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CONDITIONAL FORUIER-FEYNMAN TRANSFORM AND
CONVOLUTION PRODUCT FOR A VECTOR VALUED
CONDITIONING FUNCTION

Bong JIN KM

ABSTRACT. Let Cy[0,T] denote the Wiener space, the space of continuous functions
z(t) on [0, T] such that z(0) = 0. Define a random vector Zz, : Co[0,T] — R* by

Ze(x) = (/0 e1(t)dx(t),. .. ,/0 er(t)dz(t))

where e; € L9[0,T] with e; # 0 a.e., j = 1,...,k. In this paper we study the
conditional Fourier-Feynman transform and a conditional convolution product for a
cylinder type functionals defined on Cy[0,T] with a general vector valued condition-
ing functions Zg; above which need not depend upon the values of x at only finitely
many points in (0, T] rather than a conditioning function X (x) = (x(t1),...,x(ts))
where 0 < t; < ... < t, = T. In particular we show that the conditional Fourier-
Feynman transform of the conditional convolution product is the product of condi-
tional Fourier-Feynman transforms.

1. Introduction

Let Cy[0, T'] denote the Wiener space, the space of real valued continuous functions
x on [0,7] such that x(0) = 0. Let z(z,t) = fg h(s)dz(s) be the Gaussian process
with h(# 0 a.e.) in Ly[0, 7] and the integral f(f h(s)dz(s) denote the Paley-Wiener-
Zygmund stochastic integral [3, 9].

Note that z;, is a Gaussian process with mean zero and covariance function

min{s,t}
/ zn(x, t)zp(x, s)dm(x) = / h?(u)du
Co[O,T] 0

where the left hand side of above denotes the Wiener integral. Of course if h =
1 on [0,7T], then z,(z,t) = x(t) is the standard Wiener process. For convenience,
throughout this paper, we will let z;,(x,T') = z,(z).

In [7], the authors condider a general vector valued conditioning functions to study
the conditional integral transforms and convolutions. In [1], Cameron and Storvick
defined a Fourier-Feynman transform of functionals on Cy[0,7]. Chung and Skoug
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introduced the concept of a conditional Feynman integral [5], while Park and Skoug
introduced the concept of a conditional Fourier-Feynman transforms and a conditional
convolution for functionals defined on Cy[0, T'| with the conditioning function X (z) =
fo ) where h € L[0,T] [10]. In [2], Chang, et al. developed the conditional
Fourler Feynman transform and convolutlon product over Wiener paths in abstract
Wiener space, concerned an conditioning funcion which depend upon the value of z
at some finitely many points in (0,7]; that is, X; : Cp[0,T] — R* with Xj.(z) =
(x(t1),...,x(tk)), where 0 < t; <ty < --- <t =T for any fixed positive integer k.
In this paper we study the conditional Fourier-Feynman transform and a condi-
tional convolution product for a cylinder type functionals on Cy[0, 7| with a general
vector valued conditoning functions of the form Zj , (x) = (24, (2), ..., 2z, (2)) which
need not depend upon the value of x in Cy[0, 7| at only finitely many points in (0, 7]
rather than a conditioning function X (x) = (z(t1),...,2z(t,)) where 0 < t; < ... <
t, = T. And we show that the conditional Fourier-Feynman transform of the condi-
tional convolution product is the product of conditional Fourier-Feynman transforms.

2. Definitions and preliminaries

In this section we introduce a conditional Wiener integral, conditional Fourier-
Feynman transform and conditional convolution product for a general vector valued
conditoning function.

Let H be an infinite dimensional subspace of L[0, 7] with a complete orthonormal
basis {e;}. For each k € N let H;, be a subspace of H spanned by {ej, ez, ..., e} and
let Zzy, : Co[0, T] — R¥ be the conditioning function defined by

(2.1) Zz(x) = (2 (T), .. ., 2, (T)).
Further, for h € Lo[0,T7, let

(2.2) Pih(t) = Z (h,e;)e;(t)

be the orthogonal projection from L,[0, T'] onto the subspace generated by {ey, e, ..., e}
where (-, -) denotes the inner product on the real Hilbert space Ly[0,T]. Then we see
that h — Pyh is orthogonal to e;, j = 1, ..., k. For convenience, let

(2.3) z (1) :/0 PrZLo,(s)dx(s) :Zzej(x)/o e;(s)ds

and
k

(2.4) ij e;, Loy) ij/o e;(s)ds

7j=1

where z € Co[0,T], € = (&,...,&) € R¥ and T4 is the indicator function of the
interval [0,t].

From [9], we can see that the process {x(f) — xx(t),0 <t < T} and 2, (z) are
stochastically independent for j = 1,...,k. Also for 0 < ¢t < T as an immediate
consequence of above, two processes {z(t) — zx(t)} and {xx(¢)} are independent.
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Let F' : (p[0,7] — C be integrable functional and let Zz; be a random vector
on Cy[0,77] given by (2.1). Then we have the conditional Wiener integral E[F|Zz]
given Zgj, from a well-known probability theory. For a more detailed survey of the
conditional Wiener integrals see [ 4, 9,10,11].

In [9], Park and Skoug gave a useful simple formula to express conditional Wiener
integrals in terms of ordinary Wiener integrals (E[F]); namely for the conditioning
function Zzj(x) given by (2.1),

(2.5) E,[F(2)|Zey(2))(€) = Bo[F(x — xp + &)]

for Pz, —a.e. € € R, where Py, is the probability distribution of Zz, on (R¥, B(R")).
In this paper we shall be concerned exclusively with Zzj(x) given by (2.1) for the
the conditioning function.
For A > 0, and € € R¥, suppose E[F(A™2-)| Zzr(A2-)](€) exists.
From (2.5) we have

(2.6) .

for a.e.ge RF,
If, for £ € R¥, E,[F(\~2(x — z3,) + &)] has the analytic extension Jy(£) on Cy
{X € C|ReX > 0}, then we write

— —

(2.7) INE) = E7" F(2)| Zeg(2)](€)
for A € C,.
In this case, we call J ,\(g) a conditional analytic Wiener integral of F' given Zz.
For non zero real number ¢ and € € R, if the limit

(2.8) lim B [F(x)| Zew(2))(€)
A——iq
exists, where \ approaches to —iq through C,, then we write
(29) lim B2 B (@)| Zep(a))(€) = B2 F @) Zan()](€)

In this case, we call Ey"/7[F(2)|Zz(2)](€) a conditional analytic Feynman integral

of I given Zgy.
Next we state the definitions of the L; analytic Fourier-Feynman transform and
the convolution product given in [7]. For A € C; and y € Cy[0,T7, let

(2.10) TA(F)(y) = E"ME(y + o)l

We define L; analytic Fourier-Feynman transform |, Tq(l)(F ) of F', by the formula

(2.11) TV(F)(y) = lim Ty(F)(y)

if it exists A € C;. We note that Tq(l)(F) is only defined for s-a.e. y € Cy[0,T]. Also
if Tq(l)(F) exists and F ~ G, then T.") G) exsits and Tq(l)(G) ~ Tq(l)(F).
We define the convolution product (F' x G), by

A~~~
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B F(ERGEE), AeCy
(2.12) (F'+ G)aly) = {E;’"fq [F(55)G(55)], A= —ig.q €R,q#0

if it exists.

REMARK 2.1. The convolution product above is commutative, that is to say, (F *
G)y = (G F)y for all A € C with A # 0 and ReA > 0. When A = —iq(q # 0) we
denote (F'* G)y by (F % G),.

Next we define conditional Fourier-Feynman transform and the conditional convo-
lution product.

DEFINITION 2.2. Let F' and G be defined on Cy[0,T] and Zz; be given by (2.1).
For A € C,, y € Cp[0,T] and & € R, let

— —

(2.13) TN(F|Zex)(y,§) = EZ"(F(y + x)| Zzx) (§)

if it exists. For nonzero real number ¢, we define the conditional Fourier-Feynman
transform(if it exists) of F' given Zz; by the formula

(2.14) TO(F| Zeg) (9,€) = lim TA(F|Zeg) (9, €)

A——iq

where A approach to —iq through C, and we define the conditional convolution prod-
uct of F' and G given Zg; by the formula

~ anwy y+x Gz = , A C
(2.15) ((F % G)\| Zeg) (., &) = {?gnfq [55(( ﬁ))g(( ﬁ))yiﬁ]((%) \ - _fq
i v o o , = —iq.

Under rather mild conditions on F' and G, we have the following Theorems 2.3
and 2.4. Our next theorem shows that the analytic Fourier-Feynman transform of the
convolution product is the product of analytic Fourier-Feynman transforms.

THEOREM 2.3. Assume Tq(l)(F), Tq(l)(G) and Tq(l)((F*G)q) all exists at ¢ € R—{0}.
Then

(2.16) TO((F Gyl (y) = TV (F)(

q
for s-a.e. y € Cy[0,T).

Proof. In view of (2.11), (2.10) it will suffice to show that T\((F * G)\)(y) =

TA(F)(5)TA(G)(J5) for A> 0. But for all A > 0,

TA((F + G)\)(y) =E.[((F % G)x(y + A~ 2z)]

y+)\’%x+)\’%w y—i—)\’%x—)\’%w

B y+ A2z +w) . y+AE(z— w)
=E,[Eu[[F( 7 )G( 7 )]
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But ””*T;” and “””\;%” are independent Gaussian processes and each is equivalent to x.
Hence

To(F % G)\)(y) =Eu[F(—= + A\ 22)| B, [G(“= + A~ z)]

Y
(2.18) V2

>

which concludes the proof of Theorem 2.3.
]

Next theorem shows that the conditional Fourier-Feynman transform of the condi-
tional convolution product is the product of conditional Fourier-Feynman transforms.

—

THEOREM 2.4. Assume T, ((FxG)y| Za) (-, )| Zex) (y, 1), TSV (F| Zzy) and TSV (G| Za)
all exists at ¢ € R — {0}. Then

—

Tq(l)(((F*G)q|Z€,k)('7§)|Z€,k)(ya77)
(2.19) y i+ (1) y i7—¢
(F|ng)(ﬁ W)Tq (G’Zak)<ﬁa 5
for s-a.e. y € Cy[0,T].

Proof. Using the same process used in the proof of Theorem 2.3, we only need to
consider the case where A > 0. From (2.5), (2.13) and (2.15) we observe that for all
A >0,

(((F*G) | Zee) (- )| Ze) (. 1)

1

F*G |ng)(y+)\ (w—l‘k) ‘I‘ﬁkag)

l_|

(2.20) =B, [E,[F (7<y+(ﬁk+5€)+/\_;(q:—xk+w—wk)))

<}< (e — &)+ A — 2w+ w))].

Now, z — 2 + w — wy, and x — x; — w + wy are independent processes as we can
be seen by checking their covariance functions. Hence the expectation of F'G equals
the product of the expectations and so using (2.15) and (2.13) we see that

To(((F * Gl Zok) (- )| Ze) (. 1)
2.21) Ex[Ew[F(%(er (e + E) + A H (o — 2+ w — wp))
G(%m (e — ) + A5 (& — i — w + wy)))])

Now, 7 is equivalent to x and so is 7
Hence for A > 0,
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T(((F % G)al Zex) (-, €)| Zes) (y, )
7+€
V2

B [F(-L + A"32)| Zep(\"22) =

V2

EI[G(% AR )| Zep (A Ba) = =]

(2.22)

=i

=T\ (F|Zex)( JING| Zzx)(

7+ yon
2 T2

&I‘@

]

3. Conditional Fourier-Feynman transform and convolution for the cylin-
der type functionals

Now we describe the class of functionals that we work with in this paper. Let
{61,0,, ...} be a complete orthonormal set of R-valued functions in Ly[0,7] and as-
sume that each 6; is of bounded variation on [O T] Then for each y € Cy[0,T] and
j=1,2,..., the Riemann-Stieltjes integral (¢ fo i ( ) exists.

For 0 < o < 1, let E, be the space of all cyhnder type functlonals F: 0, T] - C
of the form

(3.1) Fly) = f((01.), -, (00 y) = f((0.9))

for some positive integer n, where f(A1,...,\y) = f(X) is an entire function of n
complex variables Ay, ..., A\, of exponential type; that is to say

(3.2) |f(M)| < Ap exp{Br Z A7
j=1
for some positive constants Ap and Bp.

Now let {u; — Pruq, ..., Uy — Pruy} be a maximal independent subset of {6; —
Prb1,...,0, — Pr0,} with m < n if it exists, where P is the orthogonal projec-
tion given by (2.2). Let {¢1,..., ¢} be the orthonormal set obtained from {u; —
Prity, ...y Uy — Prty, } using Gram-Schmidt orthonormalization process. Then we can
find m x n matrix A,,, = (a; ;) with

(33) 5— Pkgz (Z CLj}ﬂbj, RN ,Z aj,nqﬁj) = qumn
=1 j=1

where 6 = (61,...,6,) and 6 — P = (61 — Pibs, ..., 0, — Piby).

In our next theorem we show that the conditional Fourier-Feynman transform of
functionals from FE, for the general vector valued conditioning function Zg; is an
element of E,.

THEOREM 3.1. Let F' € E, and Zz, be given by (3.1) and (2.1), respective]y Then

for each nonzero real number q, conditional Fourier-Feynman transform T (F | Zz1)
exists, belongs to E, and is given by
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T(F| Zew) (y, 17)

(3.4) o m ) L . .
_(2—7”) 2 - Jf(OAm, +0,7) +(0,y)) eXp{_Q_z’HUH }dv
where ||7]|* = Zv and U= (vy,...,Up).

Proof. For A > 0, and 77 € R,

T\(F|Zzg)(y, 77)

=E,[F(y+ A~ ($ — xk) + )

=E,[f((0.y + A% (2 — 21) + 7))

=B, [f((8,y) + (0, 7) + A2 (0,2 — z))).

From [8] we can see

(3.5)

(0,2 — 2i) = (0 — Pib,z) = ($A,,, )
g; = (¢1,...,¢0m) and Ay, = (@ij)mxn. Using Gaussian process property, Wiener
integration formula and the change of variables, we see that for A > 0

T\(F|Zex)(y, 1)
—E,[f(A" 3 (G Am,, x) + (0,7) + (6,9))]

39 . N
_ kS = N = A 2
=(52)% [ FA, + 0.7 + (0} exp{ - Z}
where @ = (uy, ..., Up).

But the last expression above is an analytic function of A in C, and is a bounded
continuous function of A € C,. Hence Tq(l)(F |Zz1) exists and is given by (3.4).
If we let T)(F|Zzk)(y,7) = hy7((0,y)) where

— m - o )\ - 2 -
)= ()8 [, + (00 + Mesp{ - ;uj}du
then by [6, Theorem 3.15] hy 7(7) is an entire function. Furthermore using the inte-
gration [, e™*" “+Budy < oo for a > 0 and 8 € R, we can see, hy7(7) is an element of
E, as a function of 4 [8]. Hence for A > 0, T,\(F|Zak) € E, as a function of y. O

COROLLARY 3.2. Let F' € E, and Zz), be as in Theorem 3.1. If{0,,0,...,0,,€1,... €}
is an orthonormal set of functions in Ly[0,T], then

(3.7) T3V (F|Zep)(y. ) = TV (F)(y)-

Proof. As we noted in the proof of Theorem 2.3, we only need to consider the case
when A > 0. Using definition of the Riemann-Stieltjes integral and the condition of
{01,05,...,0,,¢1,..., e }above together with the notations (2.3) and (2.4) we obtain

(0, zp) = 0= (0;,7%)
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for each j = 1,...n. Then from (3.5) and (2.10), we have

TA(F| Zex) (0, 17) = BulF((6,) + A72(0,2)) = Ta(F)(y)
for A > 0 and 77 € R*. O
In Theorem 3.2 below we obtain the formula for conditional convolution product

of functionals for the general vector valued conditioning function.

THEOREM 3.3. Let F; € E, be given by (3.1) with corresponding entire functions
fj for j = 1,2 and let Zz), be given by (2.1). Then for each nonzero real number g,
conditional convolution product ((Fy * F»),|Zz),) exists, belongs to E, and is given by

(3.8)

where ||0]| = Y~ v7 and ¥ = (vy,...,v,) fory € Col0,T].
j=1
Proof. For A > 0, and a.e. 77 € R¥,

— anw + x _ $
(Fy % Fo)sl Zex) (y, ) = B [Fy (2 =7

V2 V2
(y+ A2 (z — a3) + 7)) Fo(—= (y — A2 (2 — ) — 7))

B0, y) + A x — ) + (B.73))

) Fy(

:Ex[Fl(

Sl
(N}
[\

But (3.8) now follows directly from (3.9) since the last expression in (3.9) above an
entire function of A in C,.

If we let ((Fy * F2)a|Zzx)(y, 1) = La,

—

((0,y)) where

LaglD) =% [ B(@0) + 04, + 00)
(3.10) Lo - N
f2(ﬁ(<9»y> — A, — (0, k)))eXp{—§Zvj}dv
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then by [6, Theorem 3.15] Ly () is an entire function. Furthermore as a function of

¥ Ly7(7)is an element of E,([8], Theorem 2.6). Hence for A > 0, ((Fy*xF3)4|Zzx) € E,
as a functionof y.

[l

In view of Theorems 3.1 and 3.3 above, conditional Fourier-Feynman transforms and
conditional convolutions of functionals from FE, for the general vector valued condi-
tioning function are also belong to F,. Then by Theorem 2.4, we have the following
result.

THEOREM 3.4. Let Fy and F, be as in Theorem 3.2. Then for each nonzero real
number q,
TO((Fy % Fy)gl Zak) (110 Zak) (v, )

(3.11) Yy T2t Yy T —1f
=TD(F|Za)(—=, T (Fy|Zap) (=, 22
q ( 1’ ’k)(\/é \/5 ) q ( 2’ ,k)( )

for s-a.e. y € Cy[0,T.
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