ON HOM-LIE TRIPLE SYSTEMS AND INVOLUTIONS OF HOM-LIE ALGEBRAS

Hamdiatou Yara and Patricia L. Zoungrana*

Abstract

In this paper we mainly establish a relationship between involutions of multiplicative Hom-Lie algebras and Hom-Lie triple systems. We show that the -1-eigenspace of any involution on any multiplicative Hom-Lie algebra becomes a Hom-Lie triple system and we construct some examples of Hom-Lie triple systems using some involutions of some classical Hom-Lie algebras.

1. Introduction

Let \mathbb{K} be an arbitrary field of characteristic 0 . Lie triple systems are subspaces of any Lie algebra which are closed under the ternary composition $[[x, y], z]$. They were first noted by E. Cartan in his work on geodesic submanifolds [3]. From the algebraic point of view, Lie triple systems were studied by N. Jacobson $[6,7]$ and Lister [8]. In general, Lie triple systems have natural embeddings into certain canonical Lie algebras called "standard" and "universal" embeddings, and any Lie triple system can be shown to arise precisely as the - 1 -eigenspace of an involution on some Lie algebra [5].
The Hom-Lie algebras structures arose first in deformation of Lie algebras of vector fields. The notion of Hom-Lie algebras was introduced by Hartwig, Larsson and Silvestrov in [4] as part of a study of deformations of the Witt and Virasoro algebras. The notion of Hom-Lie triple system generalizing Lie triple system to a situation where the trilinear law is twisted by a linear map was introduced by D. Yau in [10]. The purpose of this paper consists in giving a relationship between involutions of multiplicative Hom-Lie algebras and Hom-Lie triple systems.
The paper is organised as follows. In section 2, we recall some basic definitions and properties of Hom-Lie algebras and Hom-Lie triple systems. We derive new Hom-Lie triple systems from a given multiplicative Hom-Lie triple system and we construct Hom-Lie triple systems involving elements of the centroid of Lie triple systems. In section 3, we show that there exists a connection between involutions of multiplicative Hom-Lie algebras and Hom-Lie triple systems with some examples.

[^0]
2. Hom-Lie triple systems

2.1. Preliminaries on Hom-Lie algebras.

Definition 2.1. [2] A Hom-Lie algebra is a triple ($\mathcal{G},[],, \alpha)$ consisting of a vector space \mathcal{G} over \mathbb{K}, a skew-symmetric bilinear map [,]: $\mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$ and a linear map $\alpha: \mathcal{G} \rightarrow \mathcal{G}$ satisfying the following Hom-Jacobi identity :

$$
\begin{equation*}
[\alpha(x),[y, z]]+[\alpha(y),[z, x]]+[\alpha(z),[x, y]]=0, \text { for all } x, y, z \in \mathcal{G} . \tag{1}
\end{equation*}
$$

Moreover, if $\alpha([x, y])=[\alpha(x), \alpha(y)]$, for all $x, y \in \mathcal{G}$, the Hom-Lie algebra ($\mathcal{G},[],, \alpha)$ is said to be multiplicative.

Definition 2.2. Let ($\mathcal{G},[],, \alpha)$ and ($\left.\mathcal{G}^{\prime},[,]^{\prime}, \alpha^{\prime}\right)$ be two Hom-Lie algebras. A map $f: \mathcal{G} \longrightarrow \mathcal{G}^{\prime}$ is called a morphism of Hom-Lie algebras if $f([x, y])=[f(x), f(y)]^{\prime}$ and $f(\alpha(x))=\alpha^{\prime}(f(x))$, for all $x, y \in \mathcal{G}$.

Definition 2.3. Let ($\mathcal{G},[],, \alpha$) be a Hom-Lie algebra.

1. A Hom-Lie subalgebra of $(\mathcal{G},[],, \alpha)$ is a subspace \mathcal{H} of \mathcal{G} such that for all $x, y \in$ $\mathcal{H},[x, y] \in \mathcal{H}$ and $\alpha(x) \in \mathcal{H}$.
2. An ideal of $(\mathcal{G},[],, \alpha)$ is a subspace \mathcal{I} of \mathcal{G} such that for all $x \in \mathcal{I}$ and for all $y \in \mathcal{G},[x, y] \in \mathcal{I}$ and $\alpha(x) \in \mathcal{I}$.

The following theorem can be found in [2].
Theorem 2.4. Let $(\mathcal{G},[]$,$) be a Lie algebra. Let \alpha: \mathcal{G} \longrightarrow \mathcal{G}$ be an endomorphism of the Lie algebra $(\mathcal{G},[]$,$) . Let [,]_{\alpha}: \mathcal{G} \times \mathcal{G} \longrightarrow \mathcal{G}$ be the map defined by $[x, y]_{\alpha}=$ $\alpha([x, y])$, for all $x, y \in \mathcal{G}$. Then $\left(\mathcal{G},[,]_{\alpha}, \alpha\right)$ is a multiplicative Hom-Lie algebra.

In what follows, using the theorem 2.4, we construct examples of Hom-Lie algebras from classical Lie algebras.

Example 2.5. Case of the Lie algebra $\mathcal{S l}(n)$
Let us consider the Lie algebra $(\mathcal{S l}(n),[]$,$) consisting of the square matrices X$ of order n with elements in \mathbb{K} such that $\operatorname{tr}(X)=0$. We have

$$
\mathcal{S l}(n)=\left\{X \in \mathcal{M}_{n}(\mathbb{K}) ; \operatorname{tr}(X)=0\right\} .
$$

The map [,] is defined by : for all $X, Y \in \mathcal{S} l(n),[X, Y]=X Y-Y X$.
Denote by $G l(n)$ the set of invertible matrices of order n with elements in \mathbb{K}. We have

$$
G l(n)=\left\{X \in \mathcal{M}_{n}(\mathbb{K}) ; \operatorname{det}(X) \neq 0\right\} .
$$

Let $A \in G l(n)$. Define the map

$$
\alpha: \mathcal{S l}(n) \longrightarrow \mathcal{S l}(n), X \mapsto A^{-1} X A .
$$

Let us show that α is an endomorphism of the Lie algebra $(\mathcal{S l}(n),[]$,$) .$
For all $X \in \mathcal{S l}(n)$, we have $\operatorname{tr}(X)=0$ and

$$
\operatorname{tr}(\alpha(X))=\operatorname{tr}\left(A^{-1} X A\right)=\operatorname{tr}\left(A^{-1} A X\right)=\operatorname{tr}\left(I_{n} X\right)=\operatorname{tr}(X)=0
$$

That means for all $X \in \mathcal{S l}(n), \alpha(X) \in \mathcal{S l}(n)$.
Next, for all $X, Y \in \mathcal{S l}(n)$ and for all $k \in \mathbb{K}$, we have

$$
\alpha(X+k Y)=A^{-1}(X+k Y) A \quad=A^{-1} X A+k A^{-1} Y A=\alpha(X)+k \alpha(Y)
$$

That proves the linearity of α.
Moreover, For all $X, Y \in \mathcal{S l}(n)$, we have,

$$
\begin{aligned}
{[\alpha(X), \alpha(Y)] } & =\alpha(X) \alpha(Y)-\alpha(Y) \alpha(X) \\
& =A^{-1} X A A^{-1} Y A-A^{-1} Y A A^{-1} X A \\
& =A^{-1} X I_{n} Y A-A^{-1} Y I_{n} X A \\
& =A^{-1} X Y A-A^{-1} Y X A \\
& =A^{-1}(X Y-Y X) A \\
& =A^{-1}[X, Y] A \\
& =\alpha([X, Y]) .
\end{aligned}
$$

So, the map α is an endomorphism of the Lie algebra $(\mathcal{S l}(n),[]$,$) . Therefore \left(\mathcal{S l}(n),[,]_{\alpha}, \alpha\right)$ is a multiplicative Hom-Lie algebra where $\alpha(X)=A^{-1} X A$ and $[X, Y]_{\alpha}=\alpha([X, Y])=$ $A^{-1} X Y A-A^{-1} Y X A$, for all $X, Y \in \mathcal{S} l(n)$.

Example 2.6. Case of the Lie algebra $\mathcal{S o}(n)$

Let us consider the Lie algebra (So(n), [,]) consisting of the skew-symmetric matrices of order n with elements in \mathbb{K}. We have

$$
\mathcal{S} o(n)=\left\{X \in \mathcal{M}_{n}(\mathbb{K}) ; X^{t}=-X\right\} .
$$

The map [,] is defined by : for all $X, Y \in \mathcal{S} o(n),[X, Y]=X Y-Y X$.
Denote by $O(n)$ the set of orthogonal matrices of order n with elements in \mathbb{K}. We have

$$
O(n)=\left\{X \in \mathcal{M}_{n}(\mathbb{K}) ; X^{t} X=X X^{t}=I_{n}\right\} .
$$

Let $A \in O(n)$. Define the map

$$
\alpha: \mathcal{S} o(n) \longrightarrow \mathcal{S} o(n), X \mapsto A^{t} X A .
$$

Let us show that α is an endomorphism of the Lie algebra $(\mathcal{S} o(n),[]$,$) .$
Let $X \in \mathcal{S} o(n)$. Then $X^{t}=-X$. Since, for all matrices M and N in $\mathcal{M}_{n}(\mathbb{K})$ we have $(M N)^{t}=N^{t} M^{t}$ and $\left(M^{t}\right)^{t}=M$, then it follows

$$
(\alpha(X))^{t}=\left(A^{t} X A\right)^{t}=A^{t} X^{t}\left(A^{t}\right)^{t}=A^{t}(-X) A=-A^{t} X A=-\alpha(X)
$$

That means for all $X \in \mathcal{S} o(n), \alpha(X) \in \mathcal{S} o(n)$.
Next, for all $X, Y \in \mathcal{S} o(n)$ and for all $k \in \mathbb{K}$, we have

$$
\alpha(X+k Y)=A^{t}(X+k Y) A=A^{t} X A+k A^{t} Y A=\alpha(X)+k \alpha(Y)
$$

That proves the linearity of α.
Moreover, for all $X, Y \in \mathcal{S} o(n)$, we have

$$
\begin{aligned}
{[\alpha(X), \alpha(Y)] } & =\alpha(X) \alpha(Y)-\alpha(Y) \alpha(X) \\
& =A^{t} X A A^{t} Y A-A^{t} Y A A^{t} X A \\
& =A^{t} X I_{n} Y A-A^{t} Y I_{n} X A \\
& =A^{t} X Y A-A^{t} Y X A \\
& =A^{t}(X Y-Y X) A \\
& =A^{t}[X, Y] A \\
& =\alpha([X, Y]) .
\end{aligned}
$$

So the map α is an endomorphism of the Lie algebra $(\mathcal{S o} o(n),[]$,$\left.) . Therefore (\mathcal{S o} o(n),[,]_{\alpha}, \alpha\right)$ is a multiplicative Hom-Lie algebra where $\alpha(X)=A^{t} X A$ and $[X, Y]_{\alpha}=\alpha([X, Y])=$ $A^{t} X Y A-A^{t} Y X A$, for all $X, Y \in \mathcal{S} o(n)$.

2.2. Hom-Lie triple systems.

Definition 2.7. [1] A Lie triple system is a couple ($T,[,$,$]) consisting of a vector$ space T over \mathbb{K} and a trilinear map $[,]:, T \times T \times T \rightarrow T$ satisfying

1. $[x, y, z]=-[y, x, z]$,
2. $[x, y, z]+[y, z, x]+[z, x, y]=0$,
3. $[u, v,[x, y, z]]=[[u, v, x], y, z]+[x,[u, v, y], z]+[x, y,[u, v, z]]$, for all $x, y, z, u, v \in T$.

Definition 2.8. [1] A Hom-Lie triple system is a triple ($T,[,],, \alpha$)
consisting of a vector space T over \mathbb{K}, a trilinear map [, ,]:T×T×T T and a linear map $\alpha: T \rightarrow T$ satisfying

1. $[x, y, z]=-[y, x, z]$,
2. $[x, y, z]+[y, z, x]+[z, x, y]=0$,
3. $[\alpha(u), \alpha(v),[x, y, z]]=[[u, v, x], \alpha(y), \alpha(z)]+[\alpha(x),[u, v, y], \alpha(z)]$

$$
+[\alpha(x), \alpha(y),[u, v, z]]
$$

for all $x, y, z, u, v \in T$.
Moreover, if $\alpha([x, y, z])=[\alpha(x), \alpha(y), \alpha(z)]$, for all $x, y, z \in T$, then $(T,[,],, \alpha)$ is called a multiplicative Hom-Lie triple system.

When α is the identity map, we recover the classical Lie triple system. So Lie triple systems are examples of Hom-Lie triple systems.

Definition 2.9. Let ($T,[,],, \alpha$) and ($T^{\prime},[,,]^{\prime}, \alpha^{\prime}$) be two Hom-Lie triple systems. A linear map $f: T \longrightarrow T^{\prime}$ is called morphism of Hom-Lie triple systems if for all $x, y, z \in T, f([x, y, z])=[f(x), f(y), f(z)]^{\prime}$ and $f(\alpha(x))=\alpha^{\prime}(f(x))$.

Definition 2.10. Let ($T,[,],, \alpha$) be a Hom-Lie triple system.

1. A Hom-Lie triple subsystem of T is a subspace S of T such that for all $x, y, z \in S,[x, y, z] \in S$ and $\alpha(x) \in S$.
2. An ideal of T is a subspace I of T such that for all $x \in I$ and for all $y, z \in$ $T,[x, y, z] \in I$ and $\alpha(x) \in I$.

Theorem 2.11. Let $(T,[,]$,$) be a Lie triple system, \alpha: T \longrightarrow T$ a morphism of the Lie triple systems T. Then $\left(T,[,]_{\alpha}, \alpha\right)$ is a Hom-Lie triple system where $[,,]_{\alpha}=\alpha \circ[,$,$] .$

Proof. As the map α is linear and the map [, ,] is trilinear then the map $\alpha \circ[,$,$] is$ trilinear. So the map $[,,]_{\alpha}$ is trilinear.
i) For all $x, y, z \in T$, we have

$$
[x, y, z]_{\alpha}=\alpha([x, y, z]) \quad=\alpha(-[y, x, z])=-\alpha([y, x, z]) \quad=-[y, x, z]_{\alpha} .
$$

ii) For all $x, y, z \in T$, we have

$$
\begin{aligned}
{[x, y, z]_{\alpha}+[y, z, x]_{\alpha}+[z, x, y]_{\alpha} } & =\alpha([x, y, z])+\alpha([y, z, x])+\alpha([z, x, y]) \\
& =\alpha([x, y, z]+[y, z, x]+[z, x, y]) \\
& =\alpha(0) \\
& =0 .
\end{aligned}
$$

iii) For all $x, y, z, u, v \in T$, we have

$$
\left.\begin{array}{l}
{\left[\alpha(u), \alpha(v),[x, y, z]_{\alpha}\right]_{\alpha}} \\
=\alpha([\alpha(u), \alpha(v), \alpha([x, y, z])]) \\
=\alpha \circ \alpha([u, v,[x, y, z]]) \\
=\alpha \circ \alpha([[u, v, x], y, z]+[x,[u, v, y], z]+[x, y,[u, v, z]]) \\
=\alpha \circ \alpha([[u, v, x], y, z])+\alpha \circ \alpha([x,[u, v, y], z])+\alpha \circ \alpha([x, y,[u, v, z]]) \\
=\alpha([\alpha([u, v, x]), \alpha(y), \alpha(z)])+\alpha([\alpha(x), \alpha([u, v, y]), \alpha(z)]) \\
\quad+\alpha([\alpha(x), \alpha(y), \alpha([u, v, z])]) \\
=
\end{array}\right]\left[[u, v, x]_{\alpha}, \alpha(y), \alpha(z)\right]_{\alpha}+\left[\alpha(x),[u, v, y]_{\alpha}, \alpha(z)\right]_{\alpha}+\left[\alpha(x), \alpha(y),[u, v, z]_{\alpha}\right]_{\alpha} .
$$

Therefore $\left(T,[,,]_{\alpha}, \alpha\right)$ is a Hom-Lie triple system.

It is well-known that, any subspace of a Lie algebra $(\mathcal{G},[]$,$) closed under the ternary$ product $[x, y, z]=[[x, y], z]$, is a Lie triple system relative to $[,$,$] . But, for an arbitrary$ Hom-Lie algebra ($\mathcal{G},[],, \alpha$), it is not natural to construct a Hom-Lie triple system without some conditions on the map α. The following theorem can be found in [9].

Theorem 2.12. [9] Let $(\mathcal{G},[],, \alpha)$ be a multiplicative Hom-Lie algebra. Then $\left(\mathcal{G},[,],, \alpha^{2}\right)$ is a multiplicative Hom-Lie triple system where $[x, y, z]=[[x, y], \alpha(z)]$, for all $x, y, z \in \mathcal{G}$.

Remark 2.13. The fact that the Hom-Lie algebra ($\mathcal{G},[],, \alpha)$ is multiplicative, is necessary in the theorem 2.12.

Corollary 2.14. Let $(\mathcal{G},[],, \alpha)$ be a multiplicative Hom-Lie algebra. Then, any subspace T of \mathcal{G} closed under the ternary product $[x, y, z]=[[x, y], \alpha(z)]$ and α^{2}, determines a multiplicative Hom-Lie triple system ($T,[,],, \alpha^{2}$).

Proof. Let $(\mathcal{G},[],, \alpha)$ be a multiplicative Hom-Lie algebra. Let T be a subspace of \mathcal{G} closed under the ternary product $[x, y, z]=[[x, y], \alpha(z)]$ and α^{2}. By the theorem $2.12,\left(\mathcal{G},[,],, \alpha^{2}\right)$ is a multiplicative Hom-Lie triple system. So, T becomes a Hom-Lie triple subsystem of $\left(\mathcal{G},[,],, \alpha^{2}\right)$. Therefore $\left(T,[,],, \alpha^{2}\right)$ is a multiplicative Hom-Lie triple system.

We give here some examples of Hom-Lie triple systems by using multiplicative HomLie algebras as in the theorem 2.12.

Example 2.15. Case of $\mathcal{S l}(n)$

Consider the multiplicative Hom-Lie algebra $\left(\mathcal{S l}(n),[,]_{\alpha}, \alpha\right)$ given in the example 2.5, where $\alpha(X)=A^{-1} X A,[X, Y]_{\alpha}=A^{-1} X Y A-A^{-1} Y X A$, for all X, $Y \in \mathcal{S l}(n)$ and $A \in G L(n)$.
For all $X \in \mathcal{S} l(n)$, we have

$$
\alpha^{2}(X)=\alpha(\alpha(X))=\alpha\left(A^{-1} X A\right)=A^{-1}\left(A^{-1} X A\right) A=\left(A^{-1}\right)^{2} X A^{2} .
$$

For all $X, Y, Z \in \mathcal{S l}(n)$, we have

$$
\begin{aligned}
{[X, Y, Z]_{\alpha}=} & {\left[[X, Y]_{\alpha}, \alpha(Z)\right]_{\alpha} } \\
= & {\left[A^{-1} X Y A-A^{-1} Y X A, A^{-1} Z A\right] } \\
= & {\left[A^{-1} X Y A, A^{-1} Z A\right]-\left[A^{-1} Y X A, A^{-1} Z A\right] } \\
= & A^{-1}\left(A^{-1} X Y A\right)\left(A^{-1} Z A\right) A-A^{-1}\left(A^{-1} Z A\right)\left(A^{-1} X Y A\right) A \\
& -A^{-1}\left(A^{-1} Y X A\right)\left(A^{-1} Z A\right) A+A^{-1}\left(A^{-1} Z A\right)\left(A^{-1} Y X A\right) A \\
= & \left(A^{-1}\right)^{2} X Y Z A^{2}-\left(A^{-1}\right)^{2} Z X Y A^{2}-\left(A^{-1}\right)^{2} Y X Z A^{2}+\left(A^{-1}\right)^{2} Z Y X A^{2} .
\end{aligned}
$$

By the theorem 2.12, the triple $\left(\mathcal{S l}(n),[,,]_{\alpha}, \alpha^{2}\right)$ is a multiplicative Hom-Lie triple system where for all $X, Y, Z \in \mathcal{S l}(n), \alpha^{2}(X)=\left(A^{-1}\right)^{2} X A^{2}$ and $[X, Y, Z]_{\alpha}=\left(A^{-1}\right)^{2} X Y Z A^{2}-$ $\left(A^{-1}\right)^{2} Z X Y A^{2}-\left(A^{-1}\right)^{2} Y X Z A^{2}+\left(A^{-1}\right)^{2} Z Y X A^{2}$.

Example 2.16. Case of $\mathcal{S} o(n)$
Consider the multiplicative Hom-Lie algebra $\left(\mathcal{S o}(n),[,]_{\alpha}, \alpha\right)$ given in the example 2.6, where $\alpha(X)=A^{t} X A,[X, Y]_{\alpha}=A^{t} X Y A-A^{t} Y X A$, for all X, $Y \in \mathcal{S} o(n)$ and $A \in O(n)$.
For all $X \in \mathcal{S} o(n)$, we have

$$
\alpha^{2}(X)=\alpha(\alpha(X))=\alpha\left(A^{t} X A\right)=A^{t}\left(A^{t} X A\right) A=\left(A^{t}\right)^{2} X A^{2} .
$$

For all $X, Y, Z \in \mathcal{S o}(n)$, we have

$$
\begin{aligned}
& {[X, Y, Z]_{\alpha} }=\left[[X, Y]_{\alpha}, \alpha(Z)\right]_{\alpha} \\
&=\left[A^{t} X Y A-A^{t} Y X A, A^{t} Z A\right] \\
&=\left[A^{t} X Y A, A^{t} Z A\right]-\left[A^{t} Y X A, A^{t} Z A\right] \\
&=A^{t}\left(A^{t} X Y A\right)\left(A^{t} Z A\right) A-A^{t}\left(A^{t} Z A\right)\left(A^{t} X Y A\right) A \\
&-A^{t}\left(A^{t} Y X A\right)\left(A^{t} Z A\right) A+A^{t}\left(A^{t} Z A\right)\left(A^{t} Y X A\right) A \\
&=\left(A^{t}\right)^{2} X Y Z A^{2}-\left(A^{t}\right)^{2} Z X Y A^{2}-\left(A^{t}\right)^{2} Y X Z A^{2}+\left(A^{t}\right)^{2} Z Y X A^{2} .
\end{aligned}
$$

By the theorem 2.12, the triple $\left(\mathcal{S} o(n),[,,]_{\alpha}, \alpha^{2}\right)$ is a multiplicative Hom-Lie triple system where for all $X, Y, Z \in \mathcal{S} o(n), \alpha^{2}(X)=\left(A^{t}\right)^{2} X A^{2}$ and $[X, Y, Z]_{\alpha}=\left(A^{t}\right)^{2} X Y Z A^{2}-$ $\left(A^{t}\right)^{2} Z X Y A^{2}-\left(A^{t}\right)^{2} Y X Z A^{2}+\left(A^{t}\right)^{2} Z Y X A^{2}$.

We may also derive new Hom-Lie triple systems from a given multiplicative HomLie triple system. This procedure allows to generate a sequence of multiplicative Hom-Lie triple systems starting with any multiplicative Hom-Lie triple system.
Let ($T,[,],, \alpha$) be a multiplicative Hom-Lie triple system and n be a positive integer. Let the map $[,,]^{(n)}: T \times T \times T \longrightarrow T$ defined by $[,]^{(n)}=\alpha^{n} \circ[,$,$] . We have the$ following theorem.

Theorem 2.17. The triple $\left(T,[,,]^{(n)}, \alpha^{n+1}\right)$ is a multiplicative Hom-Lie triple system, called the $n^{\text {th }}$ derived Hom-Lie triple system of T.
In particular for $n=0$ we have the multiplicative Hom-Lie triple system ($T,[,],, \alpha$).
Proof. Let $n \in \mathbb{N}$. It is obvious that the maps $[,,]^{(n)}$ and α^{n+1} are respectively trilinear and linear.
i) For all $x, y, z \in T$, we have

$$
[x, y, z]^{(n)}=\alpha^{n}([x, y, z])=\alpha^{n}(-[y, x, z])=-[y, x, z]^{(n)} .
$$

ii) For all $x, y, z \in T$, we have

$$
\begin{aligned}
{[x, y, z]^{(n)}+[y, z, x]^{(n)}+[z, x, y]^{(n)} } & =\alpha^{n}([x, y, z])+\alpha^{n}([y, z, x])+\alpha^{n}([z, x, y]) \\
& =\alpha^{n}([x, y, z]+[y, z, x]+[z, x, y]) \\
& =\alpha^{n}(0) \\
& =0 .
\end{aligned}
$$

iii) By using the fact that the Hom-Lie triple system ($T,[,],, \alpha$) is multiplicative and the linearity of the map α, we have for all $x, y, z, u, v \in T$,

$$
\begin{aligned}
& {\left[\alpha^{n+1}(u), \alpha^{n+1}(v),[x, y, z]^{(n)}\right]^{(n)} } \\
&=\alpha^{n}\left(\left[\alpha^{n+1}(u), \alpha^{n+1}(v), \alpha^{n}([x, y, z])\right]\right) \\
&=\alpha^{2 n}([\alpha(u), \alpha(v),[x, y, z]]) \\
&=\alpha^{2 n}([[u, v, x], \alpha(y), \alpha(z)]+[\alpha(x),[u, v, y], \alpha(z)]+[\alpha(x), \alpha(y),[u, v, z]]) \\
&=\alpha^{2 n}([[u, v, x], \alpha(y), \alpha(z)])+\alpha^{2 n}([\alpha(x),[u, v, y], \alpha(z)])+\alpha^{2 n}([\alpha(x), \alpha(y),[u, v, z]]) \\
&= \alpha^{n}\left(\left[\alpha^{n}([u, v, x]), \alpha^{n+1}(y), \alpha^{n+1}(z)\right]\right)+\alpha^{n}\left(\left[\alpha^{n+1}(x), \alpha^{n}([u, v, y]), \alpha^{n+1}(z)\right]\right) \\
&+\alpha^{n}\left(\left[\alpha^{n+1}(x), \alpha^{n+1}(y), \alpha^{n}([u, v, z])\right]\right) \\
&= {\left[[u, v, x]^{(n)}, \alpha^{n+1}(y), \alpha^{n+1}(z)\right]^{(n)}+\left[\alpha^{n+1}(x),[u, v, y]^{(n)}, \alpha^{n+1}(z)\right]^{(n)} } \\
&+\left[\alpha^{n+1}(x), \alpha^{n+1}(y),[u, v, z]^{(n)}\right]^{(n)} .
\end{aligned}
$$

Therefore $\left(T,[,,]^{(n)}, \alpha^{n+1}\right)$ is a multiplicative Hom-Lie triple system.
In the following we construct Hom-Lie triple systems involving elements of the centroid of Lie triple systems.

Definition 2.18. [11] Let ($T,[,$,$]) be a Lie triple system. The centroide of (T,[,$,$])$ is the set denoted by $\operatorname{Cent}(T)$ and defined by

$$
\operatorname{Cent}(T)=\{\alpha \in \operatorname{End}(T) ; \alpha([x, y, z])=[\alpha(x), y, z], \text { for all } x, y, z \in T\} .
$$

Remark 2.19. For any Lie triple system ($T,[,$,$]), if \alpha \in \operatorname{Cent}(T)$ then we have $\alpha([x, y, z])=[x, \alpha(y), z]=[x, y, \alpha(z)]$, for all $x, y, z \in T$.
Hence, $\alpha \in \operatorname{Cent}(T) \Leftrightarrow \alpha([x, y, z])=[\alpha(x), y, z]=[x, \alpha(y), z]=[x, y, \alpha(z)]$, for all $x, y, z \in$ T.

Theorem 2.20. Let ($T,[,$,$]) be a Lie triple system, \alpha \in \operatorname{Cent}(T)$ and k, $n \in \mathbb{N}$. Define the map $[,,]_{\alpha}^{n}$ by $[x, y, z]_{\alpha}^{n}=\left[\alpha^{n}(x), y, z\right]$, for all $x, y, z \in T$. Then $\left(T,[,,]_{\alpha}^{n}, \alpha^{k}\right)$ is a Hom-Lie triple system.

Proof. It is obvious that the maps α^{n} and α^{k} are linears. Since $\alpha \in \operatorname{Cent}(T)$, it follows that

$$
[x, y, z]_{\alpha}^{n}=\left[\alpha^{n}(x), y, z\right]=\alpha^{n}([x, y, z]), \text { for all } x, y, z \in T .
$$

So $[,,]_{\alpha}^{n}=\alpha^{n} \circ[,$,$] . Therefore [,,]_{\alpha}^{n}$ is a trilinear map.
i) For all $x, y, z \in T$, we have

$$
[x, y, z]_{\alpha}^{n}=\alpha^{n}([x, y, z]) \quad=\alpha^{n}(-[y, x, z])=-\alpha^{n}([y, x, z]) \quad=-[y, x, z]_{\alpha}^{n} .
$$

ii) For all $x, y, z \in T$, we have

$$
\begin{aligned}
{[x, y, z]_{\alpha}^{n}+[y, z, x]_{\alpha}^{n}+[z, x, y]_{\alpha}^{n} } & =\alpha^{n}([x, y, z])+\alpha^{n}([y, z, z])+\alpha^{n}([z, x, z]) \\
& =\alpha^{n}([x, y, z]+[y, z, x]+[z, x, y]) \\
& =\alpha^{n}(0) \\
& =0 .
\end{aligned}
$$

iii) For all $x, y, z, u, v \in T$, we have

```
\(\left[\alpha^{k}(u), \alpha^{k}(v),[x, y, z]_{\alpha}^{n}\right]_{\alpha}^{n}\)
\(=\alpha^{n}\left(\left[\alpha^{k}(u), \alpha^{k}(v), \alpha^{n}([x, y, z])\right]\right)\)
\(=\alpha^{2 n+2 k}([u, v,[x, y, z]])\)
\(=\alpha^{2 n+2 k}([[u, v, x], y, z]+[x,[u, v, y], z]+[x, y,[u, v, z]])\)
\(=\alpha^{2 n+2 k}([[u, v, x], y, z])+\alpha^{2 n+2 k}([x,[u, v, y], z])+\alpha^{2 n+2 k}([x, y,[u, v, z]])\)
\(=\alpha^{n}\left(\left[\alpha^{n}([u, v, x]), \alpha^{k}(y), \alpha^{k}(z)\right]\right)+\alpha^{n}\left(\left[\alpha^{k}(x), \alpha^{n}([u, v, y]), \alpha^{k}(z)\right]\right)\)
    \(+\alpha^{n}\left(\left[\alpha^{k}(x), \alpha^{k}(y), \alpha^{n}([u, v, z])\right]\right)\)
\(=\left[[u, v, x]_{\alpha}^{n}, \alpha^{k}(y), \alpha^{k}(z)\right]_{\alpha}^{n}+\left[\alpha^{k}(x),[u, v, y]_{\alpha}^{n}, \alpha^{k}(z)\right]_{\alpha}^{n}+\left[\alpha^{k}(x), \alpha^{k}(y),[u, v, z]_{\alpha}^{n}\right]_{\alpha}^{n}\).
```

Thus $\left(T,[,,]_{\alpha}^{n}, \alpha^{k}\right)$ is a Hom-Lie triple system.

3. Involutions of Hom-Lie algebras and Hom-Lie triple systems

By the corollary 2.14, we see that any subspace of a multiplicative Hom-Lie algebra $(\mathcal{G},[],, \alpha)$ closed under the map α^{2} and the ternary product $[x, y, z]=[[x, y], \alpha(z)]$, is a multiplicative Hom-Lie triple system. We use this process to establish a connection between involutions of multiplicative Hom-Lie algebras and Hom-Lie triple systems. Start by recalling the definition of an involution of Hom-Lie algebra.

Definition 3.1. A linear map $\theta: \mathcal{G} \rightarrow \mathcal{G}$ is an involution of a Hom-Lie algebra $(\mathcal{G},[],, \alpha)$ if

1. $\theta([x, y])=[\theta(x), \theta(y)]$, for all $x, y \in \mathcal{G}$;
2. $\theta \circ \alpha=\alpha \circ \theta$;
3. $\theta \circ \theta=i d_{\mathcal{G}}$.

Theorem 3.2. Let $(\mathcal{G},[],, \alpha)$ be a multiplicative Hom-Lie algebra. Let θ be an involution of $(\mathcal{G},[],, \alpha)$. Define $\mathcal{G}_{\theta}^{-}=\{x \in \mathcal{G} ; \theta(x)=-x\}$.
Then $\left(\mathcal{G}_{\theta}^{-},[,],, \alpha^{2}\right)$ is a multiplicative Hom-Lie triple system where $[x, y, z]=[[x, y], \alpha(z)]$, for all $x, y, z \in \mathcal{G}$.

Proof. As \mathcal{G}_{θ}^{-}is the -1 -eigenspace of θ in \mathcal{G}, then \mathcal{G}_{θ}^{-}is a subspace of \mathcal{G}. So, we just need to show that \mathcal{G}_{θ}^{-}is closed under the maps $[,$,$] and \alpha^{2}$.
Let $x, y, z \in \mathcal{G}_{\theta}^{-}$. We have $\theta([x, y, z])=\theta([[x, y], \alpha(z)])$. Since θ is an involution of $(\mathcal{G},[],, \alpha)$, then for all $u, v \in \mathcal{G}, \theta([u, v])=[\theta(u), \theta(v)]$ and $\theta \circ \alpha=\alpha \circ \theta$. We have also $\theta(x)=-x, \theta(y)=-y$ et $\theta(z)=-z$. It follows that

$$
\theta([x, y, z])=[[-x,-y], \alpha(-z)]=-[[x, y], \alpha(z)]=-[x, y, z] .
$$

That means $[x, y, z] \in \mathcal{G}_{\theta}^{-}$.
Let $x \in \mathcal{G}_{\theta}^{-}$. Then $\theta(x)=-x$. As $\theta \circ \alpha=\alpha \circ \theta$, it comes that, $\theta\left(\alpha^{2}(x)\right)=\alpha^{2}(\theta(x))=\alpha^{2}(-x)=-\alpha^{2}(x)$. That means $\alpha^{2}(x) \in \mathcal{G}_{\theta}^{-}$.
By the corollary 2.14, ($\left.\mathcal{G}_{\theta}^{-},[,],, \alpha^{2}\right)$ is a multiplicative Hom-Lie triple system.
Proposition 3.3. Let $(\mathcal{G},[]$,$) be a Lie algebra. Let \theta$ be an involution of ($\mathcal{G},[]$, and α an endomorphism of $(\mathcal{G},[]$,$) such that \theta \circ \alpha=\alpha \circ \theta$. Define $\mathcal{G}_{\theta}^{-}=\{x \in \mathcal{G} ; \theta(x)=-x\}$. Then the triples $\left(\mathcal{G}_{\theta}^{-},[,,]_{\alpha}^{1}, \alpha\right)$ and $\left(\mathcal{G}_{\theta}^{-},[,,]_{\alpha}^{2}, \alpha^{2}\right)$ are multiplicative Hom-Lie triple systems where $[x, y, z]_{\alpha}^{1}=\alpha([[x, y], z])$ and
$[x, y, z]_{\alpha}^{2}=\alpha^{2}([[x, y], z])$ for all $x, y, z \in \mathcal{G}$. The triple $\left(\mathcal{G}_{\theta}^{-},[,,]_{\alpha}^{2}, \alpha^{2}\right)$ is the first derived Hom-Lie triple system of $\left(\mathcal{G}_{\theta}^{-},[,,]_{\alpha}^{1}, \alpha\right)$.

Proof. In the one hand, the vector space \mathcal{G}_{θ}^{-}with [,,] is a Lie triple system as the -1 -eigenspace of the involution θ of the Lie algebra \mathcal{G} where
$[x, y, z]=[[x, y], z]$, for all $x, y, z \in \mathcal{G}$.
For all $x \in \mathcal{G}_{\theta}^{-}$, we have

$$
\theta(\alpha(x))=\alpha(\theta(x))=\alpha(-x)=-\alpha(x) ;
$$

that implies $\alpha(x) \in \mathcal{G}_{\theta}^{-}$. So \mathcal{G}_{θ}^{-}is closed under α.
Moreover, for all $x, y, z \in \mathcal{G}_{\theta}^{-}$, we have $\alpha([x, y, z])=[\alpha(x), \alpha(y), \alpha(z)]$. So α is an endomorphism of the Lie triple system $\left(\mathcal{G}_{\theta}^{-},[,],\right)$. By using the theorem 2.11, the triple $\left(\mathcal{G}_{\theta}^{-},[,,]_{\alpha}^{1}, \alpha\right)$ is multiplicative Hom-Lie triple system.
In the other hand, we know by theorem 2.4, that $\left(\mathcal{G},[,]_{\alpha}=\alpha \circ[],, \alpha\right)$ is a multiplicative Hom-Lie algebra. Since $\theta \circ \theta=i d_{\mathcal{G}}, \theta \circ \alpha=\alpha \circ \theta$ and

$$
\theta\left([x, y]_{\alpha}\right)=\theta(\alpha([x, y]))=\alpha(\theta([x, y]))=\alpha([\theta(x), \theta(y)])=[\theta(x), \theta(y)]_{\alpha},
$$

then θ is also an involution of the multiplicative Hom-Lie algebra
$\left(\mathcal{G},[,]_{\alpha}, \alpha\right)$. Moreover, we have for all $x, y, z \in \mathcal{G}$

$$
[x, y, z]_{\alpha}^{2}=\alpha^{2}([[x, y], z])=\alpha([\alpha([x, y]), \alpha(z)])=\left[[x, y]_{\alpha}, \alpha(z)\right]_{\alpha}
$$

So, by using the theorem 3.2, the triple $\left(\mathcal{G}_{\theta}^{-},[,]_{\alpha}^{2}, \alpha^{2}\right)$ is a multiplicative Hom-Lie triple system. Since $[,,]_{\alpha}^{2}=\alpha \circ[,,]_{\alpha}^{1}$, therefore $\left(\mathcal{G}_{\theta}^{-},[,,]_{\alpha}^{2}, \alpha^{2}\right)$ is the first derived Hom-Lie triple system of ($\left.\mathcal{G}_{\theta}^{-},[,,]_{\alpha}^{1}, \alpha\right)$.

In what follows, we give some examples of construction of Hom-Lie triple systems with involutions of classical Hom-Lie algebras.

Example 3.4. Let n be a positive integer such that $n \geq 2$. Let n_{1} and n_{2} be two positive integers such that $n_{1}+n_{2}=n$ and $0<n_{1}, n_{2}<n$.
Put $J=\left(\begin{array}{ll}I_{n_{1}} & 0 \\ 0 & -I_{n_{2}}\end{array}\right)$. It is clear that $J^{2}=I_{n}$.
Let A be a matrix in $G L(n)$ such that $A J=J A$.
Consider in the example 2.5, the multiplicative Hom-Lie algebra
$\left(\mathcal{S l}(n),[,]_{\alpha}, \alpha\right)$ where $\alpha(X)=A^{-1} X A$ and $[X, Y]_{\alpha}=A^{-1} X Y A-A^{-1} Y X A$,
for all $X, Y \in \mathcal{S l}(n)$. Define the map $\theta: \mathcal{S l}(n) \longrightarrow \mathcal{S l}(n), X \mapsto J X J$. The map θ is an involution of the Hom-Lie algebra $\left(\mathcal{S l}(n),[,]_{\alpha}, \alpha\right)$. Indeed, for all $X \in \mathcal{S l}(n)$, we have,

$$
\operatorname{tr}(\theta(X))=\operatorname{tr}(J X J)=\operatorname{tr}(J J X)=\operatorname{tr}\left(I_{n} X\right)=\operatorname{tr}(X)=0
$$

That means for all $X \in \mathcal{S l}(n), \theta(X) \in \mathcal{S} l(n)$.
Also, for all $X, Y \in \mathcal{S l}(n)$ and for all $k \in \mathbb{K}$, we have,

$$
\theta(X+k Y)=J(X+k Y) J=J X J+k J Y J=\theta(X)+k \theta(Y)
$$

That proves the linearity of θ.
Moreover for all X in $\mathcal{S l}(n)$, we have

$$
\theta^{2}(X)=\theta(\theta(X))=\theta(J X J)=J^{2} X J^{2}=X .
$$

That means $\theta^{2} \equiv i d_{\mathcal{S l}(n)}$. By using the fact that $A J=J A$, we have for all $X \in \mathcal{S} l(n)$,

$$
\theta(\alpha(X))=\theta\left(A^{-1} X A\right)=J A^{-1} X A J=A^{-1} J X J A=\alpha(J X J)=\alpha(\theta(X))
$$

So $\theta(\alpha(X))=\alpha(\theta(X))$, for all $X \in \mathcal{S l}(n)$.
By using the fact that $J^{2}=I_{n}$, we have for all $X, Y \in \mathcal{S l}(n)$,

$$
\begin{aligned}
\theta\left([X, Y]_{\alpha}\right) & =\theta\left(A^{-1} X Y A-A^{-1} Y X A\right) \\
& =J\left(A^{-1} X Y A-A^{-1} Y X A\right) J \\
& =J A^{-1} X Y A J-J A^{-1} Y X A J \\
& =A^{-1} J X I_{n} Y J A-A^{-1} J Y I_{n} X J A \\
& =A^{-1}(J X J)(J Y J) A-A^{-1}(J Y J)(J X J) A \\
& =A^{-1} \theta(X) \theta(Y) A-A^{-1} \theta(Y) \theta(X) A \\
& =[\theta(X), \theta(Y)]_{\alpha} .
\end{aligned}
$$

So $\theta\left([X, Y]_{\alpha}\right)=[\theta(X), \theta(Y)]_{\alpha}$, for all $X, Y \in \mathcal{S l}(n)$.
Therefore the map θ is an involution of the Hom-Lie algebra $\left(\mathcal{S l}(n),[,]_{\alpha}, \alpha\right)$. By the theorem 3.2, the -1 -eigenspace of θ in $\mathcal{S l}(n)$ defined by

$$
\mathcal{S l}(n)_{\theta}^{-}=\{X \in \mathcal{S l}(n) ; \theta(X)=-X\}=\{X \in \mathcal{S l}(n) ; J X=-X J\}
$$

is a Hom-Lie triple system relative to α^{2} and $[,,]_{\alpha}$ where

$$
[X, Y, Z]_{\alpha}=\left[[X, Y]_{\alpha}, \alpha(Z)\right]_{\alpha} \text { for all } X, Y, Z \in \mathcal{S} l(n)
$$

Example 3.5. Let A be a matrix in $O(n)$. Then $A^{t}=A^{-1}$. It follows that $A=\left(A^{-1}\right)^{t}=\left(A^{t}\right)^{-1}$.
Consider in the example 2.5, the multiplicative Hom-Lie algebra
$\left(\mathcal{S l}(n),[,]_{\alpha}, \alpha\right)$ where $\alpha(X)=A^{-1} X A$ and $[X, Y]_{\alpha}=A^{-1} X Y A-A^{-1} Y X A$,
for all $X, Y \in \mathcal{S l}(n)$. Define the map $\theta: \mathcal{S l}(n) \longrightarrow \mathcal{S l}(n), X \mapsto-X^{t}$. The map θ is an involution of the Hom-Lie algebra $\left(\mathcal{S l}(n),[,]_{\alpha}, \alpha\right)$. Indeed, for all $X \in \mathcal{S l}(n)$, we have,

$$
\operatorname{tr}(\theta(X))=\operatorname{tr}\left(-X^{t}\right)=-\operatorname{tr}\left(X^{t}\right)=-\operatorname{tr}(X)=0
$$

That means for all $X \in \mathcal{S l}(n), \theta(X) \in \mathcal{S l}(n)$.
Also, for all $X, Y \in \mathcal{S l}(n)$ and for all k in \mathbb{K}, we have,

$$
\theta(X+k Y)=-(X+k Y)^{t}=-X^{t}+k\left(-Y^{t}\right)=\theta(X)+k \theta(Y)
$$

That proves the linearity of θ.
Moreover for all $X \in \mathcal{S l}(n)$, we have

$$
\theta^{2}(X)=\theta(\theta(X))=\theta\left(-X^{t}\right)=-\left(-X^{t}\right)^{t}=X .
$$

That means $\theta^{2} \equiv i d_{\mathcal{S l}(n)}$.
For all $X \in \mathcal{S l}(n)$, we have

$$
\theta(\alpha(X))=-\left(A^{-1} X A\right)^{t}=-A^{t} X^{t}\left(A^{-1}\right)^{t}=A^{-1}\left(-X^{t}\right) A=\alpha(\theta(X)) .
$$

So $\theta(\alpha(X))=\alpha(\theta(X))$, for all $X \in \mathcal{S l}(n)$.
For all $X, Y \in \mathcal{S l}(n)$, we have

$$
\begin{aligned}
\theta\left([X, Y]_{\alpha}\right) & =\theta\left(A^{-1} X Y A-A^{-1} Y X A\right) \\
& =-\left(A^{-1} X Y A-A^{-1} Y X A\right)^{t} \\
& =-\left(A^{-1} X Y A\right)^{t}+\left(A^{-1} Y X A\right)^{t} \\
& =-A^{t} Y^{t} X^{t}\left(A^{-1}\right)^{t}+A^{t} X^{t} Y^{t}\left(A^{-1}\right)^{t} \\
& =-A^{-1} Y^{t} X^{t} A+A^{-1} X^{t} Y^{t} A \\
& =-A^{-1}\left(-Y^{t}\right)\left(-X^{t}\right) A+A^{-1}\left(-X^{t}\right)\left(-Y^{t}\right) A \\
& =-A^{-1} \theta(Y) \theta(X) A+A^{-1} \theta(X) \theta(Y) A \\
& =A^{-1} \theta(X) \theta(Y) A-A^{-1} \theta(Y) \theta(X) A \\
& =[\theta(X), \theta(Y)]_{\alpha} .
\end{aligned}
$$

So $\theta\left([X, Y]_{\alpha}\right)=[\theta(X), \theta(Y)]_{\alpha}$, for all $X, Y \in \mathcal{S} l(n)$.
Therefore the map θ is an involution of the Hom-Lie algebra $\left(\mathcal{S l}(n),[,]_{\alpha}, \alpha\right)$. By the theorem 3.2, the -1 -eigenspace of θ in $\mathcal{S l}(n)$ defined by

$$
\mathcal{S l}(n)_{\theta}^{-}=\{X \in \mathcal{S l}(n) ; \theta(X)=-X\}=\left\{X \in \mathcal{S} l(n) ; X^{t}=X\right\}
$$

is a Hom-Lie triple system relative to α^{2} and $[,,]_{\alpha}$ where

$$
[X, Y, Z]_{\alpha}=\left[[X, Y]_{\alpha}, \alpha(Z)\right]_{\alpha}, \text { for all } X, Y, Z \in \mathcal{S l}(n) .
$$

The vector space $\mathcal{S l}(n)_{\theta}^{-}$consists of symmetric matrices X of order n with elements in \mathbb{K} such that $\operatorname{tr}(X)=0$.

References

[1] A. Baklouti, Quadratic Hom-Lie triple systems, J. Geom. Phys. 121 (2017), 166-175.
[2] S. Benayadi and A. Makhlouf, Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms, J. Geom. Phys. 76 (2014), 38-60.
[3] E. Cartan, Oeuvres complètes, Part 1, vol. 2, nos. 101, 138, Paris, Gauthier-Villars, 1952.
[4] J. T. Hartwig, D. Larsson and S.D. Silvestrov, Deformations of Lie algebras unsing σ derivations, J. Algebra. 295 (2006), 314-361.
[5] T. L. Hodge, Lie triple systems, restricted Lie triple systems and algebraic groups, J. Algebra. 244 (2001), 533-580.
[6] N. Jacobson, Lie and Jordan triple systems, Amer. J. Math. 71 (1949), 149-170.
[7] N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc. 70 (1951), 509-548.
[8] W. G. Lister, A structure theory for Lie triple systems, Trans. Amer. Math. Soc. 72 (1952), 217-242.
[9] D. Yau, On n-ary Hom-Nambu and Hom-Nambu-Lie algebras, J. Geom. Phys. 62 (2012), 506522.
[10] D. Yau, Hom-algebras and homology, J. Lie Theory. 19 (2009), 409-421 .
[11] J. Zhou, L. Chen and Y. Ma, Generalized derivations of Lie triple systems, Open Math. 14 (2016), 260-271.

Hamdiatou Yara

Department of Mathematics, Thomas Sankara University, Ouagadougou, Burkina Faso
E-mail: yarahamdiatou@yahoo.fr

Patricia L. Zoungrana

Department of Mathematics, Thomas Sankara University, Ouagadougou, Burkina Faso
E-mail: patibffr@yahoo.fr

[^0]: Received March 21, 2022. Revised June 8, 2022. Accepted June 9, 2022.
 2010 Mathematics Subject Classification: 17A40, 17B60.
 Key words and phrases: Hom-Lie algebras, Hom-Lie triple systems, Involutions of Hom-Lie algebras.

 * Corresponding author.
 (C) The Kangwon-Kyungki Mathematical Society, 2022.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

