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MULTIPLICITY RESULTS FOR SOME FOURTH ORDER
ELLIPTIC EQUATIONS

YINGHUA JIN* AND Q-HEUNG CHOI

ABSTRACT. In this paper we consider the Dirichlet problem for an
fourth order elliptic equation on a open set in RY. By using vari-
ational methods we obtain the multiplicity of nontrivial weak solu-
tions for the fourth order elliptic equation.

1. Introduction

In recent years, multiplicity of solutions for fourth order elliptic equa-
tions have been widely studied. In [5] the authors Lazer and McKenna
proved the existence of 2k — 1 solutions when 2 C R is an interval and
b > A\.(Ar — ¢), for the assumption of f(z,u) =b(u+ 1)T — 1 by global
bifurcation method, for the same f(x,u).Tarantello [10] showed by de-
gree theory that if b > A;(A; — ¢), then fourth order elliptic equation has
a solution u such that u(x) < 0 in Q, for f(z,u) = (u+ 1)T — 1 when
¢ < Ay. Choi and Jung [2] showed that fourth order elliptic equation has
only the trivial solution when Ay < ¢ < Axy; and the nonlinear term is
but(b < A1(A1 —¢)). Micheletti and Pistoia [5] showed that fourth order
elliptic equation has at least two solutions when ¢ > \; and the nonlinear
term is b[(u+1)"—1](b < A1 (A1 —c)). The other authors in [1,3,4,6,7,8,9]
studied the existence of multilple solutions of the semilinear problems
with Dirichlet boundary condition.
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In this paper we will study fourth order elliptic problem, when the
nonlinearity is replaced by a more general function au + f(u), by using
a variational method.

2. Preliminary results

We consider the problem of the multiplicity of solutions of the fourth
order elliptic equation:

A*u 4+ cAu = au + f(u) in €,

2.1
(2.1) u=0, Au=0 on 0f),

where € is a smooth open boundary set in RY, f : Q x R — R is
a Caratheodory’s function and ¢, € R. We will consider the Hilber
space H = H?*(Q) N HY(Q) and for every u and v in H we will set
(u,v)g = [ AulAv + [ VuVwv. Then H is a closed subspace of H?((2).

In order to study problem (2.1), we will follow a variational approach.
Consider

(29)  I(u):= % (/ (Au)? —c/\vuf) - %/u2+/F(u)

where F(u) = [ f(o)do.

Let C''(H, R) denote the set of all functionals which are Fréchet dif-
ferentiable and whose Fréchet derivatives are continuous on H. It is
easy to prove that I is a C! functional and its critical points are weak
solutions of problem (2.1). We respectively denote by (Ag)ren and by
(ex)ken the eigenvalues and the eigenfunctions of the problem

A%u + cAu = Au in €2,
u=0, Au=0 on Jf2.
Linking Theorem is of importance in critical point theory. Let E be a

Banach space. We introduce the set ® of mapping I'(t) € C(E %[0, 1], E)
with the following properties:

(2.3)

e (a) for each t € [0,1), I'(¢) is a homeomorphism of E onto itself
and T'(t)~! is continuous on E x [0, 1)

e (b)T(0)=1

e (c) for each I'(t) € ® there is a uy € E such that I'(1)u = ug for
all w € E and I'(t)u — g as t — 1 uniformly on bounded subsets
of E.
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A subset A of F links a subset B of F if AN B = () and for each
['(t) € ®, there is a t € (0,1] such that T'(t)AN B # (). We define the
following sets.

o S5,(Y)={z e Y[ |lz] = p},

¢ Ap(k7 S) = {u + U‘U’ S Hka v E Span(€k7 e 63)7 ||U + UH < p}7

o X,(k,s) ={u+vju e Hy,v e span(eg,---e5), ||lu+v|| = p} U{v|

u € Hy, [[ul] < p}.
Then the set S,(H;) and X,(k, s) is linking set.

We will use the following assumptions:

(fl) i;” —0 as ]u| — oo uniformly for x € Q;
(f2) lim f HUHQ

llullzr—0

The following is the main result of this paper.

THEOREM 2.1. Assume that (f1),(f2). Suppose that Ay < a < Agiq
and ¢ < Aqy. Then there exists a nontrivial critical point u of I which is
a forcing solution of problem (2.1).

THEOREM 2.2. Assume that (f1),(f2). Suppose that for a given k in
N one has Ay, < Apy1 < Ay. Then there exist positive constant § such
that if A, — 0 < a < Ay, problem (2.1) has at least 2 nontrivial solutions.

3. Proof of Theorem 2.1 and Theorem 2.2

DEFINITION 3.1. We say G satisfies the (PS) condition if any sequence
{ur} € H for which G(uy) is bounded and G'(ux) — 0 as k — oo
possesses a convergent subsequence.

The (PS) condition is a convenient way to build some “compactness”
into the functional G. Indeed observe that (P.S) implies that K. = {u €
H | G(u) = ¢ and G'(u) = 0}, i.e. the set of critical points having
critical value ¢, is compact for any ¢ € R. In this problem the functional
I satisfies the (PS) conditions.

LEMMA 3.2. Assume that o # A;.Then I(u) satisfies the (PS). con-
dition for every c € R.

Proof. Let (ug) be a sequence in H with DI(uy) — 0 and I(ux) — ¢
It is enough to show that ||ug|| is bounded, since Yu € H

(3.1) VI(u) =u+i*[(14 c)Au — au + g(u)].
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where ¢* : L*(Q) — H, the adjoint of the immersion ¢ : H — L*(Q2) is a
compact operator. In fact, if {u,}?2, C H, then uy converses strongly
in L*(Q) By contradiction we suppose that 11’1£n|]ukHH = +o00. Up to a

subsequence we can assume that liinm = u weakly in H, strongly in

L*(Q) and pointwise in Q. Note that dividing I(u,) by ||u,|| and passing
to the limit, we get fu_dx =0, and so u > 0 a.e. in 2 and u # 0. On
the other hand from VI(ux) — 0 in H, we get

lim —Vf(uk.)

=0 as n — oo.
koo |lug||

So the bounded sequence lim{”u“ﬁ}kE ~ converges strongly in H. Hence
u—1i"[(1+ ¢)Au — au] = 0.

Here i* : L*(Q)) — H is a compact operator. This implies that u > 0 is
a nontrivial solution of

(3.2) Ay + cAu = au,

which contradicts to the equation (3.2) (a # A;(c), a # 0) that has only
the trivial solution. So we discovered that {u;}2, is bounded in H,

hence there exists a subsequence {uy;}¢5_, and v € H with uy; — v in
H. [

Proof of Theorem 2.1. Since I(u) < 2% [?dx for Vu in Hy and

I(0) = 0. So we have sup/(u) = 0. For any ¢ > 0 there exists p > 0 such
Hy,

that, if [lul| < p,
I(u) = Cllul* = el|ul,

where

So we have

1
lim — inf  i(u) > C.
p=0 P2 ueH} Jull=p

This implies that there exist R and p such that R > p > 0 and

nf I(u) > sup I(u).
it 1) > sup 10

E(Hyg,e1)
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In this way the hypotheses of the Linking theorem are satisfied, so there
exists a critical point u such that
0 < inf I'(u) < I(u) < I(u) .
sk (p) A(Hy,e1)
O
LEMMA 3.3. Suppose that for given s and k in N Ay < Ajy1 < ... <
Ag < Agy1 < Ay and (f2), then
sup  I(u) <0.

lull=p,ucHs

Proof. For sufficiently small ||u|| we have,

I(w) % (/(m)? - c\vuP) - %/auQ + 0|l

< %(As(c)u2 —a) /u2 + Ol|ul|

for some positive constant o > A;(c). The norms || - ||z, and || - || z2¢q) in
H; are equivalent, since dim H; = s. Condition o > A(c) implies that
As(e)u? — a < 0. So, for small p > 0 we have

IN

sup I(u) <O.
lull=p,ucHs

LEMMA 3.4. Suppose that for given s and k in N, A, < A1 < ...
Ay < Agpqn <Ay and Ay < o < Ay, f(1) and set X o) = Hpy @ Hy.
Then for every § > 0,if A, + 6 < a < Agq — 6,

sup I(u) <0.
lull=Ru€X (1, 5) CX (k,s)

Proof. Set K, = {u € H|u > ¢}. There exists p > 0 such that, if
u € KgN Xy, [|ull <p, u#0and Ay < a < Apyq, then u is not an
upper critical point for I, on X, ).

In fact if p is small enough then B(0,p) C K,. On the other hand
the unique upper critical point for I on X(; ) is o, since Ay, < o < Agyy.
So the argument holds for some large p > 0. O

AN O
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Proof of Theorem 2.2. Since A; < a < Agyq and f satisfies (f1),(f2)
by Lemma 3.3 and 3.4 there exist R > p > 0 such that

sup I(u) <0< sup I(u),
HuH:p7uEHS ”u”:Rvuezp(k,s)CX(k,s)
where ¥,(k,s) = {u+vlu € Hg,v € span(ey, - --es), |lu+v| = p}U{v|
u € Hg, |lul| < p}. By the Variational Linking Theorem I(u) has at
least two nonzero critical values ¢q, ¢y such as

< sup I(u) <0< sup I(u) < co.
HuH:P,UEHs ”u”:R7UEEp(k,5)CX(k,s)

Therefore, (2.1) has at least two nontrivial solutions. This implies that
(2.1) has at least three solutions. ]

4. Variational setting

We introduce a variational linking theorem.

THEOREM 4.1 (a Variation of Linking). Let X be a Hilbert space
which is topological direct sum of the subspaces X, Xs. Let f €
C'(X, R). Moreover assume

(a) dimX; < 400,

(b) there exist p >0, R > 0 and e € X1, e # 0 such that p < R and
SUPs, (x,) f < Ifspex,) £

(C)_OO <a= ianR(e,Xz) f;

(d) (PS). condition holds for any ¢ € |[a,b] where b = SUPg, (x,) f.
Then there exist at least two critical levels ¢; and ¢y for the functional

f such that

inf <c < su < inf <y < su .
AR(e,Xz)f == Sp()?l)f ZR(&X?)f - Bp()I()l)f

Let 0 < 6§ < R, e; € M; moreover, consider
Qr={se1+u:ue€ My, s>0|se; +ul| <R},
Sg - B5 ﬂ Ml;

then 0Q g links 0Ss.

We recall a theorem of existence of two critical levels for a functional
which is a linking theorem on product space.
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THEOREM 4.2. Suppose

sup I < inf [
985XV OQrxV

inf I > —o0, sup I < +o0,
QRXV S(;XV

and that I satisfies (PS)% with respect to X, for every

ce€ | inf I, sup I].
[QRXV SgXI?/ ]

Then I admits at least two distinct critical values ¢y, ¢y such that

inf I <c¢;< sup I < inf I <c¢y < sup [,
QrXV 8SsxV 0QRrXV SsxV

and at least 2+ 2 cuplength(V') distinct critical points.
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