
Korean J. Math. 30 (2022), No. 2, pp. 351–360
http://dx.doi.org/10.11568/kjm.2022.30.2.351

ESTIMATES FOR ANALYTIC FUNCTIONS ASSOCIATED WITH

SCHWARZ LEMMA ON THE BOUNDARY

Ayşan Kaynakkan and Bülent Nafi Örnek

Abstract. In this paper, we will introduce the class of analytic functions called
R (α, λ) and explore the different 5properties of the functions belonging to this class.

1. Introduction

Let A denote the class of functions f(z) = z+
∞∑
p=2

cpz
p that are analytic in U . Also,

let R (α, λ) be the subclass of A consisting of all functions f(z) satisfying

(1.1)
∞∑
p=2

p |cp| ≤
β (1− α)

1− β
cosλ,

where 0 ≤ α < 1, 0 < β ≤ 1
2
, |λ| < π

2
.

In this paper, we study some of the properties of the classes R (α, λ) and assign
coefficient bounds for functions belonging to these classes. Namely, the modulus of
the second coefficient c2 in the expansion of f(z) = z + c2z

2 + ... belonging to the
given class will be estimated from above. To find an upper bound for the coefficients
of such functions, we need to give the following lemma.

Lemma 1.1 (Schwarz lemma). Suppose that p is analytic in the unit disc, |p(z)| < 1
for |z| < 1 and p(0) = 0. Then

i−) |p(z)| ≤ |z|

ii−) |p′(0)| ≤ 1

with equality in either of the above if and only if p(z) = zeiθ, θ real ( [5], p.329).

Let f ∈ R (α, λ) and consider the following function

(1.2) Θ(z) =
f ′(z)− 1

(2β − 1) (f ′(z)− 1) + 2β (1− α) cosλe−iλ
.
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It is an analytic function in U and Θ(0) = 0. Now, let us show that |Θ(z)| < 1 in
U . Now let us check the difference of the modules of the numerator and denominator
of the function Θ(z) given in (1.2). Therefore, we take

|f ′(z)− 1| −
∣∣(2β − 1) (f ′(z)− 1) + 2β (1− α) cosλe−iλ

∣∣
=

∣∣∣∣∣
∞∑
p=2

pcpz
p−1

∣∣∣∣∣−
∣∣∣∣∣(2β − 1)

∞∑
p=2

pcpz
p−1 + 2β (1− α) cosλe−iλ

∣∣∣∣∣
≤

∞∑
p=2

2 (1− β) p |cp| |z|p−1 − 2β (1− α) cosλ.

If we pass to limit in the last expression |z| → 1−, we take

|f ′(z)− 1| −
∣∣(2β − 1) (f ′(z)− 1) + 2β (1− α) cosλe−iλ

∣∣
<

∞∑
p=2

2 (1− β) p |cp| − 2β (1− α) cosλ.

Since
∞∑
p=2

p |cp| ≤ β(1−α)
1−β cosλ, we obtain

|f ′(z)− 1| −
∣∣(2β − 1) (f ′(z)− 1) + 2β (1− α) cosλe−iλ

∣∣ < 0

and ∣∣∣∣ f ′(z)− 1

(2β − 1) (f ′(z)− 1) + 2β (1− α) cosλe−iλ

∣∣∣∣ < 1.

Therefore, if we substitute the Taylor expansion of f(z) in the function Θ(z), we
obtain

Θ(z) =
2c2z + 3c3z

2 + ...

(2β − 1) (2c2z + 3c3z2 + ...) + 2β (1− α) cosλe−iλ

Θ(z)

z
=

2c2 + 3c3z + ...

(2β − 1) (2c2z + 3c3z2 + ...) + 2β (1− α) cosλe−iλ
.

Thus, from the Schwarz lemma, we obtain

|Θ′(0)| =
∣∣∣∣ 2c2
2β (1− α) cosλe−iλ

∣∣∣∣ ≤ 1

and

|c2| ≤ β (1− α) cosλ.

We thus obtain the following lemma.

Lemma 1.2. If f ∈ R (α, λ), then we have the inequality

|f ′′(0)| ≤ 2β (1− α) cosλ.

Now let us consider the following function by taking into account of the critical
points, which are different from zero, of the function f(z)− z,

w(z) =
Θ(z)
n∏
i=1

z−ai
1−aiz

.
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Since w(z) function satisfies the conditions of the Schwarz lemma, we obtain

w(z) =
f ′(z)− 1

(2β − 1) (f ′(z)− 1) + 2β (1− α) cosλe−iλ
1

n∏
i=1

z−ai
1−aiz

=
2c2z + 3c3z

2 + ...

(2β − 1) (2c2z + 3c3z2 + ...) + 2β (1− α) cosλe−iλ
1

n∏
i=1

z−ai
1−aiz

,

w(z)

z
=

2c2 + 3c3z + ...

(2β − 1) (2c2z + 3c3z2 + ...) + 2β (1− α) cosλe−iλ
1

n∏
i=1

z−ai
1−aiz

,

|w′(0)| = |c2|

β (1− α) cosλ
n∏
i=1

|ai|
≤ 1

and

|c2| ≤ β (1− α) cosλ
n∏
i=1

|ai| .

As a result, we get the following lemma.

Lemma 1.3. Let f ∈ R (α, λ) and a1, a2, ..., an be critical points of the function
f(z)− z in D that are different from zero. Then we have the inequality

|f ′′(0)| ≤ 2β (1− α) cosλ
n∏
i=1

|ai| .

This lemma shows that if the critical points of the f(z)− z function are included,
a stronger upper bound for the coefficient c2 is obtained. Also, these two lemmas are
results for analytic functions inside the unit disk. To examine the behavior of the
derivative of this function at the boundary of the unit disk, the following lemma is
needed [10,15].

Lemma 1.4. Let p(z) be an analytic function in U , f(0) = 0 and |f(z)| < 1 for
z ∈ U . If p(z) extends continuously to some boundary point 1 ∈ ∂U = {z : |z| = 1},
and if |p(1)| = 1 and p′(1) exists, then

(1.3) |p′(1)| ≥ 2

1 + |p′(0)|

and

(1.4) |p′(1)| ≥ 1.

Moreover, the equality in (1.3) holds if and only if

p(z) = z
z − a
1− az

for some a ∈ (−1, 0]. Also, the equality in (1.4) holds if and only if p(z) = zeiθ.



354 A. Kaynakkan and B. N. Örnek

Inequality (1.5) and its generalizations have important applications in geometric
theory of functions and they are still hot topics in the mathematics literature [1–4,6–
13].

The following lemma, known as the Julia-Wolff lemma, is needed in the sequel
(see, [14]).

Lemma 1.5 (Julia-Wolff lemma). Let p be an analytic function in U , p(0) = 0
and p(U) ⊂ U . If, in addition, the function p has an angular limit p(1) at 1 ∈ ∂U ,
|p(1)| = 1, then the angular derivative p′(1) exists and 1 ≤ |p′(1)| ≤ ∞.

Corollary 1.6. The analytic function p has a finite angular derivative p′(1) if
and only if p′ has the finite angular limit p′(1) at 1 ∈ ∂U .

2. Main Results

In this section, we discuss different versions of the boundary Schwarz lemma for
R (α, λ) class. Also, in a class of analytic functions on the unit disc, assuming the
existence of angular limit on the boundary point, the estimations below of the modulus
of angular derivative have been obtained.

Theorem 2.1. Let f ∈ R (α, λ). Assume that, for 1 ∈ ∂U , f has an angular limit

f(1) at the point 1, f ′(1) = 1 + β(1−α)
1−β cosλe−iλ. Then we have the inequality

(2.1) |f ′′(1)| ≥ β (1− α) cosλ

2 (1− β)2
.

Proof. Consider the function

Θ(z) =
f ′(z)− 1

(2β − 1) (f ′(z)− 1) + 2β (1− α) cosλe−iλ
.

Also, since f ′(1) = 1 + β(1−α)
1−β cosλe−iλ, we have

Θ(1) =

β(1−α)
1−β cosλe−iλ

(2β − 1)
(
β(1−α)
1−β cosλe−iλ

)
+ 2β (1− α) cosλe−iλ

= 1.

Therefore, from (1.4), we obtain

1 ≤ |Θ′(1)| = 2β (1− α) cosλ |f ′′(1)|
|(2β − 1) (f ′(1)− 1) + 2β (1− α) cosλe−iλ|2

=
2β (1− α) cosλ |f ′′(1)|∣∣∣(2β − 1)

(
β(1−α)
1−β cosλe−iλ

)
+ 2β (1− α) cosλe−iλ

∣∣∣2
=

2 (1− β)2

β (1− α) cosλ
|f ′′(1)|

and

|f ′′(1)| ≥ β (1− α) cosλ

2 (1− β)2
.



Estimates for analytic functions associated with Schwarz lemma on the boundary 355

The inequality (2.1) can be strengthened from below by taking into account, c2 =
f ′′(0)

2
, the first coefficient of the expansion of the function f(z) = z + c2z

2 + c3z
3 + ....

Theorem 2.2. Under the same assumptions as in Theorem 2.1, we have

(2.2) |f ′′(1)| ≥ 1

(1− β)2
β2 (1− α)2 cos2 λ

β (1− α) cosλ+ |c2|
.

Proof. Let w(z) function be the same as (1.2). So, from (1.3), we obtain

2

1 + |Θ′(0)|
≤ |Θ′(1)| = 2 (1− β)2

β (1− α) cosλ
|f ′′(1)| .

Since

|Θ′(0)| =
∣∣∣∣ 2c2
2β (1− α) cosλe−iλ

∣∣∣∣ =
|c2|

β (1− α) cosλ
,

we take
2

1 + |c2|
β(1−α) cosλ

≤ 2 (1− β)2

β (1− α) cosλ
|f ′′(1)|

and

|f ′′(1)| ≥ 1

(1− β)2
β2 (1− α)2 cos2 λ

β (1− α) cosλ+ |c2|
.

The inequality (2.2) can be strengthened as below by taking into account c3 = f ′′′(0)
3!

which is the coefficient in the expansion of the function f(z) = z + c2z
2 + c3z

3 + ....

Theorem 2.3. Let f ∈ R (α, λ). Assume that, for 1 ∈ ∂U , f has an angular limit

f(1) at the point 1, f ′(1) = 1 + β(1−α)
1−β cosλe−iλ. Then we have the inequality

|f ′′(1)| ≥ β (1− α) cosλ

2 (1− β)2
(1+ (2.3)

4 (β (1− α) cosλ− |c2|)2

2
(
(β (1− α) cosλ)2 − |c2|2

)
+ |3β (1− α) cosλe−iλc3 − 2c22 (2β − 1)|

)
.

Proof. Let Θ(z) be the same as in the proof of Theorem 2.1 and b(z) = z. By the
maximum principle, for each z ∈ U , we have the inequality |Θ(z)| ≤ |b(z)|. Therefore,
we take

ϑ(z) =
Θ(z)

b(z)
=

1

z

(
f ′(z)− 1

(2β − 1) (f ′(z)− 1) + 2β (1− α) cosλe−iλ

)
=

1

z

2c2z + 3c3z
2 + ...

(2β − 1) (2c2z + 3c3z2 + ...) + 2β (1− α) cosλe−iλ

=
2c2 + 3c3z + ...

(2β − 1) (2c2z + 3c3z2 + ...) + 2β (1− α) cosλe−iλ

is an analytic function in U and |ϑ(z)| ≤ 1 for z ∈ U . In particular, we have

(2.4) |ϑ(0)| = |c2|
β (1− α) cosλ

≤ 1
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and

|ϑ′(0)| =
∣∣3β (1− α) cosλe−iλc3 − 2c22 (2β − 1)

∣∣
2β2 (1− α)2 cos2 λ

.

The auxiliary function

d(z) =
ϑ(z)− ϑ(0)

1− ϑ(0)ϑ(z)

is analytic in U , d(0) = 0, |d(z)| < 1 for |z| < 1 and |d(1)| = 1 for 1 ∈ ∂U . From
(1.3), we obtain

2

1 + |d′(0)|
≤ |d′(1)| = 1− |ϑ(0)|2∣∣∣1− ϑ(0)ϑ(1)

∣∣∣2 |ϑ′(1)|

≤ 1 + |ϑ(0)|
1− |ϑ(0)|

{|Θ′(1)| − |b′(1)|}

=
|β (1− α) cosλ|+ |c2|
β (1− α) cosλ− |c2|

(
2 (1− β)2

β (1− α) cosλ
|f ′′(1)| − 1

)
.

Since

d′(z) =
1− |ϑ(0)|2(

1− ϑ(0)ϑ(z)
)2ϑ′(z)

and

|d′(0)| =
|ϑ′(0)|

1− |ϑ(0)|2
=

|3β(1−α) cosλe−iλc3−2c22(2β−1)|
2β2(1−α)2 cos2 λ

1−
(

|c2|
β(1−α) cosλ

)2
=

∣∣3β (1− α) cosλe−iλc3 − 2c22 (2β − 1)
∣∣

2
(
(β (1− α) cosλ)2 − |c2|2

) ,

we obtain
2

1+
|3β(1−α) cosλe−iλc3−2c22(2β−1)|

2((β(1−α) cosλ)2−|c2|2)

≤ |β(1−α) cosλ|+|c2|
β(1−α) cosλ−|c2|

(
2(1−β)2

β(1−α) cosλ |f
′′(1)| − 1

)
,

4(β(1−α) cosλ−|c2|)2

2((β(1−α) cosλ)2−|c2|2)+|3β(1−α) cosλe−iλc3−2c22(2β−1)|
≤ 2(1−β)2

β(1−α) cosλ |f
′′(1)| − 1

and

|f ′′(1)| ≥ β(1−α) cosλ
2(1−β)2

(
1 + 4(β(1−α) cosλ−|c2|)2

2((β(1−α) cosλ)2−|c2|2)+|3β(1−α) cosλe−iλc3−2c22(2β−1)|

)
.

If f(z) − z have critical points different from z = 0, taking into account these
critical points, the inequality (2.3) can be strengthened in another way. This is given
by the following Theorem.

Theorem 2.4. Let f ∈ R (α, λ) and a1, a2, ..., an be critical points of the function
f(z)− z in D that are different from zero. Assume that, for 1 ∈ ∂U , f has an angular

limit f(1) at the point 1, f ′(1) = 1 + β(1−α)
1−β cosλe−iλ. Then we have the inequality

|f ′′(1)| ≥ β(1−α) cosλ
2(1−β)2

(
1 +

n∑
i=1

1−|ai|2

|1−ai|2
(2.5)
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+
4

(
β(1−α) cosλ

n∏
i=1
|ai|−|c2|

)2

2

((
β(1−α) cosλ

n∏
i=1
|ai|
)2

−|c2|2
)
+

n∏
i=1
|ai|
∣∣∣∣3β(1−α) cosλe−iλc3−2(2β−1)c22+β(1−α) cosλe−iλc2 n∑

i=1

1−|ai|2
ai

∣∣∣∣

.

Proof. Let Θ(z) be as in (1.2) and a1, a2, ..., an be critical points of the function
f(z)− z in U that are different from zero. Also, consider the function

B(z) = z

n∏
i=1

z − ai
1− aiz

.

By the maximum principle for each z ∈ U , we have

|Θ(z)| ≤ |B(z)| .

Consider the function

l(z) =
Θ(z)

B(z)
=

(
f ′(z)− 1

(2β − 1) (f ′(z)− 1) + 2β (1− α) cosλe−iλ

)
1

z
n∏
i=1

z−ai
1−aiz

=
2c2z + 3c3z

2 + ...

(2β − 1) (2c2z + 3c3z2 + ...) + 2β (1− α) cosλe−iλ
1

z
n∏
i=1

z−ai
1−aiz

=
2c2 + 3c3z + ...

(2β − 1) (2c2z + 3c3z2 + ...) + 2β (1− α) cosλe−iλ
1

n∏
i=1

z−ai
1−aiz

.

l(z) is analytic in U and |l(z)| < 1 for |z| < 1. In particular, we have

|l(0)| = |c2|

β (1− α) cosλ
n∏
i=1

|ai|

and

|l′(0)| =

∣∣∣∣3β (1− α) cosλe−iλc3 − 2 (2β − 1) c22 + β (1− α) cosλe−iλc2
n∑
i=1

1−|ai|2
ai

∣∣∣∣
2 (β (1− α) cosλ)2

n∏
i=1

|ai|
.

The auxiliary function

g(z) =
l(z)− l(0)

1− l(0)l(z)

is analytic in U , |g(z)| < 1 for |z| < 1 and g(0) = 0. For 1 ∈ ∂U and f ′(1) =

1 + β(1−α)
1−β cosλe−iλ, we take |g(1)| = 1.

From (1.3), we obtain

2

1 + |g′(0)|
≤ |g′(1)| = 1− |l(0)|2∣∣∣1− l(0)l(1)

∣∣∣ |l′(1)|

≤ 1 + |l(0)|
1− |l(0)|

(|Θ′(1)| − |B′(1)|) .
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It can be seen that

|g′(0)| = |l′(0)|
1− |l(0)|2

and

|g′(0)| =

∣∣∣∣∣3β(1−α) cosλe−iλc3−2(2β−1)c22+β(1−α) cosλe
−iλc2

n∑
i=1

1−|ai|2
ai

∣∣∣∣∣
2(β(1−α) cosλ)2

n∏
i=1
|ai|

1−

 |c2|

β(1−α) cosλ
n∏
i=1
|ai|


2

=
n∏
i=1

|ai|

∣∣∣∣3β(1−α) cosλe−iλc3−2(2β−1)c22+β(1−α) cosλe−iλc2 n∑
i=1

1−|ai|2
ai

∣∣∣∣
2

((
β(1−α) cosλ

n∏
i=1
|ai|
)2

−|c2|2
)

Also,we have

|B′(1)| = 1 +
n∑
i=1

1− |ai|2

|1− ai|2
, 1 ∈ ∂U.

Therefore, we obtain
2

1+
n∏
i=1
|ai|

∣∣∣∣∣3β(1−α) cosλe−iλc3−2(2β−1)c22+β(1−α) cosλe
−iλc2

n∑
i=1

1−|ai|2
ai

∣∣∣∣∣
2

(β(1−α) cosλ n∏
i=1
|ai|

)2

−|c2|2


≤
β(1−α) cosλ

n∏
i=1
|ai|+|c2|

β(1−α) cosλ
n∏
i=1
|ai|−|c2|

(
2(1−β)2

β(1−α) cosλ |f
′′(1)| − 1−

n∑
i=1

1−|si|2

|1−si|2

)
,

4

(
β(1−α) cosλ

n∏
i=1
|ai|−|c2|

)2

2

((
β(1−α) cosλ

n∏
i=1
|ai|
)2

−|c2|2
)
+

n∏
i=1
|ai|
∣∣∣∣3β(1−α) cosλe−iλc3−2(2β−1)c22+β(1−α) cosλe−iλc2 n∑

i=1

1−|ai|2
ai

∣∣∣∣
≤ 2(1−β)2

β(1−α) cosλ |f
′′(1)| − 1−

n∑
i=1

1−|si|2

|1−si|2

and so, we get inequality (2.5).

If f(z)−z has no critical points different from z = 0 in Theorem 2.3, the inequality
(2.3) can be further strengthened. This is given by the following theorem.

Theorem 2.5. Let f ∈ R (α, λ), f(z)− z has no critical points in U except z = 0
and c2 > 0. Assume that, for 1 ∈ ∂U , f has an angular limit f(1) at the point 1,

f ′(1) = 1 + β(1−α)
1−β cosλe−iλ. Then we have the inequality

|f ′′(1)| ≥ β (1− α) cosλ

2 (1− β)2
(1− (2.6)

4β (1− α) cosλc2 ln2
(

c2
β(1−α) cosλ

)
2c2

β(1−α) cosλ ln
(

c2
β(1−α) cosλ

)
− |3β (1− α) cosλe−iλc3 − 2c22 (2β − 1)|

 .

Proof. Let c2 > 0 in the expression of the function f(z). Having in mind the
inequality (2.4) and the function f(z)− z has no critical points in U except z = 0, we
denote by lnϑ(z) the analytic branch of the logarithm normed by the condition

lnϑ(0) = ln

(
c2

β (1− α) cosλ

)
< 0.
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The auxiliary function

φ(z) =
lnϑ(z)− lnϑ(0)

lnϑ(z) + lnϑ(0)

is analytic in the unit disc U , |φ(z)| < 1, φ(0) = 0 and |φ(1)| = 1 for 1 ∈ ∂U .
From (1.3), we obtain

2

1 + |φ′(0)|
≤ |φ′(1)| = |2 lnϑ(0)|

|lnϑ(1) + lnϑ(0)|2

∣∣∣∣ϑ′(1)

ϑ(1)

∣∣∣∣
=

−2 lnϑ(0)

ln2 ϑ(0) + arg2 ϑ(1)
{|Θ′(1)| − 1} .

Replacing arg2 ϑ(1) by zero, then

1

1−
|3β(1−α) cosλe−iλc3−2c22(2β−1)|

2β2(1−α)2 cos2 λ
2c2

β(1−α) cosλ ln( c2
β(1−α) cosλ)

≤ −1

ln
(

c2
β(1−α) cosλ

) { 2 (1− β)2

β (1− α) cosλ
|f ′′(1)| − 1

}

and

1−
4β(1−α) cosλc2 ln2( c2

β(1−α) cosλ)
2c2

β(1−α) cosλ ln( c2
β(1−α) cosλ)−|3β(1−α) cosλe−iλc3−2c22(2β−1)|

≤ 2(1−β)2
β(1−α) cosλ |f

′′(1)| .

Thus, we obtain the inequality (2.6).

The following theorem shows the relationship between the coefficients c2 and c3 in
the Maclaurin expansion of the f(z) = z + c2z

2 + c3z
3 + ... function.

Theorem 2.6. Let f ∈ R (α, λ), f(z)− z has no critical points in U except z = 0
and c2 > 0. Then we have the inequality
(2.7)∣∣3β (1− α) cosλe−iλc3 − 2c22 (2β − 1)

∣∣ ≤ 4

∣∣∣∣β (1− α) cosλc2 ln

(
c2

β (1− α) cosλ

)∣∣∣∣ .
Proof. Let φ(z) be the same as in the proof of Theorem 2.5. Here, φ(z) is analytic

in the unit disc U , |φ(z)| < 1, φ(0) = 0. Therefore, the function φ(z) satisfies the
assumptions of the Schwarz Lemma. Thus, we obtain

1 ≥ |φ′(0)| = |2 lnϑ(0)|
|lnϑ(0) + lnϑ(0)|2

∣∣∣∣ϑ′(0)

ϑ(0)

∣∣∣∣
=

−1

2 lnϑ(0)

∣∣∣∣ϑ′(0)

ϑ(0)

∣∣∣∣
= −

|3β(1−α) cosλe−iλc3−2c22(2β−1)|
2β2(1−α)2 cos2 λ

2c2
β(1−α) cosλ ln

(
c2

β(1−α) cosλ

)
and∣∣3β (1− α) cosλe−iλc3 − 2c22 (2β − 1)

∣∣ ≤ 4

∣∣∣∣β (1− α) cosλc2 ln

(
c2

β (1− α) cosλ

)∣∣∣∣ .
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