)
+

1

40

(
39 +

1

1 + n

)
B

in which

B =

√√√√12 +
1

2
√

5

√
340 + 1664n+ 2607n2 + 1280n3

(2 + n)(1 + 2n)2
.

Let εn = ‖Sωn+1 − f(T, ωn)‖. Then, we get

lim
n→∞

∥∥∥∥∥
(

4 +
1

2n+ 3

)2

− 12− 1

2
√

5

√
340 + 1664n+ 2607n2 + 1280n3

(2 + n)(1 + 2n)2

∥∥∥∥∥ = 0

Consequently, lim
n→∞

εn = 0.

4. Data Dependence

Theorem 4.1. Let (S̃, T̃ ) : Y → X be an approximate operator pair of the pair
(S, T ) : Y → X satisfies condition (13). Assume that T (E) ⊆ S (E), S (E) ⊆ X is
a complex-valued Banach space and there exist Txp=Sxp=p and T̃ xp=S̃xp=p̃. Let
{Sxn}∞n=0 be iterative sequence generated by (11) with the condition 1

2
≤ αn

k
and

sequence of
{
S̃ωn

}∞
n=0

defined by

(43)


S̃ωn+1 = T̃ υn

S̃υn = (1−αn)
k

T̃ ωn +
(

1− (1−αn)
k

)
T̃ ϑn

S̃ϑn = T̃$n

S̃$n = (1−βn)
k

S̃ωn +
(

1− (1−βn)
k

)
T̃ ωn.

with {αn}∞n=0, {βn}
∞
n=0⊂[0, 1].Assume that {Sxn}∞n=0 and

{
S̃wn

}∞
n=0

converge to p and

p̃, respectively. Then, we have following estimate:

‖p− p̃‖ - 8ε

1− λ
where ε = max {ε1, ε2} is a fixed number.

Proof. By using iteration methods (11) and (43), Definition 1.13, and the condition
(13) we obtain

(44)

∥∥∥Sxn+1 − S̃wn+1

∥∥∥ =
∥∥∥Tun − T̃ υn∥∥∥

- ‖Tun − Tυn‖+
∥∥∥Tυn − T̃ υn∥∥∥

- ‖Tun − Tυn‖+ ε1
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and

(45)

‖Txn − Tωn‖ - λ ‖Sxn − Sωn‖

+ µ

(
‖Sxn − Txn‖ · ‖Sωn − Tωn‖

1 + ‖Sxn − Sωn‖

)
- λ

∥∥∥Sxn − S̃ωn∥∥∥+ λ
∥∥∥Sωn − S̃ωn∥∥∥+ µA1

- λ
∥∥∥Sxn − S̃ωn∥∥∥+ λε2 + µA1

in which A1 =
(
‖Sxn−Txn‖·‖Sωn−Tωn‖

1+‖Sxn−Sωn‖

)
.

Similarly,

(46)

‖Tyn − Tϑn‖ - λ ‖Syn − Sϑn‖

+ µ

(
‖Syn − Tyn‖ · ‖Sϑn − Tϑn‖

1 + ‖Syn − Sϑn‖

)
- λ

∥∥∥Syn − S̃ϑn∥∥∥+ λ
∥∥∥S̃ϑn − Sϑn∥∥∥+ µA2

- λ
∥∥∥Syn − S̃ϑn∥∥∥+ λε2 + µA2

in which A2 =
(
‖Syn−Tyn‖·‖Sϑn−Tϑn‖

1+‖Syn−Sϑn‖

)
.

By using the condition (13)

(47)

∥∥∥Syn − S̃ϑn∥∥∥ =
∥∥∥Tzn − T̃$n

∥∥∥ = ‖Tzn − T$n‖+
∥∥∥T$n − T̃$n

∥∥∥
- ‖Tzn − T$n‖+ ε1

- λ ‖Szn − S$n‖

+ µ

(
‖Szn − Tzn‖ · ‖S$n − T$n‖

1 + ‖Szn − S$n‖

)
+ ε1

= λ ‖Szn − S$n‖+ µA4 + ε1

- λ
∥∥∥Szn − S̃$n

∥∥∥+ λ
∥∥∥S$n − S̃$n

∥∥∥+ µA4 + ε1

- λ
∥∥∥Szn − S̃$n

∥∥∥+ λε2 + µA4 + ε1

in which A4 =
(
‖Szn−Tzn‖·‖S$n−T$n‖

1+‖Szn−S$n‖

)
.

Similarly,

(48)

‖Tun − Tυn‖ - λ ‖Sun − Sυn‖

+ µ

(
‖Sun − Tun‖ · ‖Sυn − Tυn‖

1 + ‖Sun − Sυn‖

)
- λ

∥∥∥Sun − S̃υn∥∥∥+ λ
∥∥∥S̃υn − Sυn∥∥∥+ µA3

= λ
∥∥∥Sun − S̃υn∥∥∥+ λε2 + µA3
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in which A3 =
(
‖Sun−Tun‖·‖Sυn−Tυn‖

1+‖Sun−Sυn‖

)
.

Combining the condition (13) and (45), we obtain

(49)

∥∥∥Szn − S̃$n

∥∥∥ -
(1− βn)

k

∥∥∥Sxn − S̃ωn∥∥∥
+

(
1− (1− βn)

k

)
‖Txn − T̃ ωn‖

-
(1− βn)

k

∥∥∥Sxn − S̃ωn∥∥∥
+

(
1− (1− βn)

k

)
‖Txn − Tωn‖

+

(
1− (1− βn)

k

)
ε1

-
(1− βn)

k

∥∥∥Sxn − S̃ωn∥∥∥
+ λ

(
1− (1− βn)

k

)∥∥∥Sxn − S̃ωn∥∥∥
+ µ

(
1− (1− βn)

k

)
A1

+

(
1− (1− βn)

k

)
ε1 + λ

(
1− (1− βn)

k

)
ε2

=

(
1− βn (1− λ)

k

)∥∥∥Sxn − S̃ωn∥∥∥
+ µ

(
1− (1− βn)

k

)
A1

+

(
1− (1− βn)

k

)
ε1 + λ

(
1− (1− βn)

k

)
ε2.

By doing calculations similar to the inequality (49), we have

(50)

∥∥∥Sun − S̃υn∥∥∥ - λ
(1− αn)

k

∥∥∥Sxn − S̃ωn∥∥∥
+ λε2 + µ

(1− αn)

k
A1 + ε1

+ λ

(
1− (1− αn)

k

)∥∥∥Syn − S̃ϑn∥∥∥
+ µ

(
1− (1− αn)

k

)
A2
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Substituting (47), (48), (49), and (50) into (44), we have

(51)

∥∥∥Sxn+1 − S̃wn+1

∥∥∥ - λ
∥∥∥Sun − S̃υn∥∥∥+ ε1 + λε2 + µA3

- λ2
(

1− αn (1− λ)

k

)∥∥∥Sxn − S̃ωn∥∥∥
+

(
1 + λ+ λ2

(
1− (1− αn)

k

)
+λ3

(
1− (1− αn)

k

))
(ε1 + ε2)

+ λµ

(
(1− αn)

k
+ λ2

(
1− (1− αn)

k

)
×
(

1− (1− βn)

k

))
A1

+ λµ

(
1− (1− αn)

k

)
A2 + µA3

+ λ2µ

(
1− (1− αn)

k

)
A4

Also, we have(
1 + λ+ λ2

(
1− (1− αn)

k

)
+ λ3

(
1− (1− αn)

k

)(
1− (1− βn)

k

))
(ε1 + ε2)

= (1 + λ)

[
1 + λ2

(
1− (1− αn)

k

)]
(ε1 + ε2) ≤ 4(ε1 + ε2)

from hypothesis, we obtain

1− αn
k
≤ αn

k
.

Hence, from (51) and the above inequality, we have

∥∥∥Sxn+1 − S̃wn+1

∥∥∥ - λ2
(

1− αn (1− λ)

k

)∥∥∥Sxn − S̃ωn∥∥∥
+
αn(1− λ)

k

(
8(ε1 + ε2) + 2µ (A1 + A2 + A3 + A4)

(1− λ)

)
Denote that,

an =
∥∥∥Sxn − S̃ωn∥∥∥ ,

µn =
αn
k

(1− λ) ∈ (0, 1),

ηn =
8(ε1 + ε2) + 2µ (A1 + A2 + A3 + A4)

(1− λ)
.
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It follows from Lemma 1.16 that

0 - lim
n→∞

sup
∥∥∥Sxn − S̃ωn∥∥∥

- lim
n→∞

sup

{
8ε

(1− λ)

}
=

8ε

(1− λ)

We know from Theorem 2.1 that Sxn → p and using hypotesis, we obtain

‖p− p̃‖ - 8ε

1− λ
.

Example 4.2. Let E = [0, 1] and define ‖ · ‖ : E → C by using norm (2) given
by Example 1.4. If we take operators T and S as Tx = xcosx and Sx = x + sinx,
respectively. It is clear that T (E) ⊆ S(E). For λ ∈ [0.5, 1) and λ + µ < 1, it can be
seen from the following figure that these operators satisfy the condition (13) with a
unique common fixed point p = 0:

Figure 1. Graphical demonstration of T and S operators

Define operators T̃ and S̃

(52)
T̃ x = x+ 0.036− x3

2
+
x5

15
− x7

42

S̃x = 2x− (x− 0.6)3

6
+
x5

30
− x7

84
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By utilizing Wolfram Mathematica 9 Software Package, we get maxx∈E|T− T̃ | = 0.04.
Hence for all x ∈ E and for a fixed ε1 > 0, we have |T − T̃ | ≤ 0.04. Similarly,
maxx∈E|S − S̃| = 0.1693 and hence, for all x ∈ E and for a fixed ε2 > 0, we get
|S − S̃| ≤ 0.1693. Thus, T̃ and S̃ are approximate operators of T and S, respectively
in the sense of Definition 1.13. From (52), p̃ = T̃0 = S̃0 = 0.036. Hence the distance
between two fixed points |p− p̃| = 0.036. If we take the initial point x0 = 0.5 and we
put αn = βn = 1

n+1
for all n ∈ N, and k = 40 in the iteration method (43), then we

get the following table:

Table 3. Behaviour of the iteration method (11) for the operators T ,
S, T̃ and S̃ given by the Example 4.2

Iteration
Steps

xn+1 Txn Sxn x̃n+1 T̃ xn S̃xn

1 0.50000000000000 0.43879128094518 0.97942553860420 0.50000000000000 0.47539732142857 1.00111532738095
2 0.02812766031015 0.02811653422968 0.05625161182900 0.03228222175568 0.06826540276515 0.09506068020702
3 0.00374753718996 0.00374751087471 0.00749506560816 0.00307576568855 0.03907575113968 0.04160072680391
4 0.00026916097544 0.00026916096568 0.00053832194762 0.00029655209478 0.03629655208174 0.03653975119109
5 0.00003632327199 0.00003632327196 0.00007264654397 0.00002871100999 0.03602871100997 0.03605225428547
6 0.00000245840286 0.00000245840285 0.00000491680571 0.00000278657400 0.03600278657399 0.03600278657399
7 0.00000016674963 0.00000016674962 0.00000033349925 0.00000027092306 0.03600027092306 0.03600049307999
...

...
...

...
...

...
...

Then, we have the following estimate:

0.036 = |p− p̃| - 8(0.2093)

1− 0.5

5. Application to a Functional-Integral Equation

The theory of functional-integral equations is one of the active fields of study of non-
linear analysis, and fixed point theory is a useful method in showing the existence or
uniqueness of the solutions of the equations in question. The basic idea in fixed point
theory for the integral or differential equation to be solved is to construct algorithms
called iterations by including the equation in an operator class under certain condi-
tions and to determine the appropriate conditions for the convergence of the sequence
obtained from this iteration. Therefore, fixed-point iteration algorithms have been
studied by many researchers to solve integral or differential equations(see: [4, 13, 31])
and reference therein.

In this section, we show that the Jungck type iteration method (11) converges to
the solution of following functional-integral equation, which is given in [29]:

(53) x(t) =

∫ b

a

K(t, s, x(s), x(h(s))) ds+ g(t)

where X is Banach sapace and α, β, a, b real numbers such that α ≤ a ≤ b ≤ β, and
K ∈ (C[α, β]2 ×X2, X), g ∈ C([α, β], X) and h ∈ C([α, β], [α, β]).
The authors in [29], gave the following theorem, which guarantees the uniqueness of
the solution of the integral equation (53):

Theorem 5.1. Let us consider the equation (53) under the above assumptions on
K, g, h. Suppose that:
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i. there exist L1, L2 > 0 such that
‖K(t, s, x1, y1)−K(t, s, x2, y2)‖ ≤ L1 ‖x1 − x2‖+ L2 ‖y1 − y2‖

for each t, s ∈ [α, β] and x1, y1, x2, y2 ∈ X.

ii. (L1 + L2)(b− a) < 1.

Then, we have the following conclusions:

1. the equation (53) has in C([α, β], X) a unique solution x;
2. for all x0 ∈ C([α, β], X) the sequence {xn}∞n=0 defined by

xn+1(t) =

∫ b

a

K(t, s, xn(s), xn(h(s))) ds+ g(t)

converges uniformly on [α, β] to x.

Theorem 5.2. Let (X, ‖·‖) be a complex Banach space, with the conditions given
in Theorem 5.1. Suppose that {Sxn}∞n=0 be iterative sequence (11) with

∑∞
n=0 αn=∞.

Then, the equation (53) has a unique solution p ∈ C([α, β], X), and iterative sequence
(11) converges to p with the following estimate:

(54)
‖Sxn+1 − p‖ - [(L1 + L2) (b− a)]2(n+1)

e−
(1−(L1+L2)(b−a))

∑n
i=0 αi

k ‖Sx0 − p‖

Proof. We consider the complex Banach space (X, ‖·‖), where ‖·‖ is the complex
Chebyshev’s norm on X defined in Example 1.5.
Let {Sxn}∞n=0 be iterative sequence generated by iteration method (11) for the oper-
ator A1 : C([α, β], X)→ C([α, β], X) defined by

(55) A1 (xn(t)) = A2 (xn(t)) =

∫ b

a

K(t, s, xn(s), xn(h(s))) ds+ g(t)



Common fixed point theorems 225

By using iteration method (11) and the equation (55), we have

(56)

‖Szn − p‖ =

∥∥∥∥(1− βn)

k
A2xn +

(
1− (1− βn)

k

)
A1xn − p

∥∥∥∥
-

(1− βn)

k
‖A2xn − p‖+

(
1− (1− βn)

k

)
‖A1xn − p‖

-
(1− βn)

k

∥∥∥∥∫ b

a

K(t, s, xn(s), xn(h(s))) ds

−
∫ b

a

K(t, s, p(s), p(h(s))) ds

∥∥∥∥
+

(
1− (1− βn)

k

)∥∥∥∥∫ b

a

K(t, s, xn(s), xn(h(s))) ds

−
∫ b

a

K(t, s, p(s), p(h(s))) ds

∥∥∥∥
-

(1− βn)

k

∫ b

a

‖K(t, s, xn(s), xn(h(s)))

−K(t, s, p(s), p(h(s)))‖ ds

+

(
1− (1− βn)

k

)∫ b

a

‖K(t, s, xn(s), xn(h(s)))

−K(t, s, p(s), p(h(s)))‖ ds

-
(1− βn)

k
(L1 + L2) (b− a) ‖Sxn − p‖

+

(
1− (1− βn)

k

)
(L1 + L2) (b− a) ‖Sxn − p‖

= (L1 + L2) (b− a) ‖Sxn − p‖

and

(57)

‖Syn − p‖ = ‖A1zn − A1p‖

=

∥∥∥∥∫ b

a

K(t, s, zn(s), zn(h(s))) ds

−
∫ b

a

K(t, s, p(s), p(h(s)))ds

∥∥∥∥
-
∫ b

a

‖K(t, s, zn(s), zn(h(s)))

−K(t, s, p(s), p(h(s)))‖ ds
- (L1 + L2) (b− a) ‖Szn − p‖

By doing calculations similar to the inequalities (56) and (57), we obtain
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(58)

‖Sun − p‖ -
(1− αn)

k
‖A1xn − p‖+

(
1− (1− αn)

k

)
‖A1yn − p‖

=
(1− αn)

k

∥∥∥∥∫ b

a

K(t, s, xn(s), xn(h(s)))ds

−
∫ b

a

K(t, s, p(s), p(h(s))) ds

∥∥∥∥
+

(
1− (1− αn)

k

)∥∥∥∥∫ b

a

K(t, s, yn(s), yn(h(s))) ds

−
∫ b

a

K(t, s, p(s), p(h(s))) ds

∥∥∥∥
- (L1 + L2) (b− a)(

1− αn (1− (L1 + L2) (b− a))

k

)
‖Sxn − p‖

and

(59)

‖Sxn+1 − p‖ = ‖A1un − A1p‖

=

∥∥∥∥∫ b

a

K(t, s, un(s), un(h(s)))ds+ g(t)

−
∫ b

a

K(t, s, p(s), p(h(s))) ds− g(t)

∥∥∥∥
-
∫ b

a

‖K(t, s, un(s), un(h(s)))

−K(t, s, p(s), p(h(s)))‖ ds

-
∫ b

a

(L1 + L2) ‖un − p‖ ds

- (L1 + L2) (b− a) ‖Sun − p‖

Substituting (58) into (59), we have

‖Sxn+1 − p‖ - [(L1 + L2) (b− a)]2
(

1− αn (1− (L1 + L2) (b− a))

k

)
‖Sxn − p‖

by induction, we obtain

‖Sxn − p‖ - [(L1 + L2) (b− a)]2
(

1− αn (1− (L1 + L2) (b− a))

k

)
‖Sxn−1 − p‖

‖Sxn−1 − p‖ - [(L1 + L2) (b− a)]2
(

1− αn (1− (L1 + L2) (b− a))

k

)
‖Sxn−2 − p‖
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and hence,

(60)

‖Sxn+1−p‖ - [(L1 + L2) (b− a)]2(n+1)
n∏
i=0

(
1− αi (1− (L1 + L2) (b− a))

k

)
· ‖Sx0 − p‖

- [(L1 + L2) (b− a)]2(n+1)e−
(1−(L1+L2)(b−a))

∑n
i=0 αi

k ‖Sx0 − p‖

Taking the limit on both sides of (60) and using [(L1 + L2) (b− a)]2 < 1, we obtain

lim
n→∞

‖Sxn−p‖ = 0.

The following theorem indicates that the convergence result can be obtained with-
out the

∑∞
n=0 αn=∞ condition for the sequence of {αn}∞n=0⊂[0, 1]:

Theorem 5.3. Let (X, ‖·‖) be a complex Banach space, with the conditions given
in Theorem 5.1. Suppose that {Sxn}∞n=0 be iterative sequence (11) with {αn}∞n=0, {βn}

∞
n=0⊂[0, 1].

Then, the equation (53) has a unique solution p ∈ C([α, β], X), and iterative sequence
(11) converges to p with the following estimate:

(61) ‖Sxn+1 − p‖ - [(L1 + L2) (b− a)]2(n+1) ‖Sx0 − p‖

Proof. The proof is similar to that of Theorem 5.2. Consider the following inequal-
ity

‖Sxn+1 − p‖ - [(L1 + L2) (b− a)]2
(

1− αn (1− (L1 + L2) (b− a))

k

)
‖Sxn − p‖

Since (L1 + L2) (b− a) < 1 and {αn}∞n=0⊂[0, 1] for all n ∈ N, we have obtained in the
following (

1− αn (1− (L1 + L2) (b− a))

k

)
< 1

Hence, we get

‖Sxn+1 − p‖ - [(L1 + L2) (b− a)]2 ‖Sxn − p‖
By induction from the above ineqality, we obtain

(62) ‖Sxn+1−p‖ - [(L1 + L2) (b− a)]2(n+1) ‖Sx0 − p‖

Taking the limit the inequality (62), it can be seen that lim
n→∞

‖Sxn−p‖ = 0. Hence,

the condition
∑∞

n=0 αn=∞ is unnecessary.

6. Conclusion

In this work, we obtain some strong convergence theorems by using the newly defined
and classic Jungck-type iteration methods for certain mapping in complex-valued Ba-
nach spaces. We also show that the convergence speed of the new iteration method is
better than the other iteration methods which are mentioned in this work. In addi-
tion, we obtain data dependence and stability results for this new iteration method.
We also give some nontrivial examples to support these results. Finally, we analyze



228 Maldar S. and Atalan Y.

the convergence of the new iteration method to the solution of the functional integral
equation in complex-valued Banach spaces.
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