RESTRICTION OF SCALARS WITH SIMPLE ENDOMORPHISM ALGEBRA

Hoseog Yu

ABSTRACT. Suppose L/K be a finite abelian extension of number fields of odd degree and suppose an abelian variety A defined over L is a K-variety. If the endomorphism algebra of A/L is a field F, the followings are equivalent :

(1) The endomorphiam algebra of the restriction of scalars from L to K is simple. (2) There is no proper subfield of L containing L^{G_F} on which A has a K-variety descent.

1. Introduction

Let K be a number field and L be a finite abelian extension of K of odd degree with Galois group G = Gal(L/K). Let A be an abelian variety defined over L whose endomorphism ring is denoted by $\operatorname{End}_L(A)$. Assume the endomorphism algebra $\operatorname{End}_L(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ is a field. Denote $\operatorname{End}_L(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ by F. We suppose that A is a Kvariety, that is, for each $\sigma \in G$, $\sigma(A)$ is L-isogenous to A. Write $\operatorname{Res}_{L/K}(A)$ together with a morphism $\phi: \operatorname{Res}_{L/K}(A) \to A$ for the restriction of scalars of A from L to K. For the definitions and properties of the restriction of scalars, see [4, p.5] or [5, p.68]. We will prove the following main theorem.

MAIN THEOREM. The followings are equivalent.

- 1. $Res_{L/K}(A)$ is K-isogenous to a product $B \times \cdots \times B$ of a simple abelian variety B defined over K.
- 2. There is no proper subfield of L containing L^{G_F} on which A has a K-variety descent.

Proof of Main Theorem will be given after LEMMA 6.

In $[1, \S15]$ and [3], there are some corollaries of this theorem when A is an elliptic curve.

2. Simple algebra and descent

From the assumption that A is a K-variety, for each $\sigma \in G$, there is a L-isogeny $f_{\sigma} \colon \sigma(A) \to A$.

Received February 18, 2022. Revised August 23, 2022. Accepted September 19, 2022.

²⁰¹⁰ Mathematics Subject Classification: 14K05, 14K02.

Key words and phrases: restriction of scalars, descent, isogeny.

[©] The Kangwon-Kyungki Mathematical Society, 2022.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Hoseog Yu

For $b \in \operatorname{End}_L(A)$, we define $\tilde{b} \in \operatorname{End}_K(\operatorname{Res}_{L/K}(A))$ satisfying $\phi \circ \tilde{b} = b \circ \phi$. From the universal mapping property of restriction of scalars, the existence and the uniqueness of \tilde{b} for $b \in \operatorname{End}_L(A)$ is obvious (see [4, p.5]). For details, see [5, Definition 4 in p.72]. For each $\sigma \in G$, define $u_{\sigma} \in \operatorname{End}_K(\operatorname{Res}_{L/K}(A))$ such that $\phi \circ u_{\sigma} = f_{\sigma} \circ \sigma(\phi)$. There is a similar definition in [5, Definition 1 in p.68]. Then the morphism u_{σ} exists and is unique when the isogeny $f_{\sigma} : \sigma(A) \to A$ is given.

Define $\widetilde{F} = \left\{ \widetilde{b} \in \operatorname{End}_K(\operatorname{Res}_{L/K}(A)) \mid b \in \operatorname{End}_L(A) \right\} \otimes_{\mathbf{Z}} \mathbf{Q}$. Now we define the action of G on \widetilde{F} . Because f_{σ} is an isogeny, there is a dual isogeny morphism $f_{\sigma}^{\vee} \colon A \to \sigma(A)$ such that $f_{\sigma} \circ f_{\sigma}^{\vee}$ is multiplication by $\operatorname{deg}(f_{\sigma})$. Now for $b \in F$ there are a positive integer m and $b_0 \in \operatorname{End}_L(A)$ such that $b = b_0 \otimes \frac{1}{m}$. We define ${}^{\sigma}\widetilde{b} = (f_{\sigma} \circ \sigma(b_0) \circ f_{\sigma}^{\vee})^{\sim} \otimes \frac{1}{m \cdot \operatorname{deg}(f_{\sigma})}$. It is clear that this action of G on \widetilde{F} is independent of the choice of f_{σ} . We can check that $u_{\sigma} \circ \widetilde{b} = {}^{\sigma}\widetilde{b} \circ u_{\sigma}$ for $b \in F$.

We define $\alpha(\sigma, \tau) = u_{\sigma} \circ u_{\tau} \circ u_{\sigma\tau}^{-1} \in \widetilde{F}^{\times}$ for $\sigma, \tau \in G$. Then α is a 2-cocycle from G to \widetilde{F}^{\times} . Define

$$\widetilde{F}^{\alpha}G = \left\{ \sum_{\sigma \in G} \widetilde{a_{\sigma}} \circ u_{\sigma} \in \operatorname{End}_{K}(\operatorname{Res}_{L/K}(A)) \otimes_{\mathbf{Z}} \mathbf{Q} \mid a_{\sigma} \in F \right\}.$$

From $\tilde{a} \circ u_{\sigma} \circ \tilde{b} \circ u_{\tau} = \tilde{a} \circ {}^{\sigma} \tilde{b} \circ u_{\sigma} \circ u_{\tau} = \tilde{a} \circ {}^{\sigma} \tilde{b} \circ \alpha(\sigma, \tau) \circ u_{\sigma\tau}$ for $a, b \in F$ and for $\sigma, \tau \in G$, we can show that $\tilde{F}^{\alpha}G$ is a twisted group ring.

THEOREM 1. We get $\operatorname{End}_{K}(\operatorname{Res}_{L/K}(A)) \otimes_{\mathbf{Z}} \mathbf{Q} = \widetilde{F}^{\alpha}G.$

Proof. Let $\iota_{\tau} \colon \tau(A) \to \prod_{\sigma \in G} \sigma(A)$ denote the inclusion map into the τ -th component. Define the isomorphism $\Phi \colon \prod_{\sigma} \sigma(A) \to \operatorname{Res}_{L/K}(A)$ to be the the inverse morphism of $\prod_{\sigma} \sigma(\phi) \colon \operatorname{Res}_{L/K}(A) \to \prod_{\sigma} \sigma(A)$. For $\beta \in \operatorname{End}_K(\operatorname{Res}_{L/K}(A)) \otimes_{\mathbf{Z}} \mathbf{Q}$, define $b_{\sigma} \in F$ by $b_{\sigma} = \phi \circ \beta \circ \Phi \circ \iota_{\sigma} \circ f_{\sigma}^{-1}$. Note that

$$\phi \circ \sum_{\sigma} \widetilde{b_{\sigma}} \circ u_{\sigma} = \sum_{\sigma} b_{\sigma} \circ f_{\sigma} \circ \sigma(\phi) = \sum_{\sigma} (\phi \circ \beta \circ \Phi \circ \iota_{\sigma} \circ f_{\sigma}^{-1}) \circ f_{\sigma} \circ \sigma(\phi) = \phi \circ \beta.$$

Thus $\beta = \sum_{\sigma} \widetilde{b_{\sigma}} \circ u_{\sigma}$ and $\operatorname{End}_{K}(\operatorname{Res}_{L/K}(A)) \otimes_{\mathbf{Z}} \mathbf{Q} \subseteq \widetilde{F}^{\alpha}G$. Then the theorem follows.

Define the isotropy subgroup of G by $G_F = \{\sigma \in G \mid \sigma \tilde{b} = \tilde{b} \text{ for } b \in F\}$. Define G_r by $\{\sigma \in G_F \mid \text{There is } a_\sigma \in \text{End}_L(A)^{\times} \text{ such that } u_\tau \circ (\tilde{a_\sigma} \circ u_\sigma) = (\tilde{a_\sigma} \circ u_\sigma) \circ u_\tau \text{ for } \tau \in G\}$. Then we replace f_σ with $a_\sigma \circ f_\sigma$ for $\sigma \in G_r$ to define new u_σ 's. With these newly defined u_σ 's,

$$G_r = \{ \sigma \in G_F \mid u_\tau \circ u_\sigma = u_\sigma \circ u_\tau \text{ for } \tau \in G \}.$$

Note that the endomorphism algebra $\widetilde{F}^{\alpha}G = \operatorname{End}_{K}(\operatorname{Res}_{L/K}(A)) \otimes_{\mathbb{Z}} \mathbb{Q}$ is semisimple (see [2]) and the center of $\widetilde{F}^{\alpha}G$ is $(\widetilde{F}^{G})^{\alpha}G_{r}$. Thus $\widetilde{F}^{\alpha}G$ is simple if and only if $(\widetilde{F}^{G})^{\alpha}G_{r}$ is a field.

THEOREM 2. The center $(\widetilde{F}^G)^{\alpha}G_r$ of $\widetilde{F}^{\alpha}G$ is a field if and only if $(\widetilde{F}^G)^{\alpha}H$ is a field for any prime order subgroup H of G_r .

Proof. It is clear from the following lemma.

556

LEMMA 3. Let a finite abelian group G act on a number field M trivially. Define $\mathfrak{H} = \{H \leq G \mid H \text{ is a group of prime order.}\}$. Let α be a 2-cocycle from G to M^{\times} . Assume that the twisted group ring $M^{\alpha}G$ is commutative and $M^{\alpha}H$ is a field for $H \in \mathfrak{H}$. Then $M^{\alpha}G$ is a field.

Proof. With Sylow *p*-subgroups G_p of G, we get $G = \bigoplus_p G_p$. From section 3, $M^{\alpha}G_p$ is a field. Because $M^{\alpha}G \cong \bigotimes_p M^{\alpha}G_p$, $M^{\alpha}G$ is a field. \Box

DEFINITION 4. An abelian variety A defined over L has a K-variety descent if there are a proper subfield L_0 of L containing L^{G_F} and an abelian variety A_0 defined over L_0 such that A_0 is L-isogenous to A and A_0 is a K-variety, that is, $\sigma(A_0)$ is L_0 -isogenous to A_0 for $\sigma \in G$.

THEOREM 5. Let a subgroup H of G_r be of prime order p. Then $(\tilde{F}^G)^{\alpha}H$ is a field if and only if A doesn't have a K-variety descent to L^H .

Proof. Assume A has a K-variety descent to L^H . Then $(\widetilde{F}^G)^{\alpha}H \cong F^G[x]/\langle x^p - 1 \rangle$. Therefore, $(\widetilde{F}^G)^{\alpha}H$ is not a field.

Suppose that $(\widetilde{F}^G)^{\alpha}H$ is not a field. Let $\sigma \in H$ be a generator. Define $f_{\sigma^i} = f_{\sigma^{i-1}} \circ \sigma^{i-1}(f_{\sigma})$ for $2 \leq i \leq p$. Then $u_{\sigma^i} = u^i_{\sigma}$ for $1 \leq i \leq p$ and $u^p_{\sigma} \in \widetilde{F}^G$. If $x^p - u^p_{\sigma}$ is irreducible in $\widetilde{F}^G[x]$, $(\widetilde{F}^G)^{\alpha}H$ is a field. Thus $x^p - u^p_{\sigma}$ is reducible in $\widetilde{F}^G[x]$ and there is $a_{\sigma} \in F$ such that $\widetilde{a_{\sigma}} \in \widetilde{F}^G$ and $u^p_{\sigma} = \widetilde{a_{\sigma}}^p$. Define $g_{\sigma} = a_{\sigma}^{-1} \circ f_{\sigma} : \sigma(A) \to A$. Let $\operatorname{Res}_{L/L^H}(A)$ be the restriction of scalars of A from L to L^H with a morphism

Let $Res_{L/L^{H}}(A)$ be the restriction of scalars of A from L to L^{H} with a morphism $\psi \colon Res_{L/L^{H}}(A) \to A$. Define $w_{\sigma} \in End_{L^{H}}(Res_{L/L^{H}}(A)) \otimes_{\mathbf{Z}} \mathbf{Q}$ such that $\psi \circ w_{\sigma} = g_{\sigma} \circ \sigma(\psi)$.

Define $B = \left(\sum_{i=0}^{p-1} w_{\sigma}^{i}\right) \operatorname{Res}_{L/L^{H}}(A)$. Then ψ is a morphism from B to A. By restricting the domain of ψ to B, we get $g_{\sigma} \circ \sigma(\psi) = \psi$ because $g_{\sigma} \circ \sigma(\psi) \circ \left(\sum_{i=0}^{p-1} w_{\sigma}^{i}\right) = \psi \circ w_{\sigma} \circ \left(\sum_{i=0}^{p-1} w_{\sigma}^{i}\right) = \psi \circ \left(\sum_{i=0}^{p-1} w_{\sigma}^{i}\right)$.

Define $\widetilde{\psi}: \operatorname{Res}_{L/K}(B) \to \operatorname{Res}_{L/K}(A)$ by $\phi \circ \widetilde{\psi} = \psi \circ \phi_B$ with the morphism $\phi_B: \operatorname{Res}_{L/K}(B) \to B$. We know that $u_\tau \circ u_\sigma = u_\sigma \circ u_\tau$ for $\tau \in G$ and $\sigma \in G_r$. Thus $u_\tau \circ (\widetilde{a_\sigma}^{-1} \circ u_\sigma) = (\widetilde{a_\sigma}^{-1} \circ u_\sigma) \circ u_\tau$ for $\tau \in G$ and $\sigma \in G_r$.

Thus $u_{\tau} \circ (\tilde{a}_{\sigma}^{-1} \circ u_{\sigma}) = (\tilde{a}_{\sigma}^{-1} \circ u_{\sigma}) \circ u_{\tau}$ for $\tau \in G$ and $\sigma \in G_r$. Then $\tilde{\psi}^{-1} \circ u_{\tau} \circ u_{\sigma} \circ \tilde{\psi} = \tilde{\psi}^{-1} \circ u_{\sigma} \circ u_{\tau} \circ \tilde{\psi}$. Note $\phi_B \circ \tilde{\psi}^{-1} \circ u_{\tau} \circ u_{\sigma} \circ \tilde{\psi} = \psi^{-1} \circ f_{\tau} \circ x(\psi) \circ (\tau\sigma)(\phi_B)$ and $\phi_B \circ \tilde{\psi}^{-1} \circ u_{\sigma} \circ u_{\tau} \circ \tilde{\psi} = \sigma(\psi^{-1} \circ f_{\tau} \circ \tau(\psi)) \circ (\sigma\tau)(\phi_B)$. Then $\sigma(\psi^{-1} \circ f_{\tau} \circ \tau(\psi)) = \psi^{-1} \circ f_{\tau} \circ \tau(\psi) : \tau(B) \to B$. That is $\psi^{-1} \circ f_{\tau} \circ \tau(\psi)$ is defined over L^H .

LEMMA 6. Suppose that A has a K-variety descent on L^H for a subgroup H of G_F . Then $H \leq G_r$.

Proof. We may assume that the abelian varity A is defined over L^H and for $\sigma \in G$, $\sigma(A)$ is L^H -isogenous to A. We can assume $f_{\theta} = id_A$ for $\theta \in H$. Pick $\theta \in H$ and $\tau \in G$. Note that $\theta(f_{\tau}) = f_{\tau}$. Now $\phi \circ u_{\tau} \circ u_{\theta} = f_{\tau} \circ (\tau \theta)(\phi)$ and $\phi \circ u_{\theta} \circ u_{\tau} = f_{\tau} \circ (\theta \tau)(\phi)$. Since G is abelian, $u_{\tau} \circ u_{\theta} = u_{\theta} \circ u_{\tau}$. Thus $\theta \in G_r$ and $H \leq G_r$.

PROOF OF MAIN THEOREM. The following equivalences prove Main Theorem. $Res_{L/K}(A)$ is K-isogenous to a product $B \times \cdots \times B$ of a simple abelian variety B defined over K.

 $\widehat{\widetilde{F}}^{\alpha} \widehat{G} \text{ is simple.}$

 $\$ by the statement after Theorem 1

 $(\widetilde{F}^G)^{\alpha}G_r$ is a field.

 $\$ by Theorem 2

 $(F^G)^{\alpha}H$ is a field for any prime order subgroup H of G_r .

 $\$ by Theorem 5

A doesn't have a K-variety descent to L^H for any prime order subgroup H of G_r . \updownarrow by LEMMA 6

There is no proper subfield of L containing L^{G_F} on which A has a K-variety descent.

COROLLARY 7. Let K be finite Galois extension over \mathbf{Q} which is a primitive totally complex. Let L be an abelian extension of K and let A be an abelian variety defined over L. We assume that L is the field of moduli and that A is a K-variety, that is, for each $\sigma \in Gal(L/K)$, $\sigma(A)$ and A are L-isogenous. Assume that there is no K-variety descent of A on M such that $K \leq M \nleq L$. Then $\operatorname{Res}_{L/K}(A)$ has only one simple factor up to isogeny over K, that is, the endomorphism algebra $\operatorname{End}_K(\operatorname{Res}_{L/K}(A)) \otimes_{\mathbf{Z}} \mathbf{Q}$ is simple.

THEOREM 8. [3] Let E be an elliptic curve such that $F = \text{End}^{0}(E)$ is a quadratic imaginary number field. Let j be the j-invariant of E. Assume that E is defined over the Hilbert class field F(j) of F and $F = \text{End}^{0}_{F(j)}(E)$. Assume that E is an F-curve. Then $\text{Res}_{F(j)/F}(E)$ has only one simple factor.

Proof. It is well-known that there is no descent of E to a proper subfield of F(j). From the above corollary, the theorem follows.

Assume that G acts trivially on F. Define $\beta(\sigma,\tau) = \alpha(\sigma,\tau)/\alpha(\tau,\sigma)$. We can show that β is a bilinear antisymmetric pairing from $G \times G$ to μ_F , where μ_F is the set of roots of unity in F. Then it is easy to show that $\beta(G_r, G) = \beta(G, G_r) = 1$. Moreover, the induced pairing from $G/G_r \times G/G_r$ to μ_F is non-degenerate bilinear antisymmetric. In the theorem of Nakamura, we know that if the class number of Fis not 1, then $\mu_F = \{\pm 1\}$. Therefore, $G/G_r \cong (\mathbf{Z}/2\mathbf{Z})^m \oplus (\mathbf{Z}/2\mathbf{Z})^m$. Then $F^{\alpha}G \cong$ $(F^{\alpha}G_r)^{\alpha}(G/G_r)$. Denote by D_i central simple quaternion algebra with center $F^{\alpha}G_r$. Then $F^{\alpha}G \cong D_1 \otimes \cdots \otimes D_m$. Now $F^{\alpha}G \cong M_{2^m}(F^{\alpha}G_r)$ or $F^{\alpha}G \cong M_{2^{m-1}}(D)$, where D is a central simple quaternion algebra with center $F^{\alpha}G_r$.

THEOREM 9. [1, §15] Let E be an elliptic curve such that $F = \text{End}^{0}(E)$ is a quadratic imaginary number field. Let j be the j-invariant of E. Assume that E is defined over $\mathbf{Q}(j)$ and $F = \text{End}^{0}_{F(j)}(E)$. Assume that E is a \mathbf{Q} -curve and $[\mathbf{Q}(j): \mathbf{Q}]$ is odd. Then $\text{Res}_{\mathbf{Q}(j)/\mathbf{Q}}(E)$ is simple.

Proof. In a similar way, we can show that $Res_{\mathbf{Q}(j)/\mathbf{Q}}(E)$ has only one simple factor. Since $[G: G_r]$ is odd, $G = G_r$. Therefore, $F^{\alpha}G$ is a field. Then $Res_{\mathbf{Q}(j)/\mathbf{Q}}(E)$ is simple.

3. Lemmas

Assume that G is a finite abelian p-group with an odd prime p. The group G acts on a number field M trivially. With a 2-cocycle α from G to M^{\times} , we assume that the twisted group ring $M^{\alpha}G = \{\sum_{\sigma} a_{\sigma}u_{\sigma} | a_{\sigma} \in M \text{ and } \sigma \in G\}$ is commutative. Assume that for any cyclic subgroup H of G of order p, $M^{\alpha}H$ is a field.

558

LEMMA 10. Let $\gamma \in \mathbf{C}$ be a root of a polynomial $x^{p^2} - a \in M[x]$ such that $[M(\gamma): M] = p$. Then $M(\gamma^p) = M$.

Proof. We assume that $M(\gamma^p) = M(\gamma)$. Then $[M(\gamma^p, \zeta_p) \colon M(\zeta_p)] = p$ with a primitive p-th root of unity ζ_p . Now we choose a generator δ in $Gal(M(\gamma^p, \zeta_p)/M(\zeta_p))$ such that $\delta(\gamma^p) = \gamma^p \zeta_p$. Thus $\eta = \delta(\gamma)\gamma^{-1} \in M(\gamma^p, \zeta_p)$ is a primitive p^2 -th root of unity. Then $\delta(\eta) = \eta^k$ with $k \equiv 1 \pmod{p}$. Now $\gamma = \delta^p(\gamma) = \gamma \eta^p$, which is impossible. Therefore, $M \subseteq M(\gamma^p) \subsetneq M(\gamma)$.

LEMMA 11. Assume that $\alpha \in \mathbf{C}$ is a solution of an irreducible polynomial $x^p - d \in M[x]$. If $e^p \in M$ for $e \in M(\alpha)$, then $e = b\alpha^t$ with $b \in M$ and an integer $t \ (0 \le t \le p-1)$.

Proof. Note that $[M(\alpha) : M] = p$. With a *p*-th root of unity ζ_p , we know $[M(\alpha, \zeta_p) : M(\zeta_p)] = p$. Write $e = \sum_{i=0}^{p-1} e_i \alpha^i$ with $e_i \in M$. Let δ be a generator of $Gal(M(\alpha, \zeta_p)/M(\zeta_p))$ such that $\delta(\alpha) = \zeta_p \alpha$. Because $e^p \in M$, $\delta(e) = e\zeta_p^t$ for an integer $t \ (0 \le t \le p-1)$. Thus from $\sum_{i=0}^{p-1} e_i (\alpha \zeta_p)^i = \sum_{i=0}^{p-1} e_i \alpha^i \zeta_p^t$, we get $e = e_t \alpha^t$. \Box

LEMMA 12. Assume that for a subgroup J of G, $M^{\alpha}J$ is a field. For a positive integer m and $a \in M^{\alpha}J$, if $a^{p^m} \in M$, then $a = cu_{\sigma}$ with $c \in M$ and $\sigma \in J$.

Proof. Let $J = J_0 \oplus \mathbb{Z}/p^n \mathbb{Z}$. Assume that the lemma is true for $M^{\alpha} J_0$. Let $M_1 = M^{\alpha} J_0$.

Assume that m = 1 and that the lemma is true for $M_1^{\alpha}J_1$ where $J_1 = p\mathbf{Z}/p^n\mathbf{Z}$. With a generator τ of $\mathbf{Z}/p^n\mathbf{Z}$, $M_1^{\alpha}(\mathbf{Z}/p^n\mathbf{Z}) = M_1^{\alpha}J_1(u_{\tau})$ and $[M_1^{\alpha}J_1(u_{\tau}): M_1^{\alpha}J_1] = p$. From the previous lemma, we get $a = a_t u_{\tau}^t$ with $a_t \in M_1^{\alpha}J_1$ and a nonnegative integer t.

Assume $n \geq 2$. Let $J_2 = p^2 \mathbf{Z}/p^n \mathbf{Z}$. Assuming $t \neq 0$, then $a_t^p \notin M_1^{\alpha} J_2$ but $a_t^{p^2} \in M^{\alpha} J_2$. Then we get $M_1^{\alpha} J_1 = M_1^{\alpha} J_2(a_t) = M_1^{\alpha} J_2(a_t^p)$ and $[M_1^{\alpha} J_2(a_t) : M_1^{\alpha} J_2] = p$. From Lemma 10, it is not possible. Therefore, n = 1 and $u_{\tau}^p \in M$. Since $a_t \in M_1$ and $a_t^p \in M$, $a_t = cu_{\sigma}$ with $c \in M$ and $\sigma \in J_0$. Thus for m = 1 the lemma is true.

Assume that the lemma is true for m = k, that is, if $a^{p^k} \in M_1$, then $a = a_t u_\sigma$ where $a_t \in M_1$ and $\sigma \in \mathbf{Z}/p^n \mathbf{Z}$. Assume $a^{p^{k+1}} \in M_1$. Then $a^p = bu_\sigma$ with $b \in M_1$ and $\sigma \in \mathbf{Z}/p^n \mathbf{Z}$. If σ is a generator of $\mathbf{Z}/p^n \mathbf{Z}$, then $a^p \notin M_1^{\alpha}(p\mathbf{Z}/p^n\mathbf{Z})$ but $a^{p^2} = b^p u_{\sigma}^p \in$ $M_1^{\alpha}(p\mathbf{Z}/p^n\mathbf{Z})$. From Lemma 10 it is impossible. Therefore, σ is not a generator of $\mathbf{Z}/p^n\mathbf{Z}$. Thus from Lemma 11 $a = cu_\tau$ such that $c \in M_1(u_\sigma)$ and $\tau^p = \sigma$. Note that $c^p \in M_1$. Thus there are $\delta \in \langle \sigma \rangle$ and $c_1 \in M_1$ such that $c = c_1 u_{\delta}$. We know $c_1^{p^{k+1}} \in M$. Thus $a = du_{\gamma} u_{\delta} u_{\tau}$. We prove the lemma. \Box

LEMMA 13. Let a finite abelian p-group G act on a number field M trivially. Let α be a 2-cocycle in $Z^2(G, M^{\times})$. Assume that $M^{\alpha}G$ is commutative and for any subgroup H of G of order p, $M^{\alpha}H$ is a field. Then $M^{\alpha}G$ is a field.

Proof. We will prove this by induction. Let $J = J_0 \oplus \mathbf{Z}/p^n \mathbf{Z}$ be a subgroup of Gand τ be a generator for $\mathbf{Z}/p^n \mathbf{Z}$. Let $J_1 = J_0 \oplus p \mathbf{Z}/p^n \mathbf{Z}$. Assume that $M^{\alpha}J_1$ is a field and $M^{\alpha}J$ is not a field. Since $u_{\tau}^p \in M^{\alpha}J_1$, we know that $x^p - u_{\tau}^p \in M^{\alpha}J_1[x]$ is reducible. Then there is a solution $b \in M^{\alpha}J_1$ of $x^p - u_{\tau}^p = 0$. Since $b^{p^n} = u_{\tau}^{p^n} \in M$, by Lemma 12, we get $b = cu_{\sigma}$ with $\sigma \in J_1$. Note that $(u_{\tau}u_{\sigma}^{-1})^p = u_{\tau}^p u_{\sigma}^{-p} = b^p u_{\sigma}^{-p} = c^p$. Then $\tau^p = \sigma^p$ and $M^{\alpha} \langle \tau \sigma^{-1} \rangle$ is not a field, which contradicts the assumption.

Hoseog Yu

References

- B. H. Gross, Arithmetic on Elliptic Curves with Complex Multiplications, Lecture Notes in Math. 776, Springer, 1980.
- [2] E. Kani and M. Rosen, Idempotent relations and factors of Jacobians, Math. Ann. 284 (1989) 307–327.
- [3] T. Nakamura, On abelian varieties associated with elliptic curves with complex multiplications, Acta Arith. 97 (2001), no. 4, 379–385.
- [4] A. Weil, Adeles and algebraic groups, Progr. Math. 23 (1982).
- [5] H. Yu, Idempotent relations and the conjecture of Birch and Swinnerton-Dyer, Math. Ann. 327 (2003) 67–78.

Hoseog Yu

Department of Mathematics and Statistics, Sejong University, Seoul 05006, Korea *E-mail*: hsyu@sejong.edu

560