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NORDHAUS-GADDUM TYPE RESULTS FOR CONNECTED

DOMINATION NUMBER OF GRAPHS

E. Murugan∗ and J. Paulraj Joseph

Abstract. Let G = (V,E) be a graph. A subset S of V is called a dominating
set of G if every vertex not in S is adjacent to some vertex in S. The domination
number γ(G) of G is the minimum cardinality taken over all dominating sets of G.
A dominating set S is called a connected dominating set if the subgraph induced
by S is connected. The minimum cardinality taken over all connected dominating
sets of G is called the connected domination number of G, and is denoted by γc(G).
In this paper, we investigate the Nordhaus-Gaddum type results for the connected
domination number and its derived graphs like line graph, subdivision graph, power
graph, block graph and total graph, and characterize the extremal graphs.

1. Introduction

By a graph, we mean a finite, simple graph G = (V,E) with vertex set V = V (G)
of order n = |V | and edge set E = E(G) of size m = |E|. For basic definitions and
notation, we follow [6, 9]. A vertex of degree one is called an end or pendant vertex.
An internal vertex is a vertex that is not a pendant or end vertex. The distance
between two vertices u and v is the length of the shortest u-v path and is denoted by
d(u, v). For any positive integer k, let Nk(u) = {v ∈ V | d(u, v) = k}. The eccentricity
e(v) of a vertex v is defined by e(v) = max{d(u, v) | u ∈ V (G)}. A clique in a graph
G is a maximal complete subgraph of G. The girth of G is the length of the shortest
cycle in G and is denoted by g(G). A graph G is called acyclic if it has no cycles. A
tree is a connected acyclic graph. A tree containing exactly two vertices that are not
pendants is called a double star. A spider is a tree with one vertex of degree at least 3
and all others with degree at most 2. A connected graph G is said to be unicyclic if G
has exactly one cycle. The Cartesian Product of simple graphs G and H is the simple
graph G × H with vertex set V (G) × V (H), in which (u, v) is adjacent to (u′, v′) if
and only if either u = u′ and vv′ ∈ E(H) or v = v′ and uu′ ∈ E(G). A set S is called
a connected dominating set if the subgraph induced by S is connected and if every
vertex not in S is adjacent to some vertex in S. The minimum cardinality taken over
all connected dominating sets in G is called the connected domination number, and is
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denoted by γc(G). Moreover, a connected dominating set of G of cardinality γc(G) is
called a γc-set of G. A subset X of E is called an edge dominating set of G if every
edge not in X is adjacent to some edge in X. An edge dominating set X is called a
connected edge dominating set if the edge induced subgraph of X is connected. The
line graph L(G) of a graph G is a graph whose vertex set is E(G) and two vertices
of L(G) are adjacent if and only if the corresponding edges are adjacent in G. The
graphs paw and diamond are denoted by K1,3+e, C4+e respectively. The literature of
domination in graphs and related results have been considered in [3,5,10,21,22]. The
relation of Nordhaus-Gaddum type for domination in graphs were proved by Jaeger
and Payan [12] in 1972 and are as follows.

Theorem 1.1 ([12]). For any graph G with at least two vertices,
3 ≤ γ(G) + γ(G) ≤ n+ 1 and

2 ≤ γ(G).γ(G) ≤ n.

This has been extended to other graph theoretic parameters. A survey of these
results is published in [1]. Note that G is one of the derived graphs and there are
several derived graphs in the literature. In [16–19], the authors obtained similar
results for line graphs, total graphs, shadow graphs and block graphs. Hence, in this
paper, we extend the Nordhaus-Gaddum type result to some derived graphs like line
graph, subdivision graph, power graph, block graph and total graph for the parameter
connected domination number.

2. Preliminary Results

For the sequal of the paper, we need the following of graphs as follows:

Theorem 2.1 ([22]). 5 If H is a connected spanning subgraph of G, then γc(G) ≤
γc(H).

Theorem 2.2 ([22]). For any connected graph G, n/(∆(G)+1) ≤ γc(G) ≤ 2m−n
with equality for the lower bound if and only if ∆(G) = n − 1 and equality for the
upper bound if and only if G is a path.

Definition 2.3. A clique dominating set [7] or a dominating clique is a dominating
set that induces a complete subgraph.

In 2013, Wyatt J. Desormeaux et al. [23] gave the lower bound for connected
domination number of a graph in terms of girth and characterized the equality. For
this characterization, they defined the following family Fk.

For k ≥ 3, we define a family Fk of graphs as follows. Let F3 be the family of graphs
with a dominating vertex (a vertex of full degree) and at least one triangle. Let F4 be
the family of graphs that can be obtained from a double star S(r, s), where r, s ≥ 1,
with central vertices x and y by adding at least one edge joining a leaf-neighbor of x
and a leaf-neighbor of y.

For k ≥ 5, let Fk be the family of graphs constructed from a k-cycle v1v2 . . . vkv1
as follows: For each i, 3 ≤ i ≤ k, add zero or more pendant edges incident to vi.
Moreover, if k ≤ 6, add zero or more edges joining v3 and vk and subdivide each such
added edge twice.
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Theorem 2.4 ([23]). Let G be a connected graph that contains a cycle. Then,
γc(G) ≥ g(G)− 2 with equality if and only if G ∈ Fk.

Theorem 2.5 ([23]). If G is a diameter two planar graph, then γc(G) ≤ 3.

Theorem 2.6 ([11]). If G is a connected graph, and n ≥ 3, then γc(G) = n −
εT (G) ≤ n − 2 where εT (G) denotes the maximum number of pendant edges in any
spanning tree T of G.

Corollary 2.7 ([22]). If T is a tree with n ≥ 3 vertices, then γc(T ) = n − p(T )
where p(T ) denotes the number of end vertices of a tree T.

Theorem 2.8 ([15]). If G is a 3-regular planar graph with diameter two, then G
is isomorphic to the cartesian product K2 ×K3.

Theorem 2.9 ([15]). If G is a 4-regular planar graph with diameter two, then G
is isomorphic to any one of the graphs given in Fig. 1.

Figure 1. Regular Planar Graphs of diameter 2.

Theorem 2.10 ([15]). There exist no 5-regular planar graphs with diameter two.

Theorem 2.11 ([11]). For any connected graph G of order n ≥ 3, γc(G) ≤ n −
∆(G).

Observation 2.12. For any connected graph G of order n ≥ 3, γc(G) = n− 2 if
and only if G is either a path or a cycle.

Theorem 2.13. (i) For any connected graph G, γc(G) ≤ γc(T (G)).
(ii) If G is a tree, then γc(G) = γc(T (G)).

Proof. (i) Let S be a γc-set of T (G). We consider three cases. a) If S ⊆ V (G), then
clearly S is a connected dominating set of G and hence γc(G) ≤ |S| = γc(T (G)). b) If
S ⊆ E(G), then |S| = n− 1 > n− 2. Then by Theorem 2.6, γc(G) ≤ |S| = γc(T (G)).
c) If S ⊆ V (G) ∪ E(G), let S = L ∪ M and L ⊆ V (G), M ⊆ E(G) such that
|L| = l and |M | = t. If L is a connected dominating set of G, then the result is
obvious. If L is not a connected dominating set of G, let X = V (G) \NG(L) ⊆ V (G).
Then some vertices of X are connected and is dominated by some edges M ′ ⊆ M
in T (G) such that at least one edge of M ′ is incident with at least one vertex of L.
Then clearly |X| ≤ |M ′| ≤ t and L ∪ X is a connected dominating set of G. Hence
γc(G) ≤ |L ∪X| ≤ |L|+ |X| ≤ |L|+ |M ′| ≤ l + t = |S| = γc(T (G)).
(ii) If G is a tree with p end vertices, then by Corollary 2.7, γc(G) = n− p. We claim
that γc(T (G)) = n−p. By (i), γc(T (G)) ≥ n−p. Further, it is clear that the set of all
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internal vertices of G is a connected dominating set of T (G). Hence γc(T (G)) ≤ n−p.
Thus, the required result follows.

Corollary 2.14. For any path Pn, γc(T (Pn)) = n− 2.

Proof. It follows from Observation 2.12 and Theorem 2.13 (ii).

Proposition 2.15. For any connected graph G, γc(T (G)) ≤ γc(S(G)).

Proof. Since S(G) is a spanning subgraph of T (G), the result follows from Theorem
2.1.

Notation 2.16 ([14]). Let G be a connected graph with n vertices u1, u2, . . . , un.
The graph obtained from G by attaching n1 times an end vertex of Pl1 on the ver-
tex u1, n2 times an end vertex of Pl2 on the vertex u2, and so on, is denoted by
G(n1Pl1 , n2Pl2 , n3Pl3 , . . . , nnPln), where ni, li ≥ 0 and 1 ≤ i ≤ n. In particular, if
ni = 1 for each i = 1 to n, then it is denoted by G(Pl1 , Pl2 , Pl3 , . . . , Pln). For example
C3(P4, P3, P1) and C4(P3, P1, P4, P1) are given in Fig. 2.

Figure 2. Illustrations

Theorem 2.17. Let G be a tree of order n ≥ 4. Then γc(G) = n− 3 if and only if
G is a spider with maximum degree three.

Proof. Assume that γc(G) = n−3. Since γc(G) = n−2 if and only if G is either path
or cycle, clearly ∆(G) ≥ 3. If at least two vertices are of degree 3, then the number
of end vertices of G is strictly greater than 3, which gives γc(G) ≤ n− 4 by Corollary
2.7. Therefore, there exists exactly one vertex v ∈ V (G) such that dG(v) = 3, and
gives a spider graph. Converse is obvious.

Theorem 2.18. For any connected unicyclic graph G with cycle C, γc(G) = n− 3
if and only if G is one of the following;
(i) If C = C3, then G ∼= C(Pi, P1, P1) for i ≥ 2 or when at least one of i and j is
not equal to 1, G ∼= C(Pi, Pj, P1) or when at least one of i, j and k is not equal to
1, G ∼= C(Pi, Pj, Pk).
(ii) If C = C4, then G ∼= C(Pi, P1, P1, P1) for i ≥ 2 or when at least one of i and j
is not equal to 1, G ∼= C(Pi, P1, Pj, P1).
(iii) If C = Ck (k ≥ 5), then G ∼= C(Pn−k+1).

Proof. Let G be any connected graph with cycle C = (u1u2 . . . uk = u1). Assume
that γc(G) = n − 3. By Theorem 2.11 and Observation 2.12, ∆(G) = 3. We claim
that every vertex not on C is of degree less than or equal to two. Suppose there
exists a vertex v not on C such that dG(v) ≥ 3. There is a spanning tree H of G
with 4 end vertices. Let P be the set of end vertices of H. Then V (H) − V (P ) is
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a connected dominating set of G having n − 4 vertices, that is, γc(G) ≤ n − 4, a
contradiction. Hence every vertex not on C is of degree less than or equal to two.
Clearly V (G)− V (C) is a union of disjoint paths and exactly one end vertex of each
path is adjacent to a vertex of C. Then we consider the three cases. If C = C3, then
G ∼= C(Pi, P1, P1) or C(Pi, Pj, P1) or C(Pi, Pj, Pk). Now let C = C4. We observe
that three or four vertices of degree three in G is not possible. If G has exactly one
vertex of degree three, then G ∼= C(Pi, P1, P1, P1). If G has two vertices of degree
three, then they are adjacent or not adjacent. If they are adjacent, then we can get
a spanning tree with these two adjacent vertices having 4 end vertices, and hence
γc(G) ≤ n− 4, a contradiction. If they are not adjacent, then every spanning tree of
G has at most 3 end vertices. Hence G ∼= C(Pi, P1, Pj, P1). If C = Ck(k ≥ 5), then
G cannot have two vertices of degree three in G, since otherwise, there is a spanning
tree of G with at least 4 end vertices. Hence G ∼= C(Pn−k+1). Converse is obvious by
verification.

3. Line Graphs

Definition 3.1. The line graph L(G) of a graph G is a graph whose vertex set is
E(G) and two vertices of L(G) are adjacent if and only if the corresponding edges are
adjacent in G.

Definition 3.2. The degree of an edge e = uv of G is defined by deg e = dG(u) +
dG(v)− 2 and maximum degree of an edge is denoted by ∆′(G).

In this section, we obtain the lower and upper bounds for the sum of connected
domination number of a graph and its line graph in terms of the order of a graph.

Theorem 3.3 ([3]). For any connected graph G of order n ≥ 4, γ
′
c(G) ≤ n − 2

and equality holds if and only if G is either Kn or Cn where γ
′
c(G) is the connected

edge domination number of G.

Observation 3.4. (i) For any cycle Cn, γc(L(Cn)) = n− 2.
(ii) For any path Pn, γc(L(Pn)) = n− 3.

Theorem 3.5. For any connected graph G of order n ≥ 3 and size m ≥ 2, 2 ≤
γc(G)+γc(L(G)) ≤ 2n−4 with equality for the lower bound if and only if ∆(G) = n−1
and ∆′(G) = m− 1 and equality for the upper bound if and only if G ∼= Cn.

Proof. By the definition, the lower bound is obvious. Since γ
′
c(G) = γc(L(G)), by

Theorems 2.6 and 3.3, the required upper bound holds. If γc(G) + γc(L(G)) = 2,
then γc(G) = γc(L(G)) = 1. Then, clearly G has ∆(G) = n− 1 and ∆′(G) = m− 1.
If γc(G) + γc(L(G)) = 2n − 4, then by Theorems 2.6 and 3.3, γc(G) = γc(L(G)) =
n− 2. Since γc(Kn) = 1, by Observation 2.12 and Theorem 3.3, G ∼= Cn. Converse is
obvious.

Theorem 3.6. If G is a connected graph of order n ≥ 3, then γc(G) + γc(L(G)) =
2n− 5 if and only if G is either K4 or Pn.

Proof. Assume that γc(G) + γc(L(G)) = 2n− 5. Then by Theorems 2.6 and 3.3,
γc(G) = n − 3 and γc(L(G)) = n − 2 (or) γc(G) = n − 2 and γc(L(G)) = n − 3. In
the former case, by Theorem 3.3, G is either Kn or Cn. Since γc(Cn) = n− 2 6= n− 3
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and γc(Kn) = 1 = n− 3 which gives n = 4, and hence G ∼= K4. In the latter case, by
Observation 2.12, G is either Pn or Cn, and by Observation 3.4, G ∼= Pn. Converse is
obvious.

Theorem 3.7. Let G be a connected graph of order n with at most one cycle
Ck. Then γc(G) + γc(L(G)) = 2n − 6 if and only if G is either a claw or G ∼=
Ck(Pn−k+1), k ≥ 3.

Proof. Assume that γc(G) +γc(L(G)) = 2n−6. Then by Theorems 2.6 and 3.3, we
have three cases. (i) γc(G) = n− 4 and γc(L(G)) = n− 2

(ii) γc(G) = n− 2 and γc(L(G)) = n− 4
(iii) γc(G) = γc(L(G)) = n− 3.

From (i), by Theorem 3.3, G ∼= Kn or Cn. If G = Cn, then γc(G) = n − 2 6= n − 4.
If G = Kn, then γc(G) = 1 = n − 4 which implies n = 5 and so G ∼= K5. But
from hypothesis no such graph exists. From (ii), by Observation 2.12 and Lemma
3.4, no such graph exists. Consider the case (iii). If G is a tree, then by Theorem
2.17, G is a spider with maximum degree three. Let dG(v) = 3. We claim that
d(v, u) = 1 for every vertex u 6= v in G. If d(v, u) ≥ 2 for some vertex u in G,
then γ

′
c(G) = γc(L(G)) = m − 3 = (n − 1) − 3 = n − 4, a contradiction. Hence

G ∼= K1,3(claw). If G is a unicyclic graph, then by Theorem 2.18, G is one of the
graphs (i) or (ii) or (iii). We claim that G has one vertex of degree three. If G has
more than one vertex of degree three, then γ

′
c(G) = γc(L(G)) = m − 4 = n − 4, a

contradiction. Hence G ∼= Ck(Pn−k+1), k ≥ 3. Converse can be easily verified.

4. Subdivision Graphs

Definition 4.1. The subdivision graph S(G) of a graph G is a graph which is
obtained by subdividing each edge of G exactly once.

In this section, we obtain some bounds for the sum of connected domination number
of a graph and its subdivision graph. For this purpose, we need the following results.

Theorem 4.2 ([2]). For any connected graph G of order n ≥ 3, γc(S(G)) ≤ 2n−2
and equality holds if and only if G ∼= Kn or Cn.

Theorem 4.3 ([2]). For any tree T of order n ≥ 3, γc(S(T )) = 2n − p(T ) − 1
where p(T ) denotes the number of end vertices of T.

Theorem 4.4 ([2]). For any star K1,n−1, γc(S(K1,n−1)) = n.

Theorem 4.5. For any tree T of order n ≥ 3, γc(T ) + γc(S(T )) = 3n− 2p(T )− 1
where p(T ) denotes the number of end vertices of T.

Proof. It follows from Corollary 2.7 and Theorem 4.3.

Lemma 4.6. For any connected graph G, γc(G) ≤ γc(S(G)).

Proof. It follows from Theorem 2.13 (i) and Proposition 2.15.

Lemma 4.7. For any path Pn, γc(S(Pn)) = 2n− 3.

Proof. Since S(Pn) = P2n−1, γc(S(Pn)) = 2n− 3.

Lemma 4.8. Let G be a connected graph with ∆(G) = n− 1. Then γc(S(G)) = 3
if and only if G ∼= P3.
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Proof. By Theorem 4.13, G contains no cycle so that G is a tree. Since ∆(G) = n−
1, G is a star. Also, by Theorem 4.4, γc(S(K1,n−1)) = n = 3. Hence G ∼= K1,n−2 ∼= P3.
Converse follows by verification.

Observation 4.9. There exist no connected graph G with γc(S(G)) = 2.

Theorem 4.10. For any connected graphG of order n ≥ 3, 4 ≤ γc(G)+γc(S(G)) ≤
3n− 4 with equality for the upper bound if and only if G ∼= Cn and equality for the
lower bound if and only G ∼= P3.

Proof. The required upper and lower bounds follow from Lemma 4.8 and Theorems
2.6, 4.2. If γc(G) +γc(S(G)) = 4, then by Observation 4.9, γc(G) = 1 and γc(S(G)) =
3. Hence by Lemma 4.8, G ∼= P3. If γc(G) + γc(S(G)) = 3n − 4, then γc(G) = n − 2
and γc(S(G)) = 2n − 2. By Theorem 4.2, G ∼= Kn or Cn. Since γc(Cn) = n − 2
and γc(Kn) = 1 = n − 2 which implies n = 3, G ∼= Cn. Converses are obvious by
verification.

Theorem 4.11. For any connected graph G of order n ≥ 3, γc(G) + γc(S(G)) =
3n− 5 if and only if G ∼= Pn or K4.

Proof. Assume that γc(G)+γc(S(G)) = 3n−5. Then γc(G) = n−3 and γc(S(G)) =
2n − 2 (or) γc(G) = n − 2 and γc(S(G)) = 2n − 3. In the former case, by Theorem
4.2, G is either Kn or Cn. Since γc(Kn) = 1 = n− 3 which gives n = 4, and γc(Cn) =
n− 2 6= n− 3, G ∼= K4. In the latter case, by Observation 2.12, G is either Pn or Cn.
If G ∼= Cn, then by Theorem 4.2, γc(S(G)) = 2n − 2 6= 2n − 3. If G ∼= Pn, then by
Lemma 4.7, γc(S(Pn)) = 2n− 3. Converse can be easily verified.

Theorem 4.12. Let G be a connected graph of order n with at most one cycle Ck.
Then γc(G) + γc(S(G)) = 3n− 6 if and only if G ∼= Ck(Pn−k+1).

Proof. Assume that γc(G) +γc(S(G)) = 3n− 6. Then by Theorems 2.6 and 4.2, we
have three cases. (i) γc(G) = n− 4 and γc(S(G)) = 2n− 2

(ii) γc(G) = n− 2 and γc(S(G)) = 2n− 4
(iii) γc(G) = n− 3 and γc(S(G)) = 2n− 3.

From (i), by Theorem 4.2, G ∼= Kn or Cn. If G ∼= Cn, then γc(Cn) = n − 2 6= n − 4.
If G ∼= Kn, then γc(Kn) = 1 = n− 4 which implies n = 5. Hence G ∼= K5. As K5 has
more than one cycle, it contradicts the hypothesis. From (ii), by Observation 2.12,
G ∼= Pn or Cn. By Lemma 4.7 and Theorem 4.2, γc(S(G)) 6= 2n − 4. Now consider
the case (iii). If G is a tree, then S(G) is a tree. By Corollary 2.7, γc(S(G)) =
n + m − p = n + (n − 1) − p = 2n − 1 − p, where p denotes the number of end
vertices of G. By Theorem 2.17, G is a spider with ∆(G) = 3 and so p = 3. Hence
γc(S(G)) = 2n− 1− 3 = 2n− 4, a contradiction. If G is a unicyclic graph with cycle
C, then G is one of the graphs from Theorem 2.18. We claim that exactly one vertex
has degree three. If not, then there are at least two vertices of degree three in G.
Then C must be either C3 or C4. If C = C3 or C4, let S(H) be the spanning tree of
S(G) which has at least 4 end vertices, and hence γc(S(G)) ≤ 2n−4, a contradiction.
Hence, G ∼= Ck(Pn−k+1). Converses are obvious by verification.

Theorem 4.13. Let G be a connected graph of order n and size m that contains
a cycle. Then γc(S(G)) ≥ 2g(G)− 2, and equality holds if and only if G ∼= Cn.

Proof. By Theorem 2.4, γc(S(G)) ≥ 2(g(G))−2.Assume that γc(S(G)) = 2(g(G))−
2. Let S be any minimum connected dominating set of S(G). We claim that g(G) = n.
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Suppose g(G) is at most n−1. If the subgraph induced by S in S(G) contains a cycle,
then g(S(G)) ≤ |S| = g(S(G))− 2 = 2g(G)− 2, a contradiction. Hence the subgraph
induced by S in S(G) is a tree. Let v ∈ V (S(G)) \ S. If v has two neighbors in
S, then the subgraph induced by S ∪ {v} in S(G) contains a cycle of length at most
|S|+1 ≤ 2g(G)−1, a contradiction. Hence v has at most one neighbor in S. If l and k
be the number of cycles and pendant vertices of G respectively, then it is evident that
γc(S(G)) ≥ n+m− (2l+ k) and further by hypothesis, n+m− (2l+ k) > 2g(G)− 2.
Hence γc(S(G)) > 2g(G) − 2, a contradiction. Hence g(G) = n so that G ∼= Cn.
Converse is obvious.

Observation 4.14. Let G be a connected graph that contains a cycle. Then,
γc(G) + γc(S(G)) ≥ 3g(G)− 4 and equality holds if and only if G ∼= Cn.

Theorem 4.15. Let G be a connected graph that contains a cycle. Then, γc(G) +
γc(S(G)) = 3g(G)−3 if and only if G is either a paw or a diamond orK2,3 or Cn−1(P2).

Proof. Assume that γc(G) + γc(S(G)) = 3g(G)− 3. Then we have two cases.
Case : 1 γc(G) = g(G)− 1 and γc(S(G)) = 2g(G)− 2.
By Theorem 4.13, G ∼= Cn. But γc(G) = n− 2 = g(G)− 2 6= g(G)− 1.
Case : 2 γc(G) = g(G)− 2 and γc(S(G)) = 2g(G)− 1.
By Theorem 2.4, G ∈ Fk. Let g(G) = k.
Subcase : 2.1 k = 3
Then G ∈ F3. By the definition of F3, G contains at least one triangle with a
dominating vertex, say v0(∆(G) = n − 1). Let V (G) = {v0, v1, . . . , vn−1} with
degG(v0) = n − 1. Let S be a minimum connecetd dominating set of S(G). Suppose
v0 is not a cut vertex in G. Let wij be the vertex of S(G) adjacent to vi and vj.
Suppose v0 /∈ S. Since w0j is adjacent to v0 and vj, S contains {v1, v2, . . . , vn−1} and
w0j for some j. Since 〈S〉 is connected, S contains {w12, w23, . . . , w(n−2)(n−1)}. Hence
|S| ≥ n + (n − 2) = 2n − 2. Suppose v0 ∈ S. Since wij is adjacent to vi and vj, S
contains {w12, w23, . . . , w(n−2)(n−1)}. If w0j /∈ S for some j, then S contains w0j, so that
S contains at least n− 2 vertices of {v2, v3, . . . , vj}. Hence |S| ≥ 1 + (n− 2) + (n− 2).
In both cases, by hypothesis, n = 4. Suppose v0 is a cut vertex of G. If n ≥ 5, then
∆(G) ≥ 4. If ∆(G) = 4, then G has K1,4 as a subgraph and v0 be a vertex of full degree
in G. Since v0 is a cut vertex of G, then v0 must be in S. Since w0j is adjacent to v0
and vj, S contains {w01, w02, w03, w04}. Also G contains at least one triangle and 〈S〉
is connected, so that S contains at least one vertex, say vj. Hence |S| ≥ 1 + 4 + 1 = 6,
a contradiction. Hence n = 4 and so G must be either a paw or a diamond or K4.
But by Theorem 4.2, γc(S(K4)) = 6 6= 2g(G) − 1. Hence G is isomorphic to either a
paw or a diamond.
Subcase : 2.2 k = 4
Let C : v1v2v3v4v1 be a shortest cycle in G. We claim that G has at most one end
vertex. If G has at least two end vertices, then we observe that γc(S(G)) ≥ 8, a
contradiction. Hence G has at most one end vertex.
Case : 2.2.1 G has one end vertex
By the definition of F4, we observe that G has exactly one C4 and so G ∼= C(P2).
Hence G ∼= C4(P2).
Case : 2.2.2 G has no end vertex
By the definition of F4, we observe that, if r + s ≥ 4 with no end vertices, then
γc(S(G)) > 7 and hence by assumption, r + s = 3. Hence either r = 2 and s = 1 (or)
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r = 1 and s = 2. Without loss of generality, we may take r = 2 and s = 1. Hence x
has two leaves, say x1, x2 and y has one leaf, say y1. Since G has no end vertices, by
the definition of F4, both x1, x2 are adjacent to y1 and hence G ∼= K2,3 which satisfy
the hypothesis.
Subcase : 2.3 k ≥ 5
Let C : v1v2 . . . vkv1 be a shortest cycle in G. If G has no pendant edge added to the
vertices of C, then G ∼= Cn so that γc(S(G)) = 2n − 2 6= 2g(G) − 1. We claim that
G has exactly one pendant edge. If G has two pendant edges, let the two pendant
vertices be u1, u2. Let wij be the vertex of S(G) adjacent to vi and uj. If both u1 and
u2 are adjacent to a vertex vi for some 3 ≤ i ≤ k, then 2k− 2 vertices of S(C) includ-
ing vi and the vertices wi1, wi2 is a minimum connected dominating set of cardinality
2n − 4. But our assumption, γc(S(G)) = 2n − 5, a contradiction. If the vertices u1
and u2 are adjacent to two distinct vertices of C, then by a similar argument, we get
a minimum connected dominating set of cardinality 2n − 4, a contradiction. Hence
G ∼= Cn−1(P2). Converse can be easily verified.

5. Square Graphs

Definition 5.1. For any integer k ≥ 2, the power Gk of a graph G is a graph
whose vertex set is V (G) and two distinct vertices of Gk are adjacent if their distance
in G is at most k.

We observe that γc(G
2) ≤ γc(G) (5.1).

In this section, we obtain some bounds for the sum of connected domination num-
ber of a graph and its power graph. The following observations are used in this section.

(i) If G is a connected graph of order n ≤ 5, then γc(G
2) = 1.

(ii) γc(G
2) = 1 if and only if e(v) ≤ 2 for some v ∈ V (G).

(iii) Equality of (5.1) holds if and only if both of them must be one.

Observation 5.2. If G ∼= Pn or Cn with n ≥ 5, then γc(G
2) = bn

2
c − 1.

Observation 5.3. If G is a connected graph, then γc(G) + γc(G
2) = 3 if and only

if G has a dominating clique K2.

Theorem 5.4. For any connected graph G of order n, 2 ≤ γc(G)+γc(G
2) ≤ 2n−4

with equality for the lower bound if and only if ∆(G) = n − 1 and equality for the
upper bound if and only if G ∼= C3 or P3.

Proof. Since γc(G) ≥ 1, by Eq.(5.1), 2 ≤ γc(G) + γc(G
2). By Theorem 2.6 and

Eq.(5.1), the required upper bound holds. If γc(G) + γc(G
2) = 2, then γc(G) =

γc(G
2) = 1 and hence ∆(G) = n− 1. If γc(G) + γc(G

2) = 2n− 4, then γc(G) = n− 2
and γc(G

2) = n − 2. By Observation 2.12, G ∼= Pn or Cn. Further, by Observation
5.2, n = 3. Hence G ∼= P3 or C3. Converse is obvious.

Theorem 5.5. For any connected graph G, γc(G) + γc(G
2) = 2n − 5 if and only

if G is either P4 or C4.

Proof. If γc(G)+γc(G
2) = 2n−5, then by Theorem 2.6 and Eq.(5.1), γc(G) = n−2

and γc(G
2) = n − 3. By Observation 2.12, G ∼= Pn or Cn and by Observation 5.2,

n = 4. Hence G ∼= P4 or C4. Converse can be easily verified.
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Theorem 5.6. Let G be a connected graph of order n with at most one cycle.
Then γc(G) + γc(G

2) = 2n − 6 if and only if G is either P5, C5, P6, C6, K1,3 or
K1,3 + e.

Proof. Assume that γc(G) + γc(G
2) = 2n− 6. Then by Theorem 2.6 and Eq.(5.1),

γc(G) = n − 2 and γc(G
2) = n − 4 (or) γc(G) = γc(G

2) = n − 3. In the former case,
by Observation 2.12, G ∼= Pn or Cn. Then by Observation 5.2, n = 5 or 6. Hence
G ∼= P5, C5, P6, C6. Now consider the latter case. If G is a tree, then by Theorem
2.17, G is a spider with maximum degree 3. By observation (iii), G ∼= K1,3. If G is
a unicyclic graph, then by Theorem 2.18 and observation (iii), G ∼= K1,3 + e(paw).
Converse is evident by verification.

Theorem 5.7. If G is any connected graph of order n and size m, then γc(G) +
γc(G

2) ≤ 4m− 2n and equality holds if and only if G ∼= P3.

Proof. The required upper bound follows from Theorem 2.2 and Eq.(5.1). If γc(G)+
γc(G

2) = 4m − 2n, then γc(G) = γc(G
2) = 2m − n. By Theorem 2.2, G ∼= Pn and

hence by Observation 5.2, G ∼= P3. Converse is obvious.

Theorem 5.8. For any connected graph G, γc(G) + γc(G
2) = 4m− 2n− 1 if and

only if G ∼= P4.

Proof. Assume that γc(G) + γc(G
2) = 4m − 2n − 1. Then by Theorem 2.2 and

Eq.(5.1), γc(G) = 2m− n and γc(G
2) = 2m− n− 1, and hence by Theorem 2.2 and

Observation 5.2, G ∼= P4. Converse is obvious.

Theorem 5.9. Let G be a connected graph of order n and size m. Then γc(G) +
γc(G

2) = 4m− 2n− 2 if and only if G ∼= P5, P6 or K1,3.

Proof. If γc(G) + γc(G
2) = 4m− 2n− 2, then by Eq.(5.1) and Theorem 2.2,

γc(G) = 2m − n and γc(G
2) = 2m − n − 2 (or) γc(G) = 2m − n − 1 and γc(G

2) =
2m − n − 1. In the former case, by Theorem 2.2 and Observation 5.2, n = 5 or 6.
Hence G ∼= P5, P6. In the latter case, it is clear that m = n− 1 that because of this,
G is a tree by Theorem 2.6. Then γc(G) = γc(G

2) = n− 3. By Theorem 2.17, G is a
spider with maximum degree three. By observation (iii), G ∼= K1,3. Converse can be
easily verified.

Theorem 5.10. Let G be a connected graph of order n ≥ 5 and size m. Then
γc(G) + γc(G

2) = 4m− 2n− 3 if and only if G is either P7, P8 or a double star with
three end vertices.

Proof. If γc(G) + γc(G
2) = 4m− 2n− 3, then by Eq.(5.1) and Theorem 2.2,

γc(G) = 2m − n and γc(G
2) = 2m − n − 3 (or) γc(G) = 2m − n − 1 and γc(G

2) =
2m− n− 2. In the former case, by Theorem 2.2 and Observation 5.2, n = 7 or 8, and
hence G ∼= P7 or P8. In the latter case, it is clear that m = n− 1 that because of this,
G is a tree by Theorem 2.6. Then γc(G) = n − 3 and γc(G

2) = n − 4. By Theorem
2.17, G is a spider with maximum degree three. If diam(G) ≥ 4, then G contains
an induced P5, say v1v2v3v4v5. Since ∆(G) = 3, either v2 or v3 is of degree three in
G. Now consider G2. Since ∆(G2) ≥ 5, there is a spanning subgraph of G2 with at
least 5 end vertices and so γc(G

2) ≤ n− 5, a contradiction. Thus, diam(G) ≤ 3 and
by hypothesis, G is a double star with three end vertices. Converse can be easily
verified.
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Figure 3. Graphs satisfying γc(G) + γc(G
2) = 4m− 2n− 4.

Notation 5.11 ([13]). If G is a graph with the vertex set V = {u1, u2, . . . }, then
the graph obtained by identifying one of the end vertices of n2 copies of P2, n3 copies
of P3 . . . at u1, m2 copies of P2, m3 copies of P3 . . . at u2 . . . is denoted by
G[u1(n2P2, n3P3, . . . ); u2(m2P2,m3P3, . . . ); . . . ].

Theorem 5.12. For any connected graph G of order n ≥ 3 and size m, γc(G) +
γc(G

2) = 4m− 2n− 4 if and only if G either C3, P9, P10, K1,4 or one of the graphs
given in Fig. 3.

Proof. If γc(G) + γc(G
2) = 4m− 2n− 4. Then we have three cases.

γc(G) = 2m−n and γc(G
2) = 2m−n−4 (5.2)

(or) γc(G) = 2m−n−1 and γc(G
2) = 2m−n−3 (5.3)

(or) γc(G) = 2m−n−2 and γc(G
2) = 2m−n−2 (5.4)

From Eq.(5.2), by Theorem 2.2 and Observation 5.2, G ∼= P9, P10. From Eq.(5.3),
it is clear that m = n − 1 that because of this, G is a tree by Theorem 2.6. Then
γc(G) = n − 3 and γc(G

2) = n − 5. By Theorem 2.17, G is a spider with maximum
degree three. Let v be a vertex of degree three in G. We claim that d(v, x) ≤ 4
for all end vertices x in G. If d(v, x) ≥ 5 for some end vertex x in G, then since
∆(G2) ≥ 6, there is a spanning subgraph of G2 with at least 6 end vertices. Then
γc(G

2) ≤ γc(H) ≤ n − 6, a contradiction. Hence d(v, x) ≤ 4 for all end vertices x in
G.
Case : 1 N4(v) 6= ∅.
We claim that G − N [v] = P3. If G − N [v] has two P3’s or P1 or P2, then there is a
spanning subgraph of G2 which has at least 6 end vertices and so γc(G

2) ≤ n − 6, a
contradiction. Hence G ∼= P2[v(P2, P5)].
Case : 2 N4(v) = ∅ and N3(v) 6= ∅.
We claim that G−N [v] = P2 or P1 ∪ P2. If G−N [v] is union of two or more P2’s or
P2 ∪ P1 ∪ P1, then H is a spanning subgraph of G2 which has at least 6 end vertices
and so γc(G

2) ≤ n− 6, a contradiction. Hence G ∼= P2[v(P2, P4)] or P2[v(P3, P4)].
Case : 3 N3(v) = ∅ and N2(v) 6= ∅.
We claim that G − N [v] = 2P1. If G − N [v] is union of three or more P1’s, then by
the similar argument, γc(G

2) ≤ n− 6, a contradiction. Hence G ∼= P2[v(2P3)].
From Eq.(5.4), it is clear that m = n − 1 or n by Theorem 2.6. If m = n, then
γc(G) = n−2 = γc(G

2). By Observation 2.12, G ∼= Cn and by Observation 5.2, n = 3.
Hence G ∼= C3. If m = n − 1, then γc(G) = n − 4 = γc(G

2), and we observe that by
observation (iii), G ∼= K1,4. Converses are obvious by verification.
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Theorem 5.13. LetG be a connected graph with diameter two. Then the following
holds.

(a) γc(G
2) = 1.

(b) If G is planar, then γc(G) + γc(G
2) ≤ 4.

(c) Equality of (b) holds for regular planar graphs if and only if G ∼= C5 or the
graphs F1, F2 given in Fig. 1.

Proof. a) It follows immediately from Eq.(5.1) and result (ii).
b) It follows from Theorem 2.5 and Part (a).
c) To prove equality of Part (b) for regular graphs. If γc(G) + γc(G

2) = 4, then by
Eq.(5.1) and Theorem 2.5, γc(G) = 3 and γc(G

2) = 1. Since G is planar and regular,
let dG(v) = k and so k ≤ 5. If G is 2-regular, then G ∼= Cn. By Observation 2.12
and hypothesis, n = 5 and hence G ∼= C5. If G is 3-regular, then by Theorem 2.8,
G is isomorphic to the Cartesian product K2 × K3 for which γc(G) = 2 6= 3. If G
is 4-regular graph, then G is isomorphic to one of the graphs in Theorem 2.9, and
F1, F2 are the only graphs satisfying. If G is 5-regular, then by Theorem 2.10, no
such graph exist. Converse can be easily verified.

6. Total Graphs

Definition 6.1. The total graph T (G) of a graph G is a graph whose vertex set
is V (T (G)) = V (G) ∪ E(G) and two distinct vertices x and y of T (G) are adjacent
if x and y are adjacent vertices of G or adjacent edges of G or a vertex and an edge
incident with it in G.

In this section, we obtain some bounds for the sum of connected domination number
of a graph and its total graph. We need the following results.

Theorem 6.2 ([4]). Total graph T (G) of a graph G is nothing but the square of
the subdivision graph of G.

Theorem 6.3. (i) For any star K1,n−1, γc(T (K1,n−1)) = 1.
(ii) For any complete graph Kn, γc(T (Kn)) = n− 1.

Proof. (i) It follows from Theorem 2.13 (ii). (ii) It is observed that by [8], T (Kn) ∼=
L(Kn+1). By Theorem 3.3, γc(T (Kn)) = n− 1.

Theorem 6.4. For any cycle Cn, γc(T (Cn)) = n− 1.

Proof. It follows from Theorem 6.2 and Observation 5.2.

Theorem 6.5. For any connected graph G of order n ≥ 3, 1 ≤ γc(T (G)) ≤ n− 1
and the bounds are sharp.

Proof. By definition, γc(T (G)) ≥ 1. Let u be any vertex of G. Since T (G) ∼=
S(G)2, S = V (G)−{u} is a connected dominating set of T (G), and hence γc(T (G)) ≤
n− 1. By Theorem 6.3, the bounds are sharp.

Theorem 6.6. If G is a connected graph of order n ≥ 3, then γc(T (G)) = 1 if and
only if G is a star.
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Proof. Assume that γc(T (G)) = 1. Let D be a γc-set of T (G). We claim that
D 6= {e} for all e ∈ E(G). If D = {e} for some e ∈ E(G), then D can dominate
exactly two vertices which are incident with e, and hence n = 2, a contradiction. If
D = {v} for some v ∈ V (G), then v is adjacent to all the remaining vertices of G
and L(G). Hence v is a full vertex which is incident with all edges. Thus, it is a star.
Converse follows from Theorem 6.3 (i).

Theorem 6.7. For any connected graph G of order n, 2 ≤ γc(G) + γc(T (G)) ≤
2n− 3 with equality for the lower bound if and only if G is a star and equality for the
upper bound if and only if G ∼= Cn.

Proof. Since γc(G) ≥ 1, γc(T (G)) ≥ 1, γc(G) + γc(T (G)) ≥ 2. By Theorem 2.6,
γc(G) ≤ n − 2, and by Theorem 6.5, the required upper bound holds. If γc(G) +
γc(T (G)) = 2, then γc(G) = 1 and γc(T (G)) = 1. By Theorem 6.6, G is a star
for which γc(G) = 1. Converse is obvious. If γc(G) + γc(T (G)) = 2n − 3, then
γc(G) = n− 2 and γc(T (G)) = n− 1. By Observation 2.12 and Theorem 6.4, G ∼= Cn.
Converse follows from Theorem 6.4, Corollary 2.14 and Observation 2.12.

7. Block Graphs

Definition 7.1. The block graph B(G) of a graph G is a graph whose vertex set
is the set of blocks in G and two vertices of B(G) are adjacent if and only if the
corresponding blocks have a common cut vertex in G.

In this section, we obtain some bounds for the sum of connected domination number
of a graph and its block graph.

Theorem 7.2. Let G be a connected graph with n′ blocks. Then 1 ≤ γc(B(G)) ≤
n′ − 2.

Proof. The lower bound is evident. Clearly, B(G) is a graph of order n′ and by
Theorem 2.6, γc(B(G)) ≤ n′ − 2. Hence 1 ≤ γc(B(G)) ≤ n′ − 2.

Remark 7.3. If G is a block, then the lower bound of Theorem 7.2 is sharp. Also,
if G has exactly two end blocks, then γc(B(G)) = n′ − 2, and so the upper bound of
Theorem 7.2 is sharp.

Theorem 7.4. If G is a connected graph of order n and n′ blocks, then 2 ≤
γc(G) + γc(B(G)) ≤ n+ n′ − 4.

Proof. It follows from Theorems 2.6 and 7.2.

Theorem 7.5. For any connected graph G of order n and n′ blocks, γc(G) +
γc(B(G)) = n+ n′ − 4 if and only if G ∼= Pn.

Proof. If γc(G)+γc(B(G)) = n+n′−4, then γc(G) = n−2 and γc(B(G)) = n′−2.
By Observation 2.12, G ∼= Pn or Cn. If G ∼= Cn, then γc(B(G)) = γc(K1) = 1 6= n′−2.
If G ∼= Pn, then γc(B(G)) = γc(Pn′) = n′− 2. Converse is obvious by verification.
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