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PRIME PRODUCING POLYNOMIALS WITH SOME DEGREES

Seungheon Lee, Geon Choi, and Jinseo Park∗

Abstract. In this paper, we find the forms of polynomials which generate consec-
utive prime values. Then, we consider about general form of polynomials and apply
on the quadratics and tertiaries.

1. Introduction

Prime-producing function has been studied by many mathematicians for a long
time. Especially the quadratics, the most simple form of polynomials which can pro-
duce consecutive prime values and the exponential functions like Mersene primes and
Fermat primes. These two are the most celebrated of the prime-producing exponen-
tial functions. The most celebrated of the prime-producing quadratics is x2− x+ 41.
It has been known as Euler’s polynomial and this quadratics makes primes for all
integers x with 1 ≤ x ≤ 40. We can easily make a quadratics x2 + x + 41 which
makes primes for all integers x with 0 ≤ x ≤ 39. By linear transformation, we can
produce quadratics which generate consecutive prime values. However, the length of
generated prime values and the discriminant are invariable. Let R = {r1, . . . , rk} with
ri ∈ Z for i = 1, . . . , k. The set R is called admissible if there exists an integer aq with
1 ≤ aq ≤ q such that

k∏
i=1

(aq + ri) 6≡ 0 (mod q)

for all prime q. The famous conjecture for prime-producing function is that if R is
an admissible set then there are infinitely many integers n such that n + r is prime
for each r ∈ R. This conjecture is called the prime k-tuples conjecture. The twin
prime conjecture is the case R = {0, 2}, that is the prime k-tuples conjecture is
a generalization of the twin prime conjecture. The following theorem is the most
famous theorem of Prime-producing function under assumption that the prime k-
tuples conjecture holds.

Theorem 1.1. [1, Theorem 2.1] If the prime k-tuples conjecture holds, then for any
positive integer B, there exists a quadratic polynomial of the form f(x) = x2 +x+A,
such that f(x) is prime for all integer x with 0 ≤ x ≤ B.
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In this paper, we find the another theorem under the same assumption and some
conditions for the polynomial to be admissible.

2. Results

Let us find the another theorem under the prime k-tuples conjecture holds and find
some conditions for the quadratic and the cubic polynomial to be admissible.

Theorem 2.1. Let q be a prime and f(x) be a polynomial of the form

f(x) =
2n∑
k=0

ckx
k =

(
n∑

k=0

dkx
k

)2

− β + c0

which satisfies f(0) ≡ f(1) (mod 2). If the prime k-tuples conjecture holds then there
exists an integer A which satisfies f(x) +A is prime for all integers x with 0 ≤ x ≤ B
for any positive integer B .

Proof. Let rj = f(j)− c0 for j = 0, . . . , B. It is suffice to show that the set {rj}Bj=0

is admissible.

1. The case of q = 2.
Since f(0) ≡ f(1) (mod 2), we have ri ≡ rj (mod 2) for all 0≤ i, j ≤ B. This

means there exists an integer a2 which satisfies
∏B

j=0 (rj + a2) 6≡ 0 (mod 2).
2. The case of q ≥ 3.

By Chinese remainder theorem, we get an integer bq which is a quadratic non-

residue modulo q. Let us define aq = (β − bq). If
∏B

j=0(rj + aq) ≡ 0 (mod q)

then there exists an integer j which satisfies rj ≡ −aq (mod q) with 0 ≤ j ≤ B.
This means

(dnj
n + · · ·+ d1j + d0)

2 = {f(j)− c0}+ β = rj + β ≡ −aq + β ≡ bq (mod q),

which is a contradiction.

Therefore, the set {rj}Bj=0 is admissible and we obtain the desired result by the prime
k-tuples conjecture.

We provide more specific conjecture of Theorem 2.1.

Conjecture 1. Let q be a prime and f(x) be a polynomial of the form

f(x) =
2n∑
k=0

ckx
k =

(dnx
n + · · ·+ d1x+ d0)

2 − β
α

+ c0

which satisfies f(0) ≡ f(1) (mod 2). If the prime k-tuples conjecture holds then there
exists an integer A which satisfies f(x) +A is prime for all integers x with 0 ≤ x ≤ B
for any positive integer B .

To give an example of the conjecture 1,

{(2x2 + 2x+ 5)2 − 25}
4

+ 113

is prime for all integers x with 0 ≤ x ≤ 10.



Prime Producing Polynomials with some degrees 337

Theorem 2.2. Let q be an arbitrary prime and f(x) be a polynomial of the form

f(x) = ckx
k + · · ·+ c1x+ c0.

The set {f(j)}Bj=0 is admissible for any positive integer B if and only if there exist
two integers m,n which satisfy

(1) q | f(m)− f(n) and m 6≡ n (mod q).

Proof. Let the set {f(j)}Bj=0 be admissible. Then there exist an integer aq which
satisfies

B∏
j=0

(rj + aq) 6≡ 0 (mod q).

This means rj 6≡ −aq (mod q) for all integer j with 0 ≤ j ≤ q − 1. Since d q
q−1e = 2,

there exist two integers m,n which satisfy

q | f(m)− f(n) and m 6≡ n (mod q).

Suppose that there exist two integers m,n which satisfy two conditions (1). Since

f(m) ≡ f(n) (mod q) and m 6≡ n (mod q),

then there does not exist integer j such that f(j) ≡ r (mod q) for some r with
0 ≤ r ≤ q − 1. Let us define aq = q − r. Then we find

B∏
j=0

(rj + aq) ≡
B∏
j=0

(rj − r) 6≡ 0 (mod q).

Therefore, the set {f(j)}Bj=0 is admissible.

Corollary 2.3. Let q be a prime and f(x) be a polynomial

f(x) = ckx
k + · · ·+ c1x+ c0.

The set {f(j)}Bj=0 is admissible for any positive integer B if there exists an integer m

which satisfies f(m) = f(m+ 1) = 0.

Proof. Sincem 6≡ m+1 (mod q) for all prime q, {f(j)}Bj=0 is admissible by Theorem
2.2.

To give an example of the theorem 2.2,

• x(x+ 1)(x+ 2) + 47 is prime for all integers x with 0 ≤ x ≤ 10.

• x(x+ 2)(x+ 3) + 139 is prime for all integers x with 0 ≤ x ≤ 15.

• 3(x+ 52)(x− 16)(x− 17) + 41 is prime for all integers x with 0 ≤ x ≤ 28.

Let a∗ denote a modular multiplicative inverse of an integer a. we use this notation
in the rest of the paper.

Theorem 2.4. If a quadratic polynomial of the form f(x) = ax2 + bx+ c satisfies
following two conditions

a ≡ b (mod 2) and
∏
p|a

p | b

then the set {f(j)}Bj=0 is admissible for any positive integer B.
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Proof. Let us consider the case of q = 2. Then we easily find that f(0) ≡ f(1)
(mod 2) when a ≡ b (mod 2). Therefore, we have f(i) ≡ f(j) (mod 2) for all positive
integers i, j and there exists an integer a2 which satisfies

B∏
j=1

(rj + a2) 6≡ 0 (mod 2).

For each prime q 6= 2 with (a, q) = 1, there exist two integers i, j which satisfy
i+ j ≡ −a∗b (mod q) and i 6≡ j (mod q). This means

q | {a(i+ j) + b} (i− j) = f(i)− f(j).

Let us consider the case q | a. Then, we have q | b by hypothesis. This means

f(i)− f(j) ≡ (i− j) {a(i+ j) + b} ≡ 0 (mod q).

Therefore, we obtain the set {f(j)}Bj=0 is admissible by Theorem 2.2.

Theorem 2.5. Let q, r be primes and f(x) be the polynomial of the form

f(x) = ax3 + bx2 + cx.

If the set {f(j)}Bj=0 is admissible for any positive integer B then we have

2 | a+ b+ c,
∏
r|b

r | c

and there exist integers t, s which satisfy

(ba∗)2 − 3(ca∗) ≡ 3t2 + s2 (mod q),

where q, r are odd primes with q - a, r | a.

Proof. Let {f(j)}Bj=0 be admissible for any positive integer B. By Theorem 2.2,

there exists two integers i, j which satisfy f(i) ≡ f(j) (mod q) with 0 ≤ i 6= j < q.

1. The case of q = 2
There exists an integer a2 which satisfies

2 -
B∏
j=0

(f(j) + a2)

and f(0) ≡ f(1) (mod 2), since {f(j)}Bj=0 is admissible. Therefore, we have

2 | a+ b+ c.

2. The case of q ≥ 3 with gcd(q, a) = 1.
When q ≥ 3, q | f(i)− f(j) means

q | a(i+ j)2 + b(i+ j) + c− aij,
since q - i− j. Let k = i+ j and m = k2 + ba∗k + ca∗. Then we have

q | j2 − kj +m.

This means (2j − k)2 ≡ k2 − 4m (mod q). Let k2 − 4m ≡ l2 (mod q). Then we
get

(2) (3k + 2ba∗)2 ≡ −3l2 − 12ca∗ + 4b(a∗)2 (mod q).
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Let us define l = 2t, 3k + 2ba∗ = 2s. Then the equation (2) becomes

3t2 + s2 ≡ (ba∗)2 − 3(ca∗) (mod q).

3. The case of q ≥ 3 with gcd(q, a) 6= 1.
If q | a then there exist integers i, j which satisfy q | b(i+ j) + c. Let us consider
the case of q - b. Then we find integers i, j which satisfy i+ j ≡ −cb∗ (mod q).
If q | b then q | c. Therefore, we have∏

r|b

r | c

for all prime divisors r of a.
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