ON LACUNARY Δ^m -STATISTICAL CONVERGENCE OF TRIPLE SEQUENCE IN INTUITIONISTIC FUZZY N-NORMED SPACE

ASIF HUSSAIN JAN* AND TANWEER JALAL

ABSTRACT. In this article, we construct lacunary Δ^m -statistical convergence for triple sequences within the context of intuitionistic fuzzy n-normed spaces (IFnNS). For lacunary Δ^m -statistical convergence of triple sequence in IFnNS, we demonstrate numerous results. For this innovative notion of convergence, we further built lacunary Δ^m -statistical Cauchy sequences and offered the Cauchy convergence criterion.

1. Introduction

Fast [11] introduced the idea of statistical convergence, which has since been studied by a large number of authors. Active study on this topic was started after Fridy's publication [12,13]. In a number of areas, including approximation theory [3], finitely additive set functions [2], sequence space [14,15], and statistical convergence for fuzzy numbers [1,21], mathematicians have studied the characteristics of convergence and statistical convergence.

Zadeh [28] gave the concept of fuzziness. It has been one of the most active areas of research in many branches of sciences, with a sizable number of research publications based on the concept of fuzzy sets/numbers appearing in the literature. Intuitionistic fuzzy normed space was first described by Saadati and Park in [22]. In a recent study, R. Antal et al. [1] explored the idea of double sequence Δ -statistical convergence in intuitionistic fuzzy normed space.

There have been numerous studies on difference sequence spaces and related generalisations published in the literature [7–10, 26, 27]. B.C.Tripathy et.al. studied a new type of generalized Difference Cesaro Sequence Spaces [26] and new type of difference sequence spaces [27]. A.Esi studied the generalized difference sequence spaces defined by Orlicz functions [7] and strongly generalized difference $[V^{\lambda}, \Delta^m, p]$ -summable sequence spaces defined by a sequence of moduli [8]. Later on, saveral authors studied generalized Δ^m Statistical Convergence in Probabilistic Normed Space [9] and generalized Strongly difference convergent sequences associated with multiplier sequences [10], respectively.

Received October 4, 2022. Revised May 1, 2023. Accepted July 15, 2023.

²⁰¹⁰ Mathematics Subject Classification: 40A35, 26E50, 40G15, 46S40.

Key words and phrases: Statistical convergence, Lacunary Δ^m -statistical convergence, Triple Sequence, Intuitionistic fuzzy n-normed space.

^{*} Corresponding author.

⁽c) The Kangwon-Kyungki Mathematical Society, 2023.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

The function $X : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{R}(C)$ can be used to define a triple sequence (real or complex), where \mathbb{N}, \mathbb{R} and \mathbb{C} stand for the sets of natural, real, and complex numbers, respectively. At the beginning, Sahiner et al. [23] introduced and studied the many conceptions of triple sequences and their statistical convergence. Triple sequence statistical convergence on probabilistic normed space was recently introduced by Savas and Esi [6], where as statistical convergence of triple sequences in topological groups was later introduced by Esi [5]. For further study on triple sequence spaces, we may refer to [1, 14-16, 18, 19].

Kizmaz [20] introduced the difference sequence space $Z(\Delta)$ as given below

$$Z(\Delta) = \{ y = (y_k) : (\Delta y_k) \in Z \}$$

for $Z = \ell_{\infty}, c, c_0$ i.e. spaces of all bounded, convergent and null sequences respectively, where $\Delta_y = (\Delta y_k) = (y_k - y_{k+1})$. In particular, $\ell_{\infty}(\Delta), c(\Delta)$ and $c_0(\Delta)$ are also Banach spaces, relative to a norm induced by $||y||_{\Delta} = |y_1| + \sup_k |\Delta y_k|$.

The generalized difference sequence spaces $Z(\Delta^m)$ was introduced by M.Et et.al. [4] as follows:

$$Z\left(\Delta^{m}\right) = \left\{y = \left(y_{k}\right) : \left(\Delta^{m}y_{k}\right) \in Z\right\}$$

for $Z = \ell_{\infty}, c, c_0$ where $\Delta^m(y) == (\Delta^m y_k) = (\Delta_{m-1} y_k - \Delta_{m-1} y_{k+1})$. So that $\Delta^m y_k = \sum_{r=0}^p (-1)^r \binom{m}{r} x_{k+r}$.

The difference operator Δ on triple sequence x_{mnl} is defined as :

 $\Delta_{x_{mnl}} = x_{mnl} - x_{(m+1)nl} - x_{m(n+1)l} - x_{mn(l+1)} = x_{(m+1)(n+1)l} + x_{(m+1)n(l+1)} + x_{m(n+1)(l+1)} - x_{(m+1)(n+1)(l+1)}.$

The generalized difference spaces for triple sequences can be approximated as:

$$Z\left(\Delta^{m}\right) = \left\{y = (y_{jkl}) : (\Delta^{m}y_{jkl}) \in Z\right\}$$

for $Z = \ell_{\infty}^{3}, c^{3}, c_{0}^{3}$ where $\Delta^{m}(y) == (\Delta^{m}y_{jkl}) = (\Delta_{m-1}y_{jkl} - \Delta_{m-1}y_{jk,(l+1)})$. So that
 $\Delta^{m}y_{k} = \sum_{r=0}^{p} (-1)^{r+s+u} {m \choose r} {m \choose s} {m \choose u} x_{j+r,k+s,l+u}.$
Here is a summary of the current orderwords. In Section 2, we conver the funda-

Here is a summary of the current endeavours. In Section 2, we go over the fundamental definitions of the intuitionistic fuzzy n-normed space. Lacunary Δ^m -statistical convergence in intuitionistic fuzzy n-normed space is presented in Section 3. Here, we established a number of results that show how generalised this convergence process is. For this innovative notion of convergence, we further built Lacunary Δ^m -statistical Cauchy sequences and provided the Cauchy convergence criterion.

2. Definitions and Preliminaries

Here we mention some basic definitions of intuitionistic fuzzy n-normed space and other preliminaries.

DEFINITION 2.1. [24] A continuous t-norm is the mapping $\otimes : [0,1] \times [0,1] \rightarrow [0,1]$ such that

 $1. \otimes$ is continuous, associative, commutative and with identity 1,

2. $a_1 \otimes b_1 \leq a_2 \otimes b_2$ whenever $a_1 \leq a_2$ and $b_1 \leq b_2, \forall a_1, a_2, b_1, b_2 \in [0, 1]$.

DEFINITION 2.2. [24] A continuous -conorm is the mapping $\odot : [0, 1] \times [0, 1] \rightarrow [0, 1]$ such that

On lacunary Δ^m -statistical convergence of triple sequence in IFn-normed space.

1. \odot is continuous, associative, commutative and with identity 0,

2. $a_1 \odot b_1 \leq a_2 \odot b_2$ whenever $a_1 \leq a_2$ and $b_1 \leq b_2, \forall a_1, a_2, b_1, b_2 \in [0, 1]$.

DEFINITION 2.3. [22] An intuitionistic fuzzy normed space (IFNS) is referred to the 5tuple $(X, \varphi, \vartheta, \otimes, \odot)$ with vector space X, fuzzy sets φ, ϑ on $X \times (0, \infty)$, continuous t-norm \otimes and continuous t-conorm \odot , if for each $y, z \in X$ and s, t > 0, we have

1. $\varphi(y,t) + \vartheta(y,t) \le 1$ 2. $\varphi(y,t) > 0$ and $\vartheta(y,t) \leq 1$, 3. $\varphi(y,t) = 1$ and $\vartheta(y,t) = 0 \iff y = 0$, 4. $\varphi(\alpha y, t) = \varphi\left(y, \frac{t}{|\alpha|}\right)$ for $\alpha \neq 0$, 5. $\varphi(y,s) \otimes \varphi(z,t) \leq \varphi(y+z,s+t)$ and $\vartheta(y,s) \odot \vartheta(z,t) \leq \vartheta(y+z,s+t)$, 6. $\vartheta(y, o) : (0, \infty) \to [0, 1]$ and $\vartheta(y, o) : (0, \infty) \to [0, 1]$ are continuous,

7. $\lim_{t\to\infty}\varphi(y,t) = 1$, $\lim_{t\to0}\varphi(y,t) = 0$, $\lim_{t\to\infty}\vartheta(y,t) = 1$ and $\lim_{t\to0}\vartheta(y,t) = 0$.

Then (φ, ϑ) is known as intuitionistic fuzzy norm.

DEFINITION 2.4. [22] Let (X, ||o||) be any normed space. For every t > 0 and $y \in X$, take $\varphi = \frac{t}{t+||y||}, \vartheta = \frac{||y||}{t+||y||}$. Also, $a \otimes b = ab$ and $a \odot b = \min\{a+b,1\} \forall a, b \in [0,1]$. Then, a 5-tuple $(X, \varphi, \vartheta, \otimes, \odot)$ is an IFNS which satisfies the above mentioned

conditions.

DEFINITION 2.5. [22] Let $(X, \varphi, \vartheta, \otimes, \odot)$ be an IFNS with norm (φ, ϑ) . A sequence $y = (y_k)$ in X is called convergent to some $\xi \in X$ with respect to the intuitionic fuzzy norm (φ, ϑ) if there exists $k_0 \in \mathbb{N}$ for each $\epsilon > 0$ and t > 0 such that $\varphi(yk - \xi, t) > 1 - \epsilon$ and $\vartheta(yk - \xi, t) < \epsilon$ for all $k \ge k_0$. It is denoted by $(\varphi, \vartheta) - \lim_{k \to \infty} y_k = \xi$.

DEFINITION 2.6. [22] Let $(X, \varphi, \vartheta, \otimes, \odot)$ be an IFNS with norm (φ, ϑ) . A sequence $y = (y_k)$ in X is called convergent to some $\xi \in X$ with respect to the intuitionic fuzzy norm (φ, ϑ) if there exists $k_0 \in \mathbb{N}$ for each $\epsilon > 0$ and t > 0

$$\delta\left(\left\{k \in \mathbb{N} : \varphi\left(y_k - \xi, t\right) \le 1 - \epsilon \quad \text{or} \quad \vartheta\left(y_k - \xi, t\right) \ge \epsilon\right\}\right) = 0.$$

It is denoted by $S^{\varphi,\vartheta} - \lim_{k \to \infty} y_k = \xi$.

A subset E of the set \mathbb{N} of natural numbers is said to have a "natural density" $\delta(E)$ if

$$\delta(E) = \lim_{n} \frac{1}{n} |\{k \le n : k \in E\}|,$$

where the vertical bars denote the cardinality of the enclosed set.

The number sequence $x = (x_k)$ is said to be statistically convergent to number l if for each $\epsilon > 0$,

$$\lim_{n} \frac{1}{n} |\{k \le n : |x_k - l| \ge \epsilon\}| = 0.$$

and x is said to be statistically cauchy sequence if for every $\epsilon > 0$ there exists a number $N = N(\epsilon)$ such that

$$\lim_{n} \frac{1}{n} |\{k \le n : |x_k - x_N| \ge \epsilon\}| = 0.$$

DEFINITION 2.7. [22] Let $(X, \varphi, \vartheta, \otimes, \odot)$ be an IFNS with norm (φ, ϑ) . A double sequence $y = (y_{jk})$ in X is called statistically convergent to some $\xi \in X$ with respect to the intuitionic fuzzy norm (φ, ϑ) if there exists $k_0 \in \mathbb{N}$ for each $\epsilon > 0$ and t > 0

$$\delta\left(\left\{k \in \mathbb{N} : \varphi\left(y_{jk} - \xi, t\right) \le 1 - \epsilon \text{ or } \vartheta\left(y_{jk} - \xi, t\right) \ge \epsilon\right\}\right) = 0.$$

It is denoted by $S^{(\varphi, \vartheta)} - \lim_{k \to \infty} y_{jk} = \xi.$

DEFINITION 2.8. [6] The triple sequence $\theta_{j,k,l} = \{(j_r, k_s, l_t)\}$ is called the triple lacunary sequence if there exist three increasing sequences of integers such that

$$j_o = 0, h_r = j_r - j_{r-1} \to \infty \text{ as } r \to \infty,$$

$$k_o = 0, h_s = k_s - k_{s-1} \to \infty \text{ as } s \to \infty,$$

and

$$I_o = 0, h_t = I_t - I_{t-1} \to \infty \text{ as } t \to \infty$$

Let $k_{r,s,t} = j_r k_s I_t, h_{r,s,t} = h_r h_s h_t$ and $\theta_{j,k,l}$ is determined by

$$I_{r,s,t} = \{(j,k,l) : j_{r-1} < j \le j_r, k_{s-1} < k \le k_s \text{ and } I_{t-1} < I \le I_t\}$$
$$q_r = \frac{j_r}{j_{r-1}}, q_s = \frac{k_s}{k_{s-1}}, q_t = \frac{l_t}{l_{t-1}} \text{ and } q_{r,s,t} = q_r q_s q_t.$$

Let $K \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$. The number

$$\delta_{3}^{\theta} = \lim_{r,s,t} \frac{1}{h_{r,s,t}} \left| \{ (j,k,l) \in I_{r,s,t} : (j,k,l) \in K \} \right|$$

is said to be the $\theta_{r,s,t}$ -density of K, provided the limit exists.

Below is the definition of n-mored space:

DEFINITION 2.9. Let $n \in \mathbb{N}$ and X be a real vector space of dimension $d \ge n$. (Here we allow d to be infinite). A real-valued function ||, ..., || on X^n satisfying the following four properties:

- (1) $||f_1, f_2, ..., f_n|| = 0$ if and only if $f_1, f_2, ..., f_n$ are linearly dependent;
- (2) $||f_1, f_2, ..., f_n||$ is invariant under permutation;
- (3) $||f_1, f_2, ..., f_{n-1}, \alpha f_n|| = |\alpha|||f_1, f_2, ..., f_{n-1}, f_n||$ for any $\alpha \in R$;
- (4) $||f_1, f_2, ..., f_{n-1}, y+z|| \le ||f_1, f_2, ..., f_{n-1}, y+f_1, f_2, ..., f_{n-1}, z||$, is called an n-norm on X and the pair $(X, ||f_1, f_2, ..., f_n||)$ is called an n-normed space.

DEFINITION 2.10. [25] An IFnNLS is the five-tuple $(X, \mu, v, *, \circ)$ where X is a linear space over a field F, * is a continuous t-norm, \circ is a continuous t-conorm, μ, v are fuzzy sets on $X^n \times (0, \infty), \mu$ denotes the degree of membership and v denotes the degree of nonmembership of $(x_1, x_2, \ldots, x_n, t) \in X^n \times (0, \infty)$ satisfying the following conditions for every $(x_1, x_2, \ldots, x_n) \in X^n$ and s, t > 0:

- (i) $\mu(x_1, x_2, \dots, x_n, t) + v(x_1, x_2, \dots, x_n, t) \le 1$,
- (ii) $\mu(x_1, x_2, \dots, x_n, t) > 0$,
- (iii) $\mu(x_1, x_2, \dots, x_n, t) = 1$ if and only if x_1, x_2, \dots, x_n are linearly dependent,
- (iv) $\mu(x_1, x_2, \dots, x_n, t)$ is invariant under any permutation of x_1, x_2, \dots, x_n ,

(v)
$$\mu(x_1, x_2, \dots, cx_n, t) = \mu(x_1, x_2, \dots, x_n, \frac{t}{|c|})$$
 for all $c \neq 0, c \in F$,

- (vi) $\mu(x_1, x_2, \dots, x_n, s) * \mu(x_1, x_2, \dots, x'_n, t) \le \mu(x_1, x_2, \dots, x_n + x'_n, s + t),$
- (vii) $\mu(x_1, x_2, \dots, x_n, t) : (0, \infty) \to [0, 1]$ is continuous in t,
- (viii) $\lim_{t\to\infty} \mu(x_1, x_2, \dots, x_n, t) = 1$ and $\lim_{t\to0} \mu(x_1, x_2, \dots, x_n, t) = 0$,
- (ix) $v(x_1, x_2, \dots, x_n, t) < 1$

On lacunary Δ^m -statistical convergence of triple sequence in IFn-normed space.

- (x) $v(x_1, x_2, \ldots, x_n, t) = 0$ if and only if x_1, x_2, \ldots, x_n are linearly dependent,
- (xi) $v(x_1, x_2, \ldots, x_n, t)$ is invariant under any permutation of x_1, x_2, \ldots, x_n ,
- (xii) $v(x_1, x_2, \dots, cx_n, t) = v\left(x_1, x_2, \dots, x_n, \frac{t}{|c|}\right)$ for all $c \neq 0, c \in F$, (xiii) $v(x_1, x_2, \dots, x_n, s) \circ v(x_1, x_2, \dots, x'_n, t) \ge v(x_1, x_2, \dots, x_n + x'_n, s + t)$
- (xiv) $v(x_1, x_2, \dots, x_n, t) : (0, \infty) \to [0, 1]$ is continuous in t,
- (xv) $\lim_{t\to\infty} v(x_1, x_2, \dots, x_n, t) = 0$ and $\lim_{t\to0} v(x_1, x_2, \dots, x_n, t) = 1$.

EXAMPLE 2.11. [25] Let $(X, \|\bullet, \dots, \bullet\|)$ be an *n*-normed linear space. Also let a * b = ab and $a \circ b = \min\{a + b, 1\}$ for all $a, b \in [0, 1]$

 $\mu(x_1, x_2, \dots, x_n, t) = \frac{t}{t + \|x_1, x_2, \dots, x_n\|} \quad \text{and} \quad v(x_1, x_2, \dots, x_n, t) = \frac{\|x_1, x_2, \dots, x_n\|}{t + \|x_1, x_2, \dots, x_n\|}.$ Then $(X, \mu, v, *, 0)$ is an IFnNLS.

3. Triple Lacunary Δ^m -statistical convergence in IFnNS.

In the context of intuitionistic fuzzy normed spaces for triple sequences, we define Lacunary Δ^m -statistical convergence and establish certain results.

DEFINITION 3.1. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFnNS with norm $(\varphi, \vartheta)^n$ and $\theta_{j,k,l}$ be a triple lacunary sequence. A triple sequence $y = (y_{jkl})$ in X is called lacunary Δ^{m} statistically convergent to some $\xi \in X$ with respect to the intuitionistic fuzzy norm (φ, ϑ) if for each $\epsilon > 0, t > 0$ and $f_1, f_2, ..., f_{n-1} \in X$.

(1)
$$\delta_{3}^{\theta}(\{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(f_{1}, f_{2}, ..., f_{n-1}, \Delta^{m} y_{jkl} - \xi, t) \leq 1 - \epsilon$$
$$\varphi(f_{1}, f_{2}, ..., f_{n-1}, \Delta^{m} y_{jkl} - \xi, t) \geq \epsilon\}) = 0$$

or equivalently

(1*)
$$\delta_{3}^{\theta}(\{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(f_{1},f_{2},...,f_{n-1},\Delta^{m}y_{jkl}-\xi,t) > 1-\epsilon)$$
$$\text{or} \quad \vartheta(f_{1},f_{2},...,f_{n-1},\Delta^{m}y_{jkl}-\xi,t) < \epsilon\}) = 1.$$

In this case, we write $S_{\theta_{j,k,l}^{(\varphi,\vartheta)^n}} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi \text{ or } X_{jkl} \xrightarrow{(\varphi,\vartheta)^n} \xi \left(S_{\theta_{j,k,l}} \right)$ and denote the set of all $S_{\theta_{i,k,l}}$ -convergent triple sequences in the intuitionistic fuzzy normed space by $S_{\theta_{j,k,l}}^{(\varphi,\vartheta)^n}$.

DEFINITION 3.2. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFnNS with norm $(\varphi, \vartheta)^n$ and $\theta_{i,k,l}$ be a triple lacunary sequence. A triple sequence $y = (y_{jkl})$ in X is called lacunary Δ^m statistically Cauchy with respect to the intuitionistic fuzzy norm (φ, ϑ) if there exists $j_0, k_0, l_o \in \mathbb{N}$ for each $\epsilon > 0$ and t > 0 such that for all $j, r \ge j_0, k, s \ge k_0$, $l, u \ge l_0$ and $f_1, f_2, \dots, f_{n-1} \in X$, we have

$$\delta_3^{\theta}\left(\left\{(j,k,l)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\varphi\left(f_1,f_2,...,f_{n-1},\Delta^m y_{jkl}-\Delta^m y_{rsu},t\right)\leq 1-\epsilon \text{ or } \vartheta\left(f_1,f_2,...,f_{n-1},\Delta^m y_{jkl}-\Delta^m y_{rsu},t\right)\geq\epsilon\right\}\right)=0.$$

It is denoted by $S_{jkl}^{(\varphi,\vartheta)^n} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi.$

From (1) and (1^*) , we have the following lemma.

Lemma 3.1. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be an IFNS with norm $(\varphi, \vartheta)^n$ and $\theta_{j,k,l}$ be a triple lacunary sequence. Then the following statements are equivalent for triple sequence $y = (y_{jkl})$ in X whenever $\epsilon > 0$ and t > 0,

- (i) $S_{\theta_{j,k,l}}^{(\varphi,\vartheta)^n} \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi,$
- (ii) $\delta_3^{\theta}\left(\left\{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi\left(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} \xi, t\right) > 1 \epsilon\right\}\right) \\ = \delta_3^{\theta}\left(\left\{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \vartheta\left(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} \xi, t\right) < \epsilon\right\}\right) = 1,$
- (iii) $\delta_3^{\theta}\left(\left\{(j,k,l)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\varphi\left(f_1,f_2,...,f_{n-1},\Delta^m y_{jkl}-\xi,t\right)\leq 1-\epsilon\right\}\right)\\ = \delta_3^{\theta}\left(\left\{(j,k,l)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}: \vartheta\left(f_1,f_2,...,f_{n-1},\Delta^m y_{jkl}-\xi,t\right)\geq \epsilon\right\}\right) = 0,$
- (iv) $S_{\theta_{j,k,l}}^{(\varphi,\vartheta)^n} \lim_{j,k,l\to\infty} \varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} \xi, t) = 1$ and $S_{\theta_{j,k,l}}^{(\varphi,\vartheta)^n} - \lim_{j,k,l\to\infty} \vartheta(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t) = 0.$

THEOREM 3.3. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm $(\varphi, \vartheta)^n$ and $\theta_{j,k,l}$ be a triple lacunary sequence. If $S^{(\varphi,\vartheta)^n}_{\theta_{j,k,l}} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$, then ξ is unique.

Proof. If possible, let $S_{\theta_{j,k,l}}^{(\varphi,\vartheta)^n} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi_1$ and $S_{\theta_{j,k,l}}^{(\varphi,\vartheta)^n} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi_2$. For given $\epsilon \in (0,1)$ and t > 0, take $\alpha > 0$ such that $(1-\alpha) \otimes (1-\alpha) > 1-\epsilon$ and $\alpha \odot \alpha < \epsilon$.

Consider

$$\begin{split} K_{1,\varphi}(\alpha,t) &= \left\{ (j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi\left(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi_1, t/2\right) \leq 1 - \alpha \right\},\\ K_{2,\varphi}(\alpha,t) &= \left\{ (j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi\left(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi_2, t/2\right) \leq 1 - \alpha \right\},\\ K_{3,\vartheta}(\alpha,t) &= \left\{ (j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \vartheta\left(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi_1, t/2\right) \geq \alpha \right\},\\ K_{4,\vartheta}(\alpha,t) &= \left\{ (j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \vartheta\left(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi_2, t/2\right) \geq \alpha \right\}. \end{split}$$

Using lemma 3.1, we have

$$\delta_3^{\theta} (K_1, \varphi(\alpha, t)) = \delta_3^{\theta} (K_3, \vartheta(\alpha, t)) = 0.$$

$$\delta_3^{\theta} (K_2, \varphi(\alpha, t)) = \delta_3^{\theta} (K_4, \vartheta(\alpha, t)) = 0.$$

Let $K_{\varphi,\vartheta}(\alpha,t) = [K_{1,\varphi}(\alpha,t) \bigcup K_{2,\varphi}(\alpha,t)] \bigcap [K_{3,\vartheta}(\alpha,t) \bigcup K_{4,\vartheta}(\alpha,t)]$. Clearly,

$$\delta_3^{\theta} K_{\varphi,\vartheta}(\alpha,t) = 0.$$

Whenever $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} - K_{\varphi, \vartheta}(\alpha, t)$, we have two possibilities, either $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} - [K_{1,\varphi}(\alpha, t) \bigcup K_{2,\varphi}(\alpha, t)]$ or $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} - [K_{3,\vartheta}(\alpha, t) \bigcup K_{4,\vartheta}(\alpha, t)]$. First, we consider $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} - [K_{1,\varphi}(\alpha, t) \bigcup K_{2,\varphi}(\alpha, t)]$. Then

$$\varphi(\xi_{1} - \xi_{2}, t) \geq \varphi(f_{1}, f_{2}, ..., f_{n-1}, \Delta^{m} y_{jkl} - \xi_{1}, t/2) \otimes \varphi(f_{1}, f_{2}, ..., f_{n-1}, \Delta^{m} y_{jkl} - \xi_{2}, t/2)$$

> $(1 - \alpha) \otimes (1 - \alpha)$
> $1 - \epsilon.$

As given $\epsilon \in (0, 1)$ was arbitrary, then $\varphi(\xi_1 - \xi_2, t) = 1$ for all t > 0, then $\xi_1 = \xi_2$. Similarly, if $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} - [K_{3,\vartheta}(\alpha, t) \bigcup K_{4,\vartheta}(\alpha, t)]$

$$\vartheta\left(\xi_{1}-\xi_{2},t\right) \leq \vartheta\left(f_{1},f_{2},...,f_{n-1},\Delta^{m}y_{jkl}-\xi_{1},t/2\right) \odot \vartheta\left(f_{1},f_{2},...,f_{n-1},\Delta^{m}y_{jkl}-\xi_{2},t/2\right)$$

$$<\alpha \odot \alpha$$

$$<\epsilon.$$

355

Since $\epsilon \in (0, 1)$ was arbitrary, then $\varphi(\xi_1, \xi_2, t) = 0$ for all t > 0, i.e., $\xi_1 = \xi_2$. Therefore $S_{\theta_{j,k,l}}^{(\varphi,\vartheta)^n} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$ exists uniquely. \Box

THEOREM 3.4. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm $(\varphi, \vartheta)^n$ and $\theta_{j,k,l}$ be a triple lacunary sequence. If $(\varphi, \vartheta)^n - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$, then $S^{(\varphi,\vartheta)^n}_{\theta_{j,k,l}} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$. But converse may not be true.

Proof. Let $(\varphi, \vartheta)^n - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$. Then, there exists j_0, k_0 and $l_0 \in \mathbb{N}$ for given $\epsilon > 0$ and any t > 0 such that for all $j \ge j_0, k \ge k_0$ and $l \ge l_0$, we have $\varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t) > 1 - \epsilon$ and $\vartheta(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t) < \epsilon$.

Further, the set $A(\epsilon, t) = \{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t) \le 1 - \epsilon$ or

 $\vartheta(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t) \ge \epsilon$, contains only finite number of elements. We know that natural density of any finite set is always zero. Therefore, $\delta_3^{\theta}(A(\epsilon, t)) = 0$ i.e. $S_{\theta_{j,k,l}}^{(\varphi,\vartheta)^n} - \lim_{j,k,l \to \infty} \Delta^m y_{jkl} = \xi$.

But converse is not true, this can be justified with the example.

EXAMPLE 3.5. Let $(\mathbb{R}, ||)$ be the real normed space under the usual norm. Define $a \otimes b = ab$ and $a \odot b = \min\{a + b, 1\} \forall a, b \in [0, 1]$. Also for every t > 0 and all $y \in \mathbb{R}$, consider $\varphi(y, t) = \frac{t}{t+|y|}$ and $\vartheta(y, t) = \frac{|y|}{t+|y|}$. Then, clearly $(\mathbb{R}, \varphi, \vartheta, \otimes, \odot)$ is an IFNS. Define the sequence

$$\Delta^{m} x_{jkl} = \begin{cases} jkl, & \text{for } j_r - \left[\left|\sqrt{h_r}\right|\right] + 1 \le j \le j_r \\ k_s - \left[\left|\sqrt{h_s}\right|\right] + 1 \le k \le k_s \\ & \text{and } l_t - \left[\left|\sqrt{h_t}\right|\right] + 1 \le l \le l_t \\ \xi, & \text{otherwise.} \end{cases}$$

By given $\epsilon > 0$ and t > 0, we obtain the below set for $\xi = 0$.

$$\begin{split} K(\epsilon,t) &= \{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl}, t) \leq 1 - \epsilon \\ \text{or} \quad \vartheta(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl}, t) \geq \epsilon \} \\ &= \{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : |\Delta^m y_{jkl}| \geq \frac{\epsilon t}{1-\epsilon} > 0 \\ &= \{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : |\Delta^m y_{jkl}| = jkl \\ &= \{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : |\Delta^m y_{jkl}| \geq \frac{\epsilon t}{1-\epsilon} > 0 \\ &= \{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : j_r - [|\sqrt{h_r}|] + 1 \leq j \leq j, \\ &\quad k_s - [|\sqrt{h_s}|] + 1 \leq k \leq k_s \\ \text{and} \qquad l_t - [|\sqrt{h_t}|] + 1 \leq l \leq l_t \} \end{split}$$

and so, we get

$$\lim_{r,s,t} \frac{1}{h_r,h_s,h_t} \mid \left\{ (j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : j_r - \left[\left| \sqrt{h_r} \right| \right] + 1 \le j \le j_r$$

$$k_s - \left[\left| \sqrt{h_s} \right| \right] + 1 \le k \le k_s$$
and
$$l_t - \left[\left| \sqrt{h_t} \right| \right] + 1 \le l \le l_t \right\}$$

$$\le \lim_{r,s,t} \frac{\sqrt{h_r}\sqrt{h_s}\sqrt{h_t}}{h_rh_sh_t} = 0$$

Hence $S_{\theta_{j,k,l}}^{(\varphi,\vartheta)^n} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = 0$. By the above defined sequence $(\Delta^m y_{jkl})$, we get

$$\varphi(f_1, f_2, ..., f_{n-1}, \Delta^m x_{jkl}, t) = \begin{cases} \frac{t}{t+|jkl|}, & \text{for } r - \left[\left|\sqrt{h_r}\right|\right] + 1 \le j \le j_r \\ k_s - \left[\left|\sqrt{h_s}\right|\right] + 1 \le k \le k_s \\ & \text{and } l_t - \left[\left|\sqrt{h_t}\right|\right] + 1 \le l \le l_t \\ 0, & \text{otherwise.} \end{cases}$$

i.e $\varphi(f_1, f_2, ..., f_{n-1}, \Delta^m x_{jkl}, t) \le 1, \quad \forall j, k, l.$ And

$$\vartheta\left(f_{1}, f_{2}, ..., f_{n-1}, \Delta^{m} x_{jkl}, t\right) = \begin{cases} \frac{|jkl|}{t+|jkl|}, & \text{for } j_{r} - \left[|\sqrt{h_{r}}|\right] + 1 \leq j \leq j_{r}, \\ k_{s} - \left[|\sqrt{h_{s}}|\right] + 1 \leq k \leq k_{s} \\ & \text{and } l_{t} - \left[|\sqrt{h_{t}}|\right] + 1 \leq l \leq l_{t} \\ 0, & \text{otherwise.} \end{cases}$$

$$\begin{split} \text{i.e } \vartheta \left(f_1, f_2, ..., f_{n-1}, \Delta^m x_{jkl}, t \right) &\geq 0, \quad \forall j, k, l. \\ \text{This shows that } (\varphi, \vartheta)^n - \lim_{j,k,l \to \infty} \Delta^m y_{jkl} \neq 0. \end{split}$$

THEOREM 3.6. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFnNS with norm $(\varphi, \vartheta)^n$ and $\theta_{j,k,l}$ be a triple lacunary sequence. Then $S_{\theta_{j,k,l},\vartheta} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi \iff$ there exists a set $P = \{(j_a, k_b, l_c) : a, b, c = 1, 2, 3, \ldots\} \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ such that $\delta(P) = 1$ and $(\varphi, \vartheta)^n - \lim_{j_a, k_b, l_c \to \infty} \Delta^m y_{j_a k_b l_c} = \xi.$

Proof. Assume that $S_{\theta_{j,k,l}}^{(\varphi,\vartheta)^n} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$. For t > 0 and $\alpha \in \mathbb{N}$, we take $M(\alpha,t) = \{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t > 1 - 1/\alpha \text{ and } \vartheta(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t) < 1/\alpha\}$, and

$$K(\alpha, t) = \{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t) \le 1 - 1/\alpha$$

or

$$\vartheta\left(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t\right) \ge 1/\alpha\},\$$

as $S_{\theta_{j,k,l}}^{(\varphi,\vartheta)^n} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$, then $\delta_3(K(\alpha,t)) = 0$. Also, for any t > 0 and $\alpha \in \mathbb{N}$, evidently we get $M(\alpha,t) \supset M(\alpha+1,t)$, and

(3.1)
$$\delta_3(M(\alpha, t)) = 1,$$

For $(j, k, l) \in M(\alpha, t)$, we prove $(\varphi, \vartheta)^n - \lim_{j_a, k_b, l_c \to \infty} \Delta^m y_{j_a k_b l_c} = \xi$.

357

On the contrary, suppose that triple sequence $y = (y_{jkl})$ is not Δ^m -convergent to ξ for all $(j, k, l) \in M(\alpha, t)$. So, there exists some $\alpha > 0$ and $k_0 \in \mathbb{N}$ such that

$$\varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t) \leq 1 - \rho$$

or $\vartheta(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t) \geq \rho$ for all $j, k, l \geq k_0$
 $\Longrightarrow \varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t) \geq 1 - \rho$ and $\vartheta(\Delta^m y_{jkl} - \xi, t) \leq \rho$ for all $j, k, l \geq k_0$
Therefore, $\delta_3\left(\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t) \geq 1 - \rho$ and $\vartheta(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t) \leq \rho \}) = 0$
i.e. $\delta_3(M(\rho, t)) = 0.$ Since $\rho > 1/\alpha$, then $\delta_3(M(\alpha, t)) = 0$ as $M(\alpha, t) \subset M(\rho, t)$, which is a contradiction to (3.1). This shows that there exists a set $M(\alpha, t)$ for which $\delta_3(M(\alpha, t)) = 1$ and the triple sequence $y = (y_{jkl})$ is statistically Δ^m -convergent to ξ .
Conversely, suppose there exists a subset $P = \{(j_a, k_b, l_c) : a, b, c = 1, 2, 3, \ldots\} \subseteq \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ with $\delta_3(P) = 1$

and $(\varphi, \vartheta)^n - \lim_{j_a, k_b, l_c \to \infty} \Delta^m y_{j_a k_b l_c} = \xi$. i.e. for given $\rho > 0$ and any t > 0 we have $N_0 \in \mathbb{N}$, which gives

$$\varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t) > 1 - \rho$$

and

$$\vartheta\left(f_1, f_2, \dots, f_{n-1}, \Delta^m y_{jkl} - \xi, t\right) < \rho \text{ for all } j, k, l \ge N_0$$

Now, let $K(\rho, t) = \{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t) \leq 1 - \rho$ or $\vartheta(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t) \geq \rho\}\}$. Then,

$$K(\rho, t) \subseteq \mathbb{N} - \{(j_{N_0+1}, k_{N_0+1}, l_{N_0+1}), \ldots\} \cdot \operatorname{As} \delta_3(P) = 1 \Longrightarrow \delta_3(K(\alpha, t)) \leq 0.$$

Hence, $S^{(\varphi, \vartheta)^n}_{\theta_{j,k,l}} - \lim_{j,k,l \to \infty} \Delta^m y_{jkl} = \xi.$

THEOREM 3.7. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm $(\varphi, \vartheta)^n$ and $\theta_{j,k,l}$ be a triple lacunary sequence. Let $y = (y_{jkl})$ be any triple sequence. Then $S^{(\varphi,\vartheta)^n}_{\theta_{j,k,l}} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi \iff$ there is a triple sequence $x = (x_{jkl})$ such that $(\varphi, \vartheta)^n - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$ and $\delta_3\left(\{(j,k,l)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\Delta^m y_{jkl}=\Delta^m x_{jkl}\}\right) = 1$

Proof. Assume that $S_{\theta_{j,k,l}}^{(\varphi,\vartheta)^n} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$. By Theorem (3.3), we set

$$P = \{(j_a, k_b, l_c) : a, b, c = 1, 2, 3, \ldots\} \subseteq \mathbb{N} \times \mathbb{N} \times \mathbb{N}$$

with $\delta_3(P) = 1$ and $(\varphi, \vartheta)^n - \lim_{j,k,l \to \infty} \Delta^m y_{j_a k_b l_c} = \xi$. Consider the sequence

$$\Delta^m x_{jkl} = \begin{cases} \Delta^m y_{jkl}, & (j,k,l) \in P\\ \xi, & \text{otherwise,} \end{cases}$$

which gives the required result.

Conversely, consider $x = (x_{jkl})$ and $z = (z_{jkl})$ in X with $(\varphi, \vartheta)^n - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$ and $\delta_3\left(\left\{(j,k,l)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\Delta^m_{yjkl}=\Delta^m x_{jkl}\right\}\right) = 1$. Then for each $\epsilon > 0$ and t > 0,

$$\{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t) \le 1 - \epsilon$$

or

$$\vartheta\left(f_1, f_2, \dots, f_{n-1}, \Delta^m y_{jkl} - \xi, t\right) \ge \epsilon \} \subseteq A \cup B$$

where

$$A = \{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t) \le 1 - \epsilon$$

or

$$\vartheta\left(f_1, f_2, \dots, f_{n-1}, \Delta^m y_{jkl} - \xi, t\right) \ge \epsilon\}$$

and

$$B = \{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : (\Delta^m y_{jkl} \neq \Delta^m x_{jkl})\}.$$

Since $(\varphi, \vartheta)^n - \lim_{j,k,l\to\infty} \Delta^m y_{j_ak_bl_c} = \xi$ then the set A contains at most finitely many terms. Also $\delta_3(B) = 0$ as $\delta_3(B^c) = 1$ where $B^c = \{(j,k,l)\mathbb{N} \times \mathbb{N} \times \mathbb{N} : \Delta^m y_{jkl} = \Delta^m x_{jkl}\}$. Therefore

$$\delta_{3}\left\{\left(j,k,l\right)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\varphi\left(f_{1},f_{2},...,f_{n-1},\Delta^{m}y_{jkl}-\xi,t\right)\leq1-\epsilon\right.$$

or

$$\vartheta \left(f_1, f_2, \dots, f_{n-1}, \Delta^m y_{jkl} - \xi, t \right) \ge \epsilon \}.$$

We get $S_{\theta_{j,k,l}}^{(\varphi,\vartheta)^n} - \lim_{j,k,l \to \infty} \Delta^m y_{jkl} = \xi.$

THEOREM 3.8. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm $(\varphi, \vartheta)^n$ and $\theta_{j,k,l}$ be a triple lacunary sequence. Let $y = (y_{jkl})$ be any triple sequence. Then $S^{(\varphi,\vartheta)^n}_{\theta_{j,k,l}} - \lim_{\substack{j,k,l\to\infty}} \Delta^m y_{jkl} = \xi \iff$ there exists two triple sequence $z = (z_{jkl})$ and $x = (x_{jkl})$ in X such that $\Delta^m y_{jkl} = \Delta^m z_{jkl} + \Delta^m x_{jkl}$ for all $(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ where $(\varphi, \vartheta)^n - \lim_{j,k,l\to\infty} \Delta^m y_{jakblc} = \xi$ and $S^{(\varphi,\vartheta)^n}_{\theta_{j,k,l}} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$.

Proof. Assume that $S^{(\varphi,\vartheta)^n}_{\theta_{j,k,l}} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$. By Theorem (3.5), we set $P = \{(j_a, k_b, l_c) : a, b, c = 1, 2, 3, \ldots\} \subseteq \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ wit $\delta_3(P) = 1$ and $(\varphi, \vartheta)^n - \lim_{j,k,l\to\infty} \Delta^m y_{ja} k_b l_c = \xi$.

Consider two triple sequences $z = (z_{jkl})$ and $x = (x_{jkl})$, then

$$\Delta^m z_{jkl} = \begin{cases} \Delta^m y_{jkl}, & (j,k,l) \in P\\ \xi, & \text{otherwise.} \end{cases}$$

and

$$\Delta^m x_{jkl} = \begin{cases} 0, & (j,k,l) \in P\\ \Delta^m y_{jkl} - \xi, & \text{otherwise,} \end{cases}$$

which gives the required result.

Conversely, consider $x = (x_{jkl})$ and $z = (z_{jkl})$ in X with $\Delta^m y_{jkl} = \Delta^m z_{jkl} + \Delta^m x_{jkl}$ for all $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ where $(\varphi, \vartheta)^n - \lim_{j,k,l \to \infty} \Delta^m y_{jkl} = \xi$ and $S^{(\varphi, \vartheta)^n}_{\theta_{j,k,l}} - \lim_{j,k,l \to \infty} \Delta^m y_{jkl} = \xi$. Then we get result using Theorem (3.6) and Theorem (3.7). \Box

THEOREM 3.9. A triple sequence $y = (y_{jkl})$ in IFNS $(X, \varphi, \vartheta, \otimes, \odot)$ is lacurary Δ^m_{-} statistically convergent with respect to $(\varphi, \vartheta)^n$ if and only if it is lacunary Δ^m_{-} statistically Cauchy with respect to $(\varphi, \vartheta)^n$.

Proof. Let $S_{\theta_{j,k,l}}^{(\varphi,\vartheta)^n} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$. Then, for each $\epsilon > 0$ and t > 0, take $\alpha > 0$ such that $(1-\alpha) \otimes (1-\alpha) > 1-\epsilon$ and $\alpha \odot \alpha < \epsilon$.

Let $K(\alpha, t) = \{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t/2) \leq 1 - \alpha \text{ or } \vartheta(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t/2) \geq \alpha \}$, therefore $\delta_3(K(\alpha, t)) = 0$ and $\delta_3([K(\alpha, t)]^c) = 1$.

Let $M(\epsilon, t) = \{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \Delta^m y_{rsu}, t) \le 1 - \epsilon$ or $\vartheta(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \Delta^m y_{rsu}, t) \ge \epsilon\}.$

Now, we prove $M(\epsilon, t) = K(\epsilon, t)$, for this if $(j, k, l) \in M(\epsilon, t) = K(\epsilon, t)$. Then we get $\varphi(f_1, f_2, ..., f_{n-1}, \Delta_p y_{jkl} - \xi, t/2) \leq 1 - \alpha$ or $\vartheta(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t/2) \geq \alpha$. Also

$$\begin{aligned} 1 &- \epsilon \\ &\geq \varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \Delta^m y_{rsu}, t) \\ &\geq \varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t/2) \otimes \vartheta(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t/2) \\ &> (1 - \alpha) \otimes (1 - \alpha) \\ &> 1 - \epsilon \end{aligned}$$

and

$$\begin{aligned} \epsilon &\geq \vartheta(f_1, f_2, \dots, f_{n-1}, \Delta_p y_{jkl} - \Delta_p y_{rsu}, t) \\ &\leq \vartheta(f_1, f_2, \dots, f_{n-1}, \Delta_p y_{jkl} - \xi, t/2) \odot \varphi(f_1, f_2, \dots, f_{n-1}, \Delta_p y_{jkl} - \xi, t/2) \\ &< \alpha \odot \alpha \\ &< \epsilon. \end{aligned}$$

which is not possible. Therefore $M(\epsilon, t) \subset K(\alpha, t)$ and $\delta_3(M(\epsilon, t)) = 0$ i.e. $y = (y_{jkl})$ is Δ^m -statistically convergent with respect to (φ, ϑ) .

Coversely, assume that $y = (y_{jkl})$ is Δ^m -statiscally Cauchy with respect to $(\varphi, \vartheta)^n$ but not Δ^m -statiscally convergent with respect to $(\varphi, \vartheta)^n$. Thus for $\epsilon > 0$ and t > 0, $\delta_3(M(\epsilon, t)) = 0$, where

 $M(\epsilon, t) = \{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \Delta^m y_{j_0k_0l_0}, t) \le 1 - \epsilon$

$$\vartheta(f_1, f_2, \dots, f_{n-1}, \Delta^m y_{jkl} - \Delta^m y_{j_0k_0l_0}, t) \ge \epsilon\}$$

Take $\alpha > 0$ such that $(1 - \alpha) \otimes (1 - \alpha) > 1 - \epsilon$ and $\alpha \odot \alpha < \epsilon$. Also, $\delta_3(K(\alpha, t)) = 0$, where $K(\alpha, t) = \{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t/2) \ge 1 - \epsilon$ or $\vartheta(f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t/2) < \epsilon\}$. Now

$$\begin{aligned} \varphi\left(f_{1}, f_{2}, ..., f_{n-1}, \Delta^{m} y_{jkl} - \Delta^{m} y_{j_{0}k_{0}l_{0}}, t\right) \\ &\geq \varphi\left(f_{1}, f_{2}, ..., f_{n-1}, \Delta^{m} y_{jkl} - \xi, t/2\right) \otimes \vartheta\left(f_{1}, f_{2}, ..., f_{n-1}, \Delta^{m} y_{j_{0}k_{0}l_{0}} - \xi, t/2\right) \\ &> (1 - \alpha) \otimes (1 - \alpha) \\ &> 1 - \epsilon \end{aligned}$$

and

$$\vartheta (f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \Delta^m y_{j_0k_0l_0}, t)
\leq \vartheta (f_1, f_2, ..., f_{n-1}, \Delta^m y_{jkl} - \xi, t/2) \odot \varphi (f_1, f_2, ..., f_{n-1}, \Delta^m y_{j_0k_0l_0} - \xi, t/2)
< \alpha \odot \alpha
< \epsilon.$$

Therefore, $\delta_3([M(\epsilon, t)]^c) = 0$ i.e. $\delta_3(M(\epsilon, t)) = 1$, which is a contradiction as $y = (y_{jkl})$ is Δ^m -statistically cauchy. Hence, $y = (y_{jkl})$ is Δ^m -statiscally convergent with respect to $(\varphi, \vartheta)^n$.

4. Conclusion.

This work establishes certain conclusions and defines Lacunary Δ^m -statistical convergence on intuitionistic fuzzy n-normed space. Since any regular norm implies an intuitionistic fuzzy norm, the findings are more pervasive than in analogous normed spaces.

5. Declaration

Conflicts of interests: There is no conflict of interest.

Availability of data and materials: This paper has no associated data.

References

- R.Antal, V.Kumar and B.Hazarika, On Δ^m-statistical convergence double sequences in intuionistic fuzzy normed spaces, Proyectiones journal of mathematics 41 (3) (2022), 697–713.
- [2] J.Connor and J.Kline, On statistical limit points and the consistency of statistical convergence, Journal of mathematical analysis and applications 197 (2) (1996), 392–399.
- [3] O.Duman, M.K.Khan and C.Orhan, A-statistical convergence of approximating operators, Mathematical inequalities and applications 6 (2003), 689–700.
- [4] M.Et and R.Colak, On some generalized difference difference sequence spaces, Soochow journal of mathematical 24 (4) (1995), 377–386.
- [5] A.Esi, Statistical convergence of triple sequences in topological groups, Annals of the University of Craiova-Mathematics and Computer Science Series 40 (1) (2013), 29–33.
- [6] A.Esi and E.Savas, On Lacunary Statistically Convergent Triple Sequences in Probabilistic Normed Space, Applied mathematics and information sciences 5 (2015), 2529–2535.
- [7] A.Esi, Generalized difference sequence spaces defined by Orlicz functions, General Mathematics 17 (2) (2009), 53–66.
- [8] A.Esi, Strongly generalized difference $[V^{\lambda}, \Delta^m, p]$ -summable sequence spaces defined by a sequence of moduli, Nihonkai Mathematical Journal **20** (2) (2009), 99–108.
- [9] A.Esi and K.Ozdemir, Generalized Δ^m -statistical convergence in Probabilistic Normed Space, Journal of Computational Analysis and Applications **13** (5) (2011), 923–932.
- [10] A.Esi and B.C.Tripathy, Generalized Strongly difference convergent sequences associated with multiplier sequences, Mathematica Slovaca 57 (4) (2007), 339–348.
- [11] H.Fast, Sur la convergence statistique, Colloquium Mathematicum 2 (1951), 241–244.
- [12] J.A.Fridy and M.K.Khan, Tauberian theorems via statistical convergence, Journal of mathematical analysis and applications 228 (1) (1998), 73–95.
- [13] J.A.Fridy and C.Orhan, Lacunary statistical summability, Journal of mathematical analysis and applications 173 (2) (1993), 497–504.
- [14] T.Jalal and I.A.Malik, *I-convergent triple sequence spaces over n-normed space*, Asia pacific journal of mathematics 5 (2) (2018), 233–242.
- [15] T.Jalal and I.A.Malik, Some new triple sequence spaces over n-normed space, Proyectiones (Antofagasta) 37 (3) (2018), 547–564.
- [16] T.Jalal and I.A.Malik, I-Convergence of triple difference sequence spaces over n-normed space, Tbilisi mathematical journal 11 (4) (2018), 93–102

On lacunary Δ^m -statistical convergence of triple sequence in IFn-normed space. 361

- [17] T.Jalal and I.A.Malik, Topological and Algebraic Properties of Triple n-normed Spaces, Proceedings of the fifth international conference on mathematics and computing, Springer Singapore (2021),187–196.
- [18] V.A.Khan, M.I.Idrisi and M.Ahmad, On I-convergent triple sequence spaces defined by a compact operator and an Orlicz function, TWMS Journal of Applied and Engineering Mathematics 2 (4) (2021), 1012–1022.
- [19] V.A.Khan, M.I.Idrisi and U.Tuba, On ideal convergence of triple sequences in intuitionistic Fuzzy normed space defined by compact operator, Proyecciones (Antofagasta) 40 (5) (2021), 1227–1247.
- [20] H.Kizmaz, On certain sequence vspaces, Canadian mathematical bulletian 24 (2) (1981), 169– 176.
- [21] M.Mursaleen and S.A.Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos, solitons and fractals 41 (5) (2009), 2414–2421.
- [22] R.Saadati and J.H.Park, On the intuitionistic fuzzy topological spaces, Chaos, solitons and fractals 27 (2) (2006), 331–344.
- [23] A.Sahiner, M.Gurdal and F.K.Duden, Triple sequences and their statistical convergence, Türkiye klinikleri psikiyatri dergisi 8 (2) (2007), 49–55.
- [24] B.Schweizer and A.Sklar, Statistical Metric Spaces, Pacific journal of mathematics 10 (1) (1960), 313–334.
- [25] M.Sen and P.Debnath, Lacunary statistical convergence in intuitionistic fuzzy n-normed spaces, Math. Comput. Model 54 (2011), 2978–2985.
- [26] B.C.Tripathy, A.Esi and B.Tripathy, On a new type of generalized difference cesaro sequence spaces, Soochow Journal of Mathematics 31 (3) (2005), 333–340.
- [27] B.C.Tripathy and A.Esi, A new type difference sequence spaces, International Journal of Science and Technology 1 (1) (2006), 11–14.
- [28] L.A.Zadeh, *Fuzzy sets*, Information and control 8 (3) (1965), 338–353.

Asif Hussain Jan

Department of Mathematics, National Institute of Technology, Hazratbal, Srinagar -190006, Jammu and Kashmir, India. *E-mail*: asif_06phd20@nitsri.net

Tanweer Jalal

Department of Mathematics, National Institute of Technology, Hazratbal, Srinagar -190006, Jammu and Kashmir, India. *E-mail*: tjalal@nitsri.ac.in