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CERTAIN SIMPSON-TYPE INEQUALITIES FOR

TWICE-DIFFERENTIABLE FUNCTIONS BY CONFORMABLE

FRACTIONAL INTEGRALS

Fatih Hezenci∗ and Hüseyin Budak

Abstract. In this paper, an equality is established by twice-differentiable convex
functions with respect to the conformable fractional integrals. Moreover, several
Simpson-type inequalities are presented for the case of twice-differentiable convex
functions via conformable fractional integrals by using the established equality. Fur-
thermore, our results are provided by using special cases of obtained theorems.

1. Introduction & preliminaries

The theory of convexity plays a interesting role in many areas of research. This
theory offers us with a powerful tool for solving sundry problems that appear in
applied and pure mathematics. In recent years, the concept of convexity has been
generalized and improved in many directions.

Definition 1.1. [1] Let I denote an interval of real numbers. Then, a function
f : I → R is said to be convex, if

f (tx+ (1− t) y) ≤ tf (x) + (1− t) f (y)

is valid ∀x, y ∈ I and ∀t ∈ [0, 1].

Sarikaya et al. [2] introduced Simpson-type inequality for the case of twice-differentiable
convex function, and they used the following lemma to prove the main equalities and
inequalities.

Lemma 1.2 (See [2]). Let f : I ⊂ R → R be twice-differentiable function on Io

such that f ′′ ∈ L1 [a, b] , where a,b ∈ I with a < b. Then, we have the following
equality
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Sarikaya et al. [2] obtain several inequalities of Simpson-type based on convexity.
They also established the following Simpson-type inequality.

Theorem 1.3 (See [2]). Assume that the assumptions of Lemma 1.2 hold. If |f ′′|
is convex on [a, b] , then the following inequality∣∣∣∣16
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is valid.

Theorem 1.4 (See [3]). Let us consider that the conditions of Lemma 1.2 hold.
If |f ′′|q is convex on [a, b], then the following inequality holds:∣∣∣∣16
[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣
≤ (b− a)2

48

(∫ 1

0

∣∣1− 4t+ 3t2
∣∣p dt) 1

p

[(
|f ′′ (a)|q + 3 |f ′′ (b)|q

4

) 1
q

+

(
3 |f ′′ (a)|q + |f ′′ (b)|q

4

) 1
q

]

≤ (b− a)2

48

(
4

∫ 1

0

∣∣1− 4t+ 3t2
∣∣p dt) 1

p [
|f ′′(a)|+ |f ′′(b)|

]
,

where 1
p

+ 1
q

= 1.

Theorem 1.5 (See [2, 4]). Suppose that the assumptions of Lemma 1.2 hold. If
|f ′′|q is convex on [a, b], then the following inequality holds:∣∣∣∣∣∣16
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It is known that fractional analysis can be considered as a generalization of classi-
cal analysis. Fractional analysis has been investigated by some researchers and they
have studied the fractional derivatives and integrals in variant ways with several no-
tations. Although the expressions of these generalized definitions can be transformed
into each other, but have variant physical meanings. The popularity of this field con-
tinues to increase very strongly in resent years (see [5, 6]). Fractional derivatives are
also used to model a wide range of mathematical biology, as well as physics, and en-
gineering problems [7–9]. It is well known that the first fractional integral operator is
the Riemann-Liouville fractional integral operator. Using only the derivative’s funda-
mental limit formulation, a newly well-behaved straightforward fractional derivative
known as the conformable derivative is developed in paper [10]. Furthermore, several
significant requirements that can’t be fulfilled by the Riemann-Liouville and Caputo
definitions are fulfilled by the conformable derivative. By the way, Abdelhakim [11]
shows that the conformable approach in [10] can’t yield good results when compared
to the Caputo definition for specific functions. This flaw in the conformable definition
is avoided by sundry extensions of the conformable approach [12,13].
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The basic definitions of Riemann-Liouville integrals and conformable integrals,
which are used throughout the paper, are given as follows:

The gamma function, beta function, and incomplete beta function are defined

Γ (x) :=

∞∫
0

tx−1e−tdt,

B (x, y) :=

1∫
0

tx−1 (1− t)y−1 dt,

and

B (x, y, r) :=

r∫
0

tx−1 (1− t)y−1 dt,

respectively for x, y ∈ R. Kilbas et al. [14] presented fractional integrals, also called
Riemann-Liouville integrals as follows:

Definition 1.6. [14] The Riemann-Liouville integrals Jβa+f(x) and Jβb−f(x) of
order β > 0 are given by

(1) Jβa+f(x) =
1

Γ(β)

∫ x

a

(x− t)β−1 f(t)dt, x > a

and

(2) Jβb−f(x) =
1

Γ(β)

∫ b

x

(t− x)β−1 f(t)dt, x < b,

respectively. Here, f ∈ L1[a, b] and Γ denotes the Gamma function. The Riemann-
Liouville integrals coincides with the classical integrals in the case β = 1.

The fractional version of Simpson-type inequalities for the case of twice-differentiable
functions was proved in [3] as follows:

Lemma 1.7 (See [3]). If f : [a, b]→ R is an absolutely continuous function on (a, b)
so that f ′′ ∈ L1 [a, b] with a < b, then the following equality holds:
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Theorem 1.8 (See [3]). Let us note that the assumptions of Lemma 1.7 are valid.
Let us also note that the mapping |f ′′| is convex on [a, b]. Then, we have the following
inequality∣∣∣∣∣16
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≤ (b− a)2

8 (β + 1)
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where Ω1 is defined by
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Theorem 1.9 (See [3]). Let us consider that the assumptions of Lemma 1.7 hold.

If the mapping |f ′′|q, q > 1 is convex on [a, b], then we have the following inequality∣∣∣∣∣16
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Here, 1
p

+ 1
q

= 1.

Theorem 1.10 (See [3]). Suppose that the assumptions of Lemma 1.7 hold. If
the mapping |f ′′|q, q ≥ 1 is convex on [a, b], then we have the following inequality∣∣∣∣∣16
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where Ω1 is defined as in Theorem 1.8 and Ω2 is defined by

Ω2(β) =

1∫
0

∣∣∣∣1− 2β

3
+

2 (β + 1)

3
t− tβ+1

∣∣∣∣ tdt.
Remark 1.11. For classical integrals,

(i) If we choose β = 1, then Lemma 1.7 coincides with Lemma 1.2.
(ii) Let us consider β = 1. Then, Theorem 1.8 becomes to Theorem 1.3.

(iii) For β = 1, Theorem 1.9 leads to Theorem 1.4.
(iv) Considering β = 1, then Theorem 1.10 reduces to Theorem 1.5.
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In paper [15], Jarad et al. established the following fractional conformable inte-
gral operators. They also derived certain characteristics and relationships between
these operators and several other fractional operators in the literature. The fractional
conformable integral operators are defined by as follows.

Definition 1.12. [15] The fractional conformable integral operator β
aJ

αf(x) and
βJαb f(x) of order β ∈ R+ and α ∈ (0, 1] are given by

(3) βJ α
a+f(x) =
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(
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and

(4) βJ α
b−f(x) =

1

Γ(β)

∫ b

x

(
(b− x)α − (b− t)α

α

)β−1
f(t)

(b− t)1−α
dt, t < b,

respectively for f ∈ L1[a, b].

Consider that the fractional integral in (3) becomes to the Riemann-Liouville frac-
tional integral in (1) if we choose α = 1. Moreover, the fractional integral in (4) is
equal to the Riemann-Liouville fractional integral in (2) if we take α = 1. It is referred
the reader to [16–19] for a better understanding of fractional integral inequalities.

This article is organized according to the following plan: In section 2, an equality
will be established for the case of twice-differentiable functions by the conformable
fractional integrals. Furthermore, we will also show that the newly established equali-
ties are the generalization of the existing Simpson-type inequalities. Finally, summary
and concluding remarks are presented in Section 3.

2. Main results

Lemma 2.1. Note that f : [a, b]→ R is an absolutely continuous function on (a, b)
so that f ′′ ∈ L1 [a, b] with a < b. Then, the following equality holds:
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Then, similar to foregoing process, we have
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2
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If we substitute equalities (6) and (7) and multiply (b−a)2αβ
4

simultaneously, then we
can easily have

(b− a)2 αβ

4
[I1 + I2] =
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This ends the proof of Lemma 2.1.

Remark 2.2. In Lemma 2.1, we have the equalities as follows:

(i) If we assign α = 1 in (5), then Lemma 2.1 equals to Lemma 1.7.
(ii) Let us note α = 1 and β = 1 in (5). Then, Lemma 2.1 becomes to Lemma 1.2.

Theorem 2.3. Consider that f : [a, b]→ R is a differentiable function on (a, b) so
that f ′′ ∈ L1 [a, b]. If |f ′′| is convex on [a, b], then the following inequality∣∣∣∣∣2αβ−1αβΓ (β + 1)

(b− a)αβ

[
βJ αb−f

(
a+ b

2

)
+ βJ αa+f

(
a+ b

2

)]
− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣
≤ (b− a)2 αβ

4
ϕ1 (α, β)

[∣∣f ′′ (a)
∣∣+
∣∣f ′′ (b)∣∣]

(8)

is valid. Here,

ϕ1 (α, β) =

1∫
0

∣∣∣∣∣∣
1∫
t

[
1

3αβ
− 1

2

(
1− (1− s)α

α

)β]
ds

∣∣∣∣∣∣ dt.
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It is known that |f ′′| is convex on [a, b]. Then, it yields∣∣∣∣∣2αβ−1αβΓ (β + 1)
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1
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)β]
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 .

Hence, the proof of Theorem 2.3 is completed.

Remark 2.4. In Theorem 2.3, we get the inequalities as follows:

(i) If it is chosen α = 1 in (8), then Theorem 2.3 reduces to Theorem 1.8.
(ii) For α = 1 and β = 1 in (8), then Theorem 2.3 is equal to Theorem 1.3.

Theorem 2.5. If f : [a, b] → R is a differentiable function on (a, b) such that
f ′′ ∈ L1 ([a, b]) and |f ′′|q is convex on [a, b] with q > 1, then the following inequality
holds:∣∣∣∣∣2αβ−1αβΓ (β + 1)
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+
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4
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4
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) 1
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(10)

Here, 1
p

+ 1
q

= 1 and

ψβα (p) =

1∫
0

∣∣∣∣∣∣
1∫
t

[
1

3αβ
− 1

2

(
1− (1− s)α

α

)β]
ds

∣∣∣∣∣∣
p

dt.

Proof. Let us apply Hölder inequality in (9). Then, it yields∣∣∣∣∣2αβ−1αβΓ (β + 1)

(b− a)αβ

[
βJ αb−f

(
a+ b

2

)
+ βJ αa+f

(
a+ b

2

)]
− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣
≤ (b− a)2 αβ

4

 1∫
0

∣∣∣∣∣∣
1∫
t

[
1

3αβ
− 1

2

(
1− (1− s)α

α

)β]
ds

∣∣∣∣∣∣
p

dt


1
p

×


 1∫

0

∣∣∣∣f ′′(1− t
2

a+
1 + t

2
b

)∣∣∣∣q dt


1
q

+

 1∫
0

∣∣∣∣f ′′(1 + t

2
a+

1− t
2

b

)∣∣∣∣q dt


1
q

 .
From the fact that |f ′′|q is convex on [a, b], we have∣∣∣∣∣2αβ−1αβΓ (β + 1)

(b− a)αβ

[
βJ αb−f

(
a+ b

2

)
+ βJ αa+f

(
a+ b

2

)]
− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣
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≤ (b− a)2 αβ

4

 1∫
0

∣∣∣∣∣∣
1∫
t

[
1

3αβ
− 1

2

(
1− (1− s)α

α

)β]
ds

∣∣∣∣∣∣
p

dt


1
p

×


 1∫

0

(
1− t

2

∣∣f ′′ (a)
∣∣q +

1 + t

2

∣∣f ′′ (b)∣∣q) dt


1
q

+

 1∫
0

(
1 + t

2

∣∣f ′′ (a)
∣∣q +

1− t
2

∣∣f ′′ (b)∣∣q) dt


1
q



=
(b− a)2 αβ

4

 1∫
0

∣∣∣∣∣∣
1∫
t

[
1

3αβ
− 1

2

(
1− (1− s)α

α

)β]
ds

∣∣∣∣∣∣
p

dt


1
p

×

[(
|f ′′ (a)|q + 3 |f ′′ (b)|q

4

) 1
q

+

(
3 |f ′′ (a)|q + |f ′′ (b)|q

4

) 1
q

]
.

Consider η1 = |f ′′ (a)|q , %1 = 3 |f ′′ (b)|q , η2 = 3 |f ′′ (a)|q , and %2 = |f ′′ (b)|q . If we

apply the inequality
n∑
k=1

(ηk + %k)
s ≤

n∑
k=1

ηsk +
n∑
k=1

%sk with 0 ≤ s < 1, then the proof of

Theorem 2.5 is finished simultaneously.

Remark 2.6. In Theorem 2.5, we have the inequalities as follows:

(i) If we take α = 1 in (10), then Theorem 2.5 coincides with to Theorem 1.9.
(ii) Let us consider α = 1 and β = 1 in (10). Then, Theorem 2.5 leads to Theorem

1.4.

Theorem 2.7. Let f : [a, b] → R denote a differentiable function on (a, b) such
that f ′′ ∈ L1 ([a, b]) and |f ′′|q be convex on [a, b] with q ≥ 1. Then, the following
inequality holds:∣∣∣∣∣2αβ−1αβΓ (β + 1)

(b− a)αβ

[
βJ αb−f

(
a+ b

2

)
+ βJ αa+f

(
a+ b

2

)]
− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣
≤ (b− a)2 αβ

4
(ϕ1 (α, β))

1− 1
q

×

[(
(ϕ1 (α, β)− ϕ2 (α, β))

2

∣∣f ′′ (a)
∣∣q +

(ϕ1 (α, β) + ϕ2 (α, β))

2

∣∣f ′′ (b)∣∣q) 1
q

+

(
(ϕ1 (α, β) + ϕ2 (α, β))

2

∣∣f ′′ (a)
∣∣q +

(ϕ1 (α, β)− ϕ2 (α, β))

2

∣∣f ′′ (b)∣∣q) 1
q

]
,

(11)

where

ϕ2 (α, β) =

1∫
0

t

∣∣∣∣∣∣
1∫
t

[
1

3αβ
− 1

2

(
1− (1− s)α

α

)β]
ds

∣∣∣∣∣∣ dt.
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Proof. Applying the power-mean inequality in (9), we have∣∣∣∣∣2αβ−1αβΓ (β + 1)

(b− a)αβ

[
βJ αb−f

(
a+ b

2

)
+ βJ αa+f

(
a+ b

2

)]
− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣
≤ (b− a)2 αβ

4

 1∫
0

∣∣∣∣∣∣
1∫
t

[
1

3αβ
− 1

2

(
1− (1− s)α

α

)β]
ds

∣∣∣∣∣∣ dt
1− 1

q

×


 1∫

0

∣∣∣∣∣∣
1∫
t

[
1

3αβ
− 1

2

(
1− (1− s)α

α

)β]
ds

∣∣∣∣∣∣
∣∣∣∣f ′′(1− t

2
a+

1 + t

2
b

)∣∣∣∣q dt


1
q

+

 1∫
0

∣∣∣∣∣∣
1∫
t

[
1

3αβ
− 1

2

(
1− (1− s)α

α

)β]
ds

∣∣∣∣∣∣
∣∣∣∣f ′′(1 + t

2
a+

1− t
2

b

)∣∣∣∣q dt


1
q

 .
It is known that |f ′′|q is convex on [a, b]. Then, we have∣∣∣∣∣2αβ−1αβΓ (β + 1)

(b− a)αβ

[
βJ αb−f

(
a+ b

2

)
+ βJ αa+f

(
a+ b

2

)]
− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣
≤ (b− a)2 αβ

4


1
2∫

0

∣∣∣∣∣∣
t∫

0

[(
1− (1− 2s)α

α

)β
− 1

3αβ

]
ds

∣∣∣∣∣∣ dt


1− 1
q

×


 1∫

0

∣∣∣∣∣∣
1∫
t

[
1

3αβ
− 1

2

(
1− (1− s)α

α

)β]
ds

∣∣∣∣∣∣
(

1− t
2

∣∣f ′′ (a)
∣∣q +

1 + t

2

∣∣f ′′ (b)∣∣q) dt


1
q

+

 1∫
0

∣∣∣∣∣∣
1∫
t

[
1

3αβ
− 1

2

(
1− (1− s)α

α

)β]
ds

∣∣∣∣∣∣
(

1 + t

2

∣∣f ′′ (a)
∣∣q +

1− t
2

∣∣f ′′ (b)∣∣q) dt


1
q


=

(b− a)2 αβ

4
(ϕ1 (α, β))

1− 1
q

×

[(
(ϕ1 (α, β)− ϕ2 (α, β))

2

∣∣f ′′ (a)
∣∣q +

(ϕ1 (α, β) + ϕ2 (α, β))

2

∣∣f ′′ (b)∣∣q) 1
q

+

(
(ϕ1 (α, β) + ϕ2 (α, β))

2

∣∣f ′′ (a)
∣∣q +

(ϕ1 (α, β)− ϕ2 (α, β))

2

∣∣f ′′ (b)∣∣q) 1
q

]
,

which completes the proof of Theorem 2.7.

Remark 2.8. In Theorem 2.7, we obtain the inequalities as follows:

(i) Consider α = 1 in (11). Then, Theorem 2.7 reduces to Theorem 1.10.
(ii) If we select α = 1 and β = 1 in (11), then Theorem 2.7 is equal to Theorem 1.5.

3. Summary & concluding remarks

In the present paper, we have established an equality for the case of twice-differentiable
convex functions by using the conformable fractional integrals. In addition to this,
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sundry Simpson-type inequalities are proved with respect to twice-differentiable func-
tions. Moreover, several important inequalities are acquire with taking advantage of
the convexity, the Hölder inequality, and the power mean inequality. Furthermore,
we derive our results by using special cases of obtained theorems.

We hope that the ideas and techniques of this paper will inspire to mathematicians
working in this field. With the techniques used in the obtained inequalities, various
types of fractional integrals can be used to obtain new inequalities in the future. In
addition, new inequalities can be acquired by considering different order derivatives
of the functions. Furthermore, one can obtain sundry Simpson-type inequalities for
the case of convex functions by using quantum calculus.
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