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SOME RESULTS CONCERNING FIXED POINT IN VECTOR

SPACES

Mojtaba Izadi, Asghar Jokar∗, and Mohammad Hadi Akhbari

Abstract. In this paper, we study the generalization of the Banach contraction
principle in the vector space, involving four rational square terms in the inequality,
by using the notation of bilinear functional. We also present an extension of Selberg’s
inequality to vector space.

1. Inroduction and Basic Concepts

The study of properties and application of fixed points of various types of con-
tractive mapping in Hilbert spaces were obtained, among others, by Browder and
Petryshyn [1], Hicks and Huffman, [3], Huffman [4], Koparde and Waghmode [5]. We
refer to [8, 10] for more examples and properties of fixed point theorems in Hilbert
space.

The object of the present note is to present a fixed point theorem in vector space by
using the quadratic form. In [9], the authors studied the generalization of the Banach
contraction principle in the Hilbert space, involving four rational square terms in the
inequality. This paper obtains similar results for bilinear functionals in vector space.
Meanwhile, we present the extension of some well-known results in Hilbert space to
vector space using the notion of bilinear functional (see also [6, 7] and the references
therein).

This section gives some definitions and preliminary results, which will be used in
our paper.

Definition 1.1. ([2], Definition 4.3.1) By a bilinear functional ϕ on a complex
vector space E, we mean a mapping ϕ : E × E → C satisfying the following two
conditions:

1. ϕ (αx1 + βx2, y) = αϕ (x1, y) + βϕ (x2, y),
2. ϕ (x, αy1 + βy2) = αϕ (x, y1) + βϕ (x, y2),

for any scalars α and β and any x, x1, x2, y, y1, y2 ∈ E.

Definition 1.2. ([2], Definition 4.3.6) Let ϕ be a bilinear functional on a vector
space E. The function Φ : E → C defined by Φ (x) = ϕ (x, x) is called the quadratic
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form associated with ϕ. A quadratic form Φ on a normed space E is called bounded
if there exists a constant K > 0 such that

|Φ (x)| ≤ K‖x‖2

for all x ∈ E.

Definition 1.3. Let ϕ be a bilinear functional, then x→ ϕ (x, x) is a continuous
bilinear functional if its components are continuous.

2. Some New Results for Bilinear Functional

This section is dedicated to studying new results around bilinear functionals. We
start with the following theorem, which can be considered an extension of parallelo-
gram law in vector space.

Theorem 2.1. For any two elements x and y of vector space E, we have

(1) Φ (x+ y) + Φ (x− y) = 2 (Φ (x) + Φ (y)) .

Proof. We have

(2) ϕ (x+ y, x+ y) = ϕ (x, x) + ϕ (x, y) + ϕ (y, x) + ϕ (y, y) .

Moreover

(3) ϕ (x− y, x− y) = ϕ (x, x)− ϕ (x, y)− ϕ (y, x) + ϕ (y, y) .

By adding (2) and (3), we obtain the desired result, since

2ϕ (x, x) + 2ϕ (y, y) = 2 (Φ (x) + Φ (y)) .

Theorem 2.2. If Y is a closed convex subset of a complete vector space E, and
x0 ∈ E, there is a unique element y0 of Y such that

(4)
√

Φ (x0 − y0) ≤
√

Φ (x0 − y), (y ∈ Y ) .

Moreover

(5) Reϕ (y0, x0 − y0) ≥ Reϕ (y, x0 − y0) , (y ∈ Y ) .

Proof. With

d = inf
{√

Φ (x0 − y) : y ∈ Y
}

there is a sequence {yn} of a elements of Y such that
√

Φ (x0 − yn)→ d. By Theorem
2.1

2Φ (x0 − ym) + 2Φ (x0 − yn) = Φ (2x0 − ym − yn) + Φ (yn − ym)

for all positive integer m and n. Since 1
2

(ym + yn) ∈ Y , we have√
Φ (2x0 − ym − yn) = 2

√
Φ

(
x0 −

1

2
(ym + yn)

)
≥ 2d

and therefore
Φ (yn − ym) = 2Φ (x0 − ym) + 2Φ (x0 − yn)− Φ (2x0 − ym − yn)

≤ 2Φ (x0 − ym) + 2Φ (x0 − yn)− 4d2 → 0
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as min (m,n)→∞. Hence {yn} is a Cauchy sequence and so converges to an element
y0 of E. Moreover, y0 ∈ Y since Y is closed, and y0 satisfies (4), since√

Φ (x0 − y0) = lim
n→∞

√
Φ (x0 − yn) = d = inf

{√
Φ (x0 − y) : y ∈ Y

}
.

If y
′
0 is another element of Y that satisfies (4), then

√
Φ
(
x0 − y

′
0

)
=
√

Φ (x0 − y0) = d.

We can apply the preceding reasoning, with y0 and y
′
0 in place of ym and yn, to obtain

Φ
(
y

′

0 − y0
)

= 2Φ (x0 − y0) + 2Φ
(
x0 − y

′

0

)
− 4Φ

(
x0 −

1

2

(
y0 + y

′

0

))
≤ 2d2 + 2d2 − 4d2 = 0.

Hence y
′
0 = y0, and y0 is uniquely determined by (4). For each y in Y and t in (0, 1),

y0 + t (y − y0) ∈ Y , and (4) gives

Φ (x0 − y0) ≤ Φ (x0 − y0 − t (y − y0))
= Φ (x0 − y0)− 2tReϕ (y − y0, x0 − y0) + t2Φ (y − y0) .

Hence
−2 Reϕ (y − y0, x0 − y0) + tΦ (y − y0) ≥ 0, (0 < t < 1)

and this gives (5) when t→ 0.

Theorem 2.3. If Y is a closed subspace of a complete vector space E, each element
x0 of E can be expressed uniquely in the form y0 + z0, with y0 in Y and z0 in Y ⊥.
Moreover, y0 is the unique point in Y that is closest to x0.

Proof. Since Y is a closed convex subset of E, we can choose y0 as in Theorem 2.2,
and define z0 = x0−y0. From (4) and (5), y0 is the (unique) point in Y that is closest
to x0, and Reϕ (y, z0) ≤ Reϕ (y0, z0) for each y in Y . By writing ay in place of y, we
obtain

Re aϕ (y, z0) ≤ Reϕ (y0, z0)

for y ∈ Y and a ∈ C. Hence ϕ (y, z0) = 0 for each y in Y , and z0 ∈ Y ⊥. This proves
the existence of a decomposition x0 = y0 + z0, with y0 in Y and z0 in Y ⊥. If, also
x0 = y1 + z1, with y1 in Y and z1 in Y ⊥, then

y0 + z0 = y1 + z1

and
y0 − y1 = z1 − z0 ∈ Y ∩ Y ⊥ = {0}

therefore y0 = y1, and z0 = z1.

Theorem 2.4. If Y is a closed subspace of a complete vector space E and X ⊆ E,
then (

Y ⊥
)⊥

= Y.

Proof. If y ∈ Y , then y is orthogonal to each element of Y ⊥, and so y ∈
(
Y ⊥
)⊥

.

This shows that Y ⊆
(
Y ⊥
)⊥

, and we have to prove the reverse inclusion. With x0 in(
Y ⊥
)⊥

, we can choose y0 in Y and z0 in Y ⊥ so that x0 = y0 + z0, by Theorem 2.3.

Then x0 ∈
(
Y ⊥
)⊥

, y0 ∈ Y ⊆
(
Y ⊥
)⊥

, and therefore z0 = x0 − y0 ∈
(
Y ⊥
)⊥

. Hence

z0 ∈ Y ⊥ ∩
(
Y ⊥
)⊥

= {0}
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and x0 = y0 ∈ Y . This gives the required inclusion
(
Y ⊥
)⊥ ⊆ Y , so

(
Y ⊥
)⊥

= Y . If

Y = E, then Y ⊥ = E⊥ = {0}; convesely, if Y ⊥ = {0}, then Y =
(
Y ⊥
)⊥

= {0}⊥ =
E.

3. An Interesting Inequality Involving Bilinear Functional

Selberg’s inequality is an interesting inequality that is also a generalization of the
Cauchy-Schwarz and Bessel inequality. In this section, we present a Selberg-type
inequality involving bilinear functionals.

Theorem 3.1. In a vector space E

(6)
n∑

j=1

ϕ (x, yj)
n∑

k=1

ϕ (yj, yk)
≤ ϕ (x, x)

for all x ∈ E and yj 6= 0 (yj ∈ E). The equality (6) holds if and only if

(7) x =
n∑

j=1

αjyj, (αj ∈ C)

and for each pair (j, k), j 6= k,

(8) ϕ (yj, yk) = 0

or

(9) |αj| = |αk| and ϕ (αjyj, αkyk) ≥ 0.

Proof. For any αj ∈ C, we have

0 ≤ Φ

(
x−

n∑
j=1

αjyj

)

= ϕ

(
x−

n∑
j=1

αjyj, x−
n∑

j=1

αjyj

)

= ϕ (x, x)− ϕ

(
x,

n∑
j=1

αjyj

)
− ϕ

(
n∑

j=1

αjyj, x

)
+ ϕ

(
n∑

j=1

αjyj,
n∑

j=1

αjyj

)

= ϕ (x, x)−
n∑

j=1

αjϕ (yj, x)−
n∑

j=1

αjϕ (x, yj) +
n∑

j=1

n∑
k=1

αjαkϕ (yj, yk) .

From 0 ≤ (|αj| − |αk|)2, we have |αjαk| ≤ 1
2
|αj|2 + 1

2
|αk|2, so the last quantity is equal

to or less than the following

ϕ (x, x)−
n∑

j=1

αjϕ (x, yj)−
n∑

j=1

αjϕ (x, yj) +
1

2

n∑
j=1

n∑
k=1

|αj |2ϕ (yj , yk) +
1

2

n∑
j=1

n∑
k=1

|αk|2ϕ (yj , yk).
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We can choose αj =
ϕ(x,yj)

n∑
k=1

ϕ(yj ,yk)
. Thus, the above quantity will be equal to

ϕ (x, x)−
n∑

j=1

ϕ (x, yj)ϕ (x, yj)
n∑

k=1

ϕ (yj, yk)
−

n∑
j=1

ϕ (x, yj)ϕ (x, yj)
n∑

k=1

ϕ (yj, yk)
+

1

2

n∑
j=1

n∑
k=1

(ϕ (x, yj))
2ϕ (yj, yk)(

n∑
k=1

ϕ (yj, yk)

)2

+
1

2

n∑
j=1

n∑
k=1

(ϕ (x, yk))2ϕ (yj, yk)(
n∑

k=1

ϕ (yk, yj)

)2 ,

which is, after a simple calculation, equal to

ϕ (x, x)−
n∑

j=1

(ϕ (x, yj))
2

n∑
k=1

ϕ (yj, yk)
−

n∑
j=1

(ϕ (x, yj))
2

n∑
k=1

ϕ (yj, yk)
+

1

2

n∑
j=1

(ϕ (x, yj))
2

n∑
k=1

ϕ (yj, yk)(
n∑

k=1

ϕ (yj, yk)

)2

+
1

2

n∑
k=1

(ϕ (x, yj))
2

n∑
j=1

ϕ (yj, yk)(
n∑

j=1

ϕ (yj, yk)

)2

and, of course, it is equivalent to

ϕ (x, x)− 2
n∑

j=1

(ϕ (x, yj))
2

n∑
k=1

ϕ (yj, yk)
+

1

2

n∑
j=1

(ϕ (x, yj))
2

n∑
k=1

ϕ (yj, yk)
+

1

2

n∑
j=1

(ϕ (x, yk))2

n∑
j=1

ϕ (yj, yk)

= ϕ (x, x)− 2
n∑

j=1

(ϕ (x, yj))
2

n∑
k=1

ϕ (yj, yk)
+

1

2

n∑
j=1

(ϕ (x, yj))
2

n∑
k=1

ϕ (yj, yk)
+

1

2

n∑
j=1

(ϕ (x, yj))
2

n∑
k=1

ϕ (yj, yk)

and
n∑

j=1

(ϕ(x,yj))
2

n∑
k=1

ϕ(yj ,yk)
≤ ϕ (x, x) follows. We will show that, if x =

n∑
j=1

αjyj, αj ∈ C, and

for each pair (j, k), j 6= k, then

n∑
j=1

(ϕ (x, yj))
2

n∑
k=1

ϕ (yj, yk)
= ϕ (x, x)

so

(10) x =
n∑

j=1

αjyj ∧ 2αjαkϕ (yj, yk) = |αj|2ϕ (yj, yk) + |αk|2ϕ (yj, yk) .

Let x =
n∑

j=1

αjyj, αj ∈ C. Then for each (j, k), j 6= k where ϕ (yj, yk) = 0, we have

(11) ϕ (αkyk, αjyj) = |αj|2ϕ (yk, yj)
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and for each (j, k), j 6= k where (9) is true, we have (11). Moreover,

n∑
j=1

(
ϕ

(
n∑

k=1

αkyk, yj

))2

n∑
k=1

ϕ (yj, yk)
=

n∑
j=1

(
n∑

k=1

αkϕ (yk, yj)

)2

n∑
k=1

ϕ (yj, yk)

=
n∑

j=1

(
n∑

k=1

αkϕ (yk, yj)

)2

|αj|2

n∑
k=1

ϕ (yj, yk) |αj|2

=
n∑

j=1

(
n∑

k=1

αkϕ (yk, yj)

)
n∑

k=1

αkϕ (yj, yk)αjαj

n∑
k=1

ϕ (yj, yk) |αj|2

=
n∑

j=1

(
n∑

k=1

ϕ (αkyk, αjyj)

)
n∑

k=1

αjαkϕ (yj, yk)

n∑
k=1

ϕ (yk, yj) |αj|2
.

We use (11), and we have

n∑
j=1

(
n∑

k=1

ϕ (αkyk, αjyj)

)
n∑

k=1

αjαkϕ (yj, yk)

n∑
k=1

ϕ (αkyk, αjyj)
=

n∑
j=1

n∑
k=1

αjαkϕ (yj, yk)

and

ϕ (x, x) = ϕ

(
n∑

j=1

αjyj,
n∑

k=1

αkyk

)
=

n∑
j=1

n∑
k=1

αjαkϕ (yj, yk) .

Hence (7) implies

(12)
n∑

j=1

(ϕ (x, yj))
2

n∑
k=1

ϕ (yj, yk)
= ϕ (x, x) .

If (12) hold, then choose αj =
ϕ(x,yj)

n∑
k=1

ϕ(yj ,yk)
. From the proof of the inequality (6), we

have that equality (6) holds when

0 = Φ

(
x−

n∑
j=1

αjyj

)
and

n∑
j=1

n∑
k=1

αjαkϕ (yj, yk) =
1

2

n∑
j=1

n∑
k=1

|αj|2ϕ (yj, yk) +
1

2

n∑
j=1

n∑
k=1

|αk|2ϕ (yj, yk) .
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For each pair (j, k), j 6= k we have

1

2
|αj|2ϕ (yj, yk) +

1

2
|αk|2ϕ (yj, yk) ≥ 0

and

αjαkϕ (yj, yk) ≤ 1

2
|αj|2ϕ (yj, yk) +

1

2
|αk|2ϕ (yj, yk)

Hence
n∑

j=1

(ϕ(x,yj))
2

n∑
k=1

ϕ(yj ,yk)
= ϕ (x, x) implies (10). If (10), then for each pair (j, k), j 6= k,

assume that (8) is not true. Then

ϕ (αjyj, αkyk) ≥ 0

and
2αjαkϕ (yj, yk)

ϕ (yj, yk)
= |αj|2 + |αk|2

so
|2αjαkϕ (yj, yk)|

ϕ (yj, yk)
= |αj|2 + |αk|2

hence

2 |αj| |αk| = |αj|2 + |αk|2

therefore

|αj| = |αk| .
It means (10) implies (7).

4. A Fixed Point Theorem Involving Bilinear Functional

In this section, we study the generalization of the Banach contraction principle in
the vector space, involving four rational square terms in the inequality, by using the
notation of bilinear functional.

Theorem 4.1. Suppose Φ is a bounded and continuous quadratic form. Let X
be a complete closed subset of a vector space and T : X → X be a self-mapping
satisfying the following condition
(13)

Φ (Tx− Ty) ≤ a1
Φ (y − Ty) (1 + Φ (x− Tx))

1 + Φ (x− y)
+ a2

Φ (x− Tx) (1 + Φ (y − Ty))

1 + Φ (x− y)

+ a3
Φ (x− Ty) (1 + Φ (y − Tx))

1 + Φ (x− y)
+ a4

Φ (y − Tx) (1 + Φ (x− Ty))

1 + Φ (x− y)
+ a5Φ (x− y)

for each x, y ∈ X and x 6= y, where a1, a2, a3, a4, a5 are non-negative reals with

(14) 0 ≤ a1 + a2 + a3 + a4 + a5 < 1.

Then T has a unique fixed point in X.

Proof. For some x0 ∈ X, we define a sequence {xn} of iterator of T as follows

(15) x1 = Tx0, x2 = Tx1, x3 = Tx2, ...,xn+1 = Txn

for n = 1, 2, 3, ... .
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Existence: We show that {xn} is a Cauchy sequence in X. For this, according to
(15), we define

Φ (xn+1 − xn) = Φ (Txn − Txn−1)
then by using (13), we have
(16)

Φ (xn+1 − xn) ≤ a1
Φ (xn−1 − Txn−1) (1 + Φ (xn − Txn))

1 + Φ (xn − xn−1)
+ a2

Φ (xn − Txn) (1 + Φ (xn−1 − Txn−1))

1 + Φ (xn − xn−1)

a3
Φ (xn − Txn−1) (1 + Φ (xn−1 − Txn))

1 + Φ (xn − xn−1)
+ a4

Φ (xn−1 − Txn) (1 + Φ (xn − Txn−1))

1 + Φ (xn − xn−1)
+ a5Φ (xn − xn−1)

so (16) implies that

(1− a2 − 2a4) Φ (xn+1 − xn) + (1− a1 − a2) Φ (xn+1 − xn) Φ (xn − xn−1)
≤ ((a1 + 2a4 + a5) + a5Φ (xn − xn−1)) Φ (xn − xn−1)

therefore

(17) Φ (xn+1 − xn) ≤ p (n) Φ (xn − xn−1)

where

(18) p (n) =
a1 + 2a4 + a5 + a5Φ (xn − xn−1)

(1− a2 − 2a4) + (1− a1 − a2) Φ (xn − xn−1)

for n = 1, 2, 3, ... . Clearly p (n) < 1, for all n as 0 ≤ a1 + a2 + a3 + 4a4 + a5 < 1.
Repeating the same argument, we find some S < 1, such that

Φ (xn+1 − xn) ≤ λnΦ (x1 − x0)

where λ = S2. Letting n → ∞, we obtain Φ (xn+1 − xn) → 0. It follows that {xn}
is a Cauchy sequence in X. So by completeness of X there exist a point µ ∈ X such
that xn → µ as n→∞. Also {xn+1} = {Txn} is a subsequence of {xn} converges to
the same limit µ. Since T is continuous, we obtain

T (µ) = T
(

lim
n→∞

xn

)
= lim

n→∞
Txn = lim

n→∞
xn+1 = µ

Hence µ is a fixed point of T in X.
Uniquence: Now, we show the uniqueness of µ. If T has another fixed point γ

and γ 6= µ, then
(19)

Φ (µ− γ) = Φ (Tµ− Tγ)

≤ a1
Φ (γ − Tγ) (1 + Φ (µ− Tµ))

1 + Φ (µ− γ)
+ a2

Φ (µ− Tµ) (1 + Φ (γ − Tγ))

1 + Φ (µ− γ)

a3
Φ (µ− Tγ) (1 + Φ (γ − Tµ))

1 + Φ (µ− γ)
+ a4

Φ (γ − Tµ) (1 + Φ (µ− Tγ))

1 + Φ (µ− γ)
+ a5Φ (µ− γ)

hence (19) implies that

Φ (µ− γ) ≤ (a3 + a4 + a5) Φ (µ− γ) .

This gives a contradiction for a3 + a4 + a5 < 1. Thus µ is a unique fixed point of T
in X.
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