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CERTAIN TOPOLOGICAL METHODS FOR COMPUTING DIGITAL

TOPOLOGICAL COMPLEXITY

Melih İs∗,† and İsmet Karaca

Abstract. In this paper, we examine the relations of two closely related concepts,
the digital Lusternik-Schnirelmann category and the digital higher topological com-
plexity, with each other in digital images. For some certain digital images, we in-
troduce κ−topological groups in the digital topological manner for having stronger
ideas about the digital higher topological complexity. Our aim is to improve the
understanding of the digital higher topological complexity. We present examples
and counterexamples for κ−topological groups.

1. Introduction

The interaction between two popular topics (digital image processing and robotics)
can often be very valuable in science. The subject of robotics is rapidly increasing its
popularity. In the digital topology, one of the extraordinary fields of mathematics,
with using topological properties, we can melt these two topics in one pot. Thus, we
are trying to build a theoretical bridge between motion planning algorithms of a robot
and digital image analysis. In future studies, we think that the theoretical knowledge
will focus on the applications of industry, perhaps in other fields. In more details,
an autonomous robot is expected to be able to determine its own direction and route
without any help. There are many types of robots using motion planning algorithms
for this duty, especially industrial and mobile robots. Industrial robots undertake
some tasks in various fields such as assembly and welding works in the industry. As
an example of mobile robots, we can consider unmanned aerial vehicles and the room
cleaning robots.

Digital topology [26] has been developing and increasing its scientific importance.
Many significant invariants of topology, especially homotopy, homology, and cohomol-
ogy, have a substantial value for digital images. The digital homotopy is, in particular,
our fundamental equipment. You can easily have the comprehensive knowledge about
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the digital homotopy from [5–8, 10, 11, 21–23, 25]. We are concerned with topologi-
cal interpretations of robot motions in digital images. Farber [14] studies the notion
topological complexity of motion planning. The construction of motion planning al-
gorithms on topological spaces has been discussed. Different types of topological
structures have been expertly placed in the theory of this subject [15]. Rudyak [28]
first defines the higher topological complexity for ordinary topological spaces. İs and
Karaca [19] has studied some results of Rudyak [28] for digital images. The digital
meaning of the Lusternik-Schnirelmann category, denoted by cat, appears in [3] and
we frequently use cat having precious results for the computations of TC2 (in another
saying, Farber’s TC number) and TCn. The definitions of cat, TC2, and TCn are
expressed by the concept of the digital Schwarz genus of some digital fibrations. In a
way, we can figure out that these concepts are closely related to all the properties of
the notion digital Schwarz genus and each other. Moreover, the κ−topological group
structure of digital images helps us stating one of the strongest relationship between
cat and TC, where κ is an adjacency relation of a digital image. We introduce this
notion and outline the framework of it.

The structure of the paper is as follows. First, we start by recalling the cor-
nerstones of the digital topology and some previously emphasized properties for the
digital higher topological complexity. After Preliminaries, we give basic facts about
the digital Schwarz genus of a digital image and the digital Lusternik-Schnirelmann
category of a digital image. However, our aim is to obtain a lower or an upper bound
for TCn in digital images. We deal with the digital topological groups in Section 4.
After we give the definition of a κ−topological group for digital images, we present
interesting examples for some digital images. Before the last section, we obtain var-
ious results using cat and κ−topological groups. Moreover, we give examples and
counterexamples about certain digital images.

2. Preliminaries

For any positive integer r, a digital image (Y, ck) consists of a subset Y of Zr and
an adjacency relation ck for the elements of Y such that the relation is defined as
follows: Two distinct points y and z in Zr are ck−adjacent [21] for a positive integer
k with 1 ≤ k ≤ r, if there are at most k indices i such that |yi − zi| = 1, and for
all other indices i such that |yi − zi| 6= 1, yi = zi. In the one-dimensional case, if
we study in Z, then we merely have the 2−adjacency. There are completely two
adjacency relations 4 and 8 in Z2 and completely three adjacency relations 6, 18,
and 26 in Z3. The subsets of Z4 have 8, 32, 64, and 80 as the adjacency relations.
Similarly, Z5 and Z6 have the possible adjacency groups (10, 50, 130, 210, 242) and
(12, 72, 232, 472, 664, 728), respectively. The notion ck−adjacency is introduced by
Rosenfeld [26, 27] and the generalized version of this notion is mentioned in [16, 17].
Note that the notations κ and λ are often used for the adjacency relation instead of
ck in digital topology.

Let Y ⊂ Zr be a digital image. Then Y is λ−connected [17] if and only if for any
y, z ∈ Y with y 6= z, there is a set {y0, y1, ..., ym} of points of Y such that y = y0,
z = ym and yi and yi+1 are λ−adjacent, where i = 0, 1, ...,m − 1. Let (Y1, λ1) and
(Y2, λ2) be two digital images in Zr1 and Zr2 , respectively. Let f : Y1 → Y2 be a map.
Then f is (λ1, λ2)−continuous [5,27] if, for any λ1−connected subset A1 of Y1, f(A1)
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is also λ2−connected. The composition of any two digitally continuous maps is again
digitally continuous (see Proposition 2.5 in [5]).

Let Y1 and Y2 be two digital images. Then we mean a digital map f : Y1 → Y2
by any map of digital images from Y1 to Y2. A digital map f : (Y1, λ1) → (Y2, λ2)
is called a (λ1, λ2)−isomorphism [8,16] if f is bijective, (λ1, λ2)−continuous and also
f−1 is (λ2, λ1)−continuous. A set [y1, y2]Z = {z ∈ Z : y1 ≤ z ≤ y2} is said to be a
digital interval from y1 to y2 [4,7]. Let [0, r]Z be a digital image with a positive integer
r. For any digital image (Y, λ), if f : [0, r]Z → Y is a (2, λ)−continuous map with
f(0) = y1 and f(r) = y2, then f is called a digital path [26] between the initial point
y1 and the final point y2. Two digital paths f1 and f2 in (Y, λ) are adjacent paths [24]
if f1(t) and f2(t

′
) are λ−adjacent or equal whenever t and t

′
are 2−adjacent.

Suppose that f1, f2 : (Y1, λ1)→ (Y2, λ2) are (λ1, λ2)−continuous maps, where
Y1 ⊂ Zr1 and Y2 ⊂ Zr2 . f1 and f2 are (λ1, λ2)−homotopic [5, 20] in Y (denoted
by f1 '(λ1,λ2) f2), if, for a positive integer m, there is a digitally continuous map
F : Y1 × [0,m]Z → Y2 which admits the following conditions:

• for all y ∈ Y1, F (y, 0) = f1(y) and F (y,m) = f2(y);
• for all y ∈ Y1 and for all s ∈ [0,m]Z,

Fy : [0,m]Z −→ Y2

s 7−→ Fy(s) = F (y, s)
is (2, λ2)−continuous;
• for all s ∈ [0,m]Z and for all y ∈ Y1,

Fs : Y1 −→ Y2

y 7−→ Fs(y) = F (y, s)
is (λ1, λ2)−continuous.

The function F in the definition above is said to be digital homotopy between f1 and
f2. Note that a homotopy relation is equivalence on the set of digitally continuous
maps [5].

Let (Y1, λ1) and (Y2, λ2) be any digital images. Let f : Y1 → Y2 be a digitally
(λ1, λ2)−continuous map. Then f is called (λ1, λ2)−nullhomotopic [4, 20] in Y2 if
f is (λ1, λ2)−homotopic to a constant map in Y2. Assume that the digital map
f : (Y1, λ1) → (Y2, λ2) is (λ1, λ2)−continuous. If there exists a (λ2, λ1)−continuous
map g : (Y2, λ2) → (Y1, λ1) for which g ◦ f '(λ1,λ1) idY1 and f ◦ g '(λ2,λ2) idY2 ,
then f is a (λ1, λ2)−homotopy equivalence [6]. We say that a digital image (Y, λ) is
λ−contractible [4,20] if idY is (λ, λ)−homotopic to a map c of digital images for some
c0 ∈ Y , where c : Y → Y is defined with c(y) = c0 for all y ∈ Y .

The adjacency relation varies in several digital images. For instance, an adjacency
relation on the set of digital functions is discussed in [24]. For any images X and
Y , the digital function space Y X is stated with the set of all maps X → Y with an
adjacency as follows: for any two maps f , g : X → Y , they are called adjacent in the
set of digital function spaces if f(x) and g(x

′
) are adjacent points in Y whenever x

and x
′

are adjacent points in X. Another crucial example is given on the cartesian
product of digital images [2]: Let (Y, λ1) and (Z, λ2) be any two digital images such
that the points (y, z) and (y′, z′) belong to Y ×Z. Then (y, z) and (y′, z′) are adjacent
in the cartesian product digital image Y × Z if one of the following conditions holds:
• y = y′, and z and z′ are λ2−adjacent; or
• y and y′ are λ1−adjacent, and z = z′; or
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• y and y′ are λ1−adjacent, and z and z′ are λ2−adjacent.

The adjacency on the cartesian product is known as the normal product adjacency or
the strong product adjacency. Boxer and Karaca [10] show that the normal product
adjacency need not to be a ck−adjacency. The normal product adjacency is completely
determined by the adjacencies of the factors. Proposition 3.1 of [10] says that the
coincidence of the normal product adjacency with a ck−adjacency is also possible:
Let (Xi, cki) be any digital images for i ∈ {1, 2}. Then the normal product adjacency
coincides with the ck1+k2−adjacency for X1 × X2. See [10] for more information on
products in digital images.

The wedge of digital images is studied in [8, 16]: Let (X, κ1) and (Y, κ2) be any
digital images such that X ∩ Y = {∗}. The union of X and Y is the wedge of X
and Y , denoted X ∨ Y , if x ∈ X − {∗} and y ∈ Y − {∗} implies x is adjacent to ∗,
y is adjacent to ∗, and x and y are not adjacent. If a map p : (X, κ1) → (Y, κ2) has
the digital homotopy lifting property for every digital image, then p is called a digital
fibration [13].

Definition 2.1. [18] Let (X, κ1) and (Y, κ2) be any digitally connected images. A
digital fibrational substitute of a map f : (X, κ1)→ (Y, κ2) is a fibration

f̂ : (Z, κ3)→ (Y, κ2) for which f̂ ◦ h = f , i.e.,

X
h
//

f   

Z

f̂
��

Y,

where h is the digital homotopy equivalence in the sense of digital homotopy.

Lemma 2.2 is first given in [18] with its proof. We restate this result with its proof
in order to clarify the facts that are missing or need to be corrected in its proof.

Lemma 2.2. In the digital setting, any map has a fibrational substitute.

Proof. Let f : X → Y be a digital map and m ∈ N. We define the digital set Z
as {(x, α) : x ∈ X, α is a digital path on Y with α(0) = f(x)}. Let λ be the normal
product adjacency on X×Y [0,m]Z and defined as follows: Given any two points (x1, α1),
(x2, α2) in X × Y [0,m]Z , if x1 and x2 are adjacent or equal points, and α1 and α2 are
adjacent or equal paths, then (x1, α1) and (x2, α2) are adjacent or equal pairs. Note
that Z ⊂ X × Y [0,m]Z implies that Z has λ−adjacency. We consider the digitally
continuous map

g : Z −→ Y

(x, α) 7−→ α(1),
and define h : X → Z with h(x) = (x, αx), where αx(t) = f(x) for all t ∈ [0,m]Z.
Then we find

g ◦ h(x) = g(x, αx) = αx(1) = f(x).

In order to show that g is a digital fibration, let G : X × [0,m]Z → Y be a digital
homotopy with the condition g ◦ h = G ◦ i for the inclusion map i : X → X × [0,m]Z.

When we define G̃ as G̃(x, t) := h(x) for t ∈ [0,m]Z, we get

G̃ ◦ i(x) = G̃(x, t) = h(x),
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and

g ◦ G̃(x, t) = g ◦ h(x) = G ◦ i(x) = G(x, t).

This shows that g is a digital fibration. From the definition of digital fibrational
substitutes, it is enough to say that h : X → Z is a digital homotopy equivalence.
Since the digital map k : Z → X, k(x, α) = x, for any (x, α) ∈ Z is the digital
homotopy inverse of h, we conclude that g is a digital fibrational substitute of f .

Recall that the digital fiber homotopy equivalence over a digital image is defined
in [18] as follows:

Definition 2.3. [18] Let p : (E, λ1) → (B, λ2) and p
′

: (E
′
, λ
′
1) → (B, λ2) be two

digital fibrations. Then f : (E, λ1) → (E
′
, λ
′
1) is said to be a digital fiber homotopy

equivalence fibration over B if there is a digital map g : (E
′
, λ
′
1)→ (E, λ1) such that

g ◦ f and f ◦ g are digitally fiber homotopic to the respective identity maps 1(E,λ1)

and 1(E′ ,λ
′
1)

.

E

p
��

f
//
E
′

g
oo

p
′

~~

B

A digital cover of (X, κ) is a collection of the subsets V1, V2, · · · , Vl of X with the
condition

l⋃
j=1

Vj = X.

Definition 2.4. [18] The digital Schwarz genus of a digital fibration

p : (E, λ1)→ (B, λ2),

denoted by genusλ1,λ2(p), is defined as a minimum number k for which {V1, V2, ..., Vk}
is a cover of B with the property that for all 1 ≤ i ≤ k, there is a continuous map of
digital images si : (Vi, λ1)→ (E, λ2) such that p ◦ si = idVi .

In the digital meaning, we note that the Schwarz genus of a digital map is invariant
from the chosen fibrational substitute (see Lemma 3.4 in [18]).

Let (X, κ) and ([0,m]Z, 2) be two digital images. Recall that X [0,m]Z is a digital
function space and consists of all digital paths in X. X [0,m]Z has an adjacency relation
λ as follows [19, 24]. For any two digital paths α and β in X, the fact a and b are
2-adjacent points in [0,m]Z implies that α(a) and β(b) are κ−adjacent points in X.
Thus X [0,m]Z is a digital image with the adjacency relation λ.

Definition 2.5. [18] Let X [0,m]Z be a digital function space of all continuous func-
tions from [0,m]Z to a digitally connected image (X, κ) for any positive integer m.
Then the topological complexity of a digital image X is

TC(X, κ) = genusλ,κ∗(p),

where p : (X [0,m]Z , λ) → (X × X, κ∗), p(w) = (w(0), w(m)) is a fibration of digital
images for any w ∈ X [0,m]Z with the normal product adjacency κ∗ based on κ for the
digital image X ×X.
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For any n digital maps (paths) f1, f2, · · · , fn : [0,m]Z → X, the product map
f : [0,m]nZ → Xn is defined by f(t1, t2, · · · , tn) = (f1(t1), f2(t2), · · · , fn(tn)).

Definition 2.6. [18] Let n be a positive integer. Let Jn denote the wedge of the
digital intervals [0,m1]Z, · · · , [0,mn]Z, where 0i ∈ [0,mi]Z for i = 1, · · · , n are identi-
fied. Let X be a digitally connected space. Then the higher topological complexity of
a digital image X is

TCn(X, κ) = genusλ,κ∗(en),

where en : (XJn , λ) → (Xn, κ∗), en(f) = (f1(m1), ..., fn(mn)), is a fibration of digital
images for a product map f = (f1, · · · , fn).

In Definition 2.6, κ∗ and λ are adjacency relations on respective images Xn and
XJn . Note that the digital higher topological complexity has significant rules [18].
One of them is that TC1 is always equal to 1. Another is the coincidence of TC2 with
TC, when n = 2. Moreover, the number TCn is not greater than TCn+1 anymore.

Proposition 2.7. [18] Let dn : (X, κ)→ (Xn, κ∗) be a diagonal map such that κ∗
is the normal product adjacency for the image Xn. Then

TCn(X, κ) = genusκ,κ∗(dn).

We finish this section with the digital Lusternik-Schnirelmann category catκ(X) of
the image (X, κ).

Definition 2.8. [3] The digital Lusternik-Schnirelmann category of a digital image
X (denoted by catκ(X)) is defined to be the minimum number k for which there is
a cover {U1, U2, ..., Uk+1} of X that satisfies each inclusion map from Ui to X, for
i = 1, ..., k, is κ−nullhomotopic in X.

In [3], X is covered with (k + 1) sets U1, U2, ..., Uk+1 in the definition of the digital
L-S category. According to this definition, the result catκ(X) = 0 is hold when X
is κ−contractible. Considering the strong relationship of cat and TC, we prefer to
cover X with k subsets in the definition similar to Farber [14]. This leads that,
for instance, a κ−contractible space X admits that catκ(X) = 1. In general, for
the digital Lusternik-Schnirelmann category, we admits one more than the number
computed in [3].

Example 2.9. LetH = {a, b, c, d, e, f, g, h} be an image in Z2 with the 4−adjacency
(see Figure 1) such that

a = (0,−1), b = (0, 0), c = (0, 1), d = (1, 1),

e = (2, 1), f = (2, 0), g = (2,−1), h = (1,−1).

Since H is not 4−contractible [9], cat4(H) > 1. By Theorem 2.10 of [29], we conclude
that cat4(H) = 2.

The notion domination between any two adjacencies is given by Boxer [12]. Let κ
and λ be two adjacencies on a set X. An adjacency κ dominates λ, denoted by κ ≥d λ,
if the fact that x1 and x2 are κ−adjacent implies that x1 and x2 are λ−adjacent for
any x1, x2 ∈ X. There are some papers such as [19] and [3] that use the notations
κ ≥ λ (or λ ≥ κ). Let u ≤ v. Then this means that cu ≤ cv. On the other hand, from
the definition in [12], it is appropriate to use cv ≤ cu for maintaining the consistency.
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Figure 1. The Digital Image H.

Theorem 2.10. [3] Let κ and λ be different adjacency relations with κ ≤ λ on a
digital image X. Then

catκ(X) ≤ catλ(X).

Theorem 2.11. [19] Let (X, κ) be a digitally connected space such that X × X
has the normal product κ∗−adjacency. Then

catκ(X) ≤ TC(X, κ) ≤ catκ∗(X ×X).

3. The Digital LS-Category For The Digital Higher Topological Com-
plexity

Proposition 3.1. Let f : (X1, κ1) → (Y1, λ1) and g : (X2, κ2) → (Y2, λ2) be two
digitally continuous digital maps. Let f × g : (X1 × X2, κ∗) → (Y1 × Y2, λ∗) be the
digital product map. Then we have that

genusκ∗,λ∗(f × g) ≤ genusκ1,λ1(f) + genusκ2,λ2(g).

Proof. We first consider the case that f and g are digital fibrations and shall show
the desired result. Let genusκ1,λ1(f) = k and genusκ2,λ2(g) = l. We shall show that
genusκ∗,λ∗(f × g) ≤ k + l. Since genusκ1,λ1(f) = k, we may divide the digital image
Y1 into the k subsets U1, U2, ..., Uk such that for all i = 1, ..., k, there exist digitally
continuous maps

si : (Ui, τi)→ (X1, κ1)

and f◦si is an identity map on the digital image (Ui, λi). Similarly, if genusκ2,λ2(g) = l,
then we may divide the digital image Y2 into l subsets V1, V2, ..., Vl such that there
exist digitally continuous maps

tj : (Vj, σj)→ (X2, κ2)

for all j = 1, ..., l, and g ◦ tj is an identity map on the digital image (Vj, σj). Consider
the digitally continuous map

f × g : X1 ×X2 → (U1 ∪ ... ∪ Uk)× (V1 ∪ ... ∪ Vl).

We rewrite this map in 2 different ways:

f × g : X1 ×X2 → (U1 × Y2) ∪ ... ∪ (Uk × Y2)(1)
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and

f × g : X1 ×X2 → (Y1 × V1) ∪ ... ∪ (Y1 × Vl).(2)

Let hi : (Ai, σ
′
i)→ (Bi, τ

′
i ) be digital functions for i = 1, · · · , k. Then

h1 ∪ · · · ∪ hk : A1 ∪ · · · ∪ Ak → B1 ∪ · · · ∪Bk

is the union of digital functions h1, · · · , hk if and only if

h1|(A1∩···∩Ak) = · · · = hk|(A1∩···∩Ak).

Consider the map (1). Using this fact, there exists a digitally continuous map

wi : (Ui × Y2)→ X1 ×X2

such that f ◦wi is the identity on Y1×Y2. Indeed, wi is the union of digital functions
si × t1, · · · , si × tl. Similarly, for the map (2), we have a digitally continuous map

vj : (Y1 × Vj)→ X1 ×X2

such that f ◦ vj is the identity on Y1 × Y2. Here vj is the union of digital functions
s1 × tj, · · · , sk × tj. Moreover, some of Ui × Vj, for each i and j, can be the same in
the union of sets. So we conclude that genusκ∗,λ∗(f × g) must be less than or equal
to k + l. When f and g are not fibrations in the digital sense, by Lemma 3.3 of [18],
we use their digital fibrational substitutes to show that the desired inequality holds
and this completes the proof.

Proposition 3.2. Let p : (E, λ1) → (B, λ2) and p
′

: (E
′
, λ
′
1) → (B, λ2) be two

digital fibrations such that the following diagram commutes:

E

p
  

f
//
E
′

p
′

~~

B.

If f is a digital fiber homotopy equivalence over B, then genusλ1,λ2(p) = genusλ′1,λ2
(p
′
).

Proof. Let genusλ1,λ2(p) = r. Then si : Ui → E is a digital section of p over Ui for
each i = 1, ..., r. It follows that f ◦ si is a digital section of p

′
over each Ui. Therefore,

we get genusλ1,λ2(p
′
) ≤ r. Moreover, if we assume that f is a digital fiber homotopy

equivalence over B, then there is a digital homotopy inverse f
′

: (E
′
, λ
′
1) → (E, λ1)

satisfying the fact r ≤ genusλ′1,λ2
(p
′
). This shows that genusλ′1,λ2

(p
′
) = r.

Proposition 3.3. For a digital fibration p : (E, λ2)→ (B, λ3),

genusλ2,λ3(p) ≤ catλ3(B).

Moreover, if (E, λ2) is digitally contractible, then genusλ2,λ3(p) = catλ3(B).

Proof. First, we show that genusλ2,λ3(p) ≤ catλ3(B). Let catλ3(B) = k. Then we
have k digital covering made by k subset {U1, U2, ..., Uk} of B, where each inclusion
Ui → B for i = 1, ..., k is digitally λ3−nullhomotopic in B. Assume U ⊆ B, where
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U is one of the sets in the covering of B and consider the following diagram for the
positive integer m:

U × {0} c0
//

i
��

E

p

��

U × [0,m]Z
H

//

G

99

B,

where i is the digital inclusion map. For any t ∈ [0,m]Z and b ∈ U , c0 is the digital
constant map defined by c0(b, 0) = e0, where e0 is a chosen point in p−1(b0) for any
basepoint b0 ∈ B. H is a digital contracting homotopy between the digital constant
map at the basepoint b0 and the digital inclusion map U ↪→ B. Using the digital
homotopy lifting property, there is a digitally continuous map G for which G ◦ i = c0
and p ◦G = H. It follows that

p ◦G(x,m) = H(x,m) = idU .

If we take G(x,m) as Gm(x), then Gm is a digital section of p over U . Hence, we get the
desired result. We shall prove the second claim. Let E be a digitally λ2−contractible
digital image. Let genusλ2,λ3(p) = n. Then there exists {A1, A2, ..., An} of B and, for
each Ai, si : Ai → E is digitally continuous having that p◦si = idAi

, where 1 ≤ i ≤ n.
Since E is digitally contractible, idE is homotopic to the constant map on E in digital
images. Let us denote this digital homotopy with H. For any arbitrary Ai ⊂ B, we
have the following construction:

G : Ai × [0,m]Z
si×id−→ E × [0,m]Z

H−→ E
p−→ B.

For all a ∈ A and t ∈ [0,m]Z, conditions for being a digital homotopy of G are held:

G(a, 0) = p ◦H ◦ (s× id)(a, 0) = p ◦H(s(a), 0) = p ◦ s(a) = idA(a), and

G(a, 1) = p ◦H ◦ (s× id)(a, 1) = p ◦H(s(a), 1) = p ◦ cs(a)(a) = cp◦s(a)(a),

where cs(a) is a constant digital map on E at the point s(a) ∈ E and cp◦s(a) is a
constant digital map on B at the point p ◦ s(a) ∈ B (Note that constant digital maps
are digitally continuous maps.). Moreover, the digital maps G|a : [0,m]Z → B and
G|t : A→ B are digitally continuous. As a consequence, for all 1 ≤ i ≤ n, the digital
map Ai → B is digitally nullhomotopic and thus we obtain catλ3(B) = n.

By Proposition 3.3, we immediately obtain the following:

Proposition 3.4. For any connected digital image (X, κ1) such that Xn has the
normal product κ∗−adjacency, we have that

TCn(X, κ1) ≤ catκ∗(X
n).

Proposition 3.5. Let (X, κ1) be a connected digital image. Then we have

catλ∗(X
n−1) ≤ TCn(X, κ1),

where λ∗ is the normal product adjacency relation on Xn−1.

The proof can be modified in digital images with Proposition 3.1 of [1]. One can
easily adapt the proof from topological spaces to digital images. The last two results
give bounds for TCn using cat in digital images.
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Corollary 3.6. Let (X, κ1) be a connected digital image. Then

catλ∗(X
n−1) ≤ TCn(X, κ1) ≤ catκ∗(X

n),

where λ∗ and κ∗ are normal product adjacencies on Xn−1 and Xn, respectively.

4. κ−Topological Groups In Digital Images

We now have a new approach to compute TCn numbers of some of digital images.
Our main equipment is the notion of topological groups in the digital sense.

Definition 4.1. Let (H, ck) be a digital image, and (H, ∗) be a group. Assume
that H ×H has also ck−adjacency. If

α : H ×H → H and β : H → H,

defined by α(y, z) = y ∗ z and β(y) = y−1 for all y, z ∈ H, respectively, are digitally
continuous, then (H, ck, ∗) is called a digital version of a topological group.

We simply denote the digital version of a topological group as (H, κ, ∗), and read
the triple (H, κ, ∗) as κ−topological group. Notice that the hypothesis on taking
ck−adjacency for H × H is necessary. If we ignore this hypothesis, we observe that
(Z, 2,+), one of the simplest construction, cannot be a 2−topological group. Indeed,
consider the digitally continuous map

α : Z× Z −→ Z
(x, y) 7−→ α(x, y) = x+ y

and choose k as 2, i.e., c2 = 8−adjacency for Z×Z. (3, 5) and (4, 6) are 8−adjacent but
8 and 10 are not 2−adjacent in Z. It shows that α cannot be a digitally continuous
map. However, if we choose c1 = 4−adjacency for Z × Z, then α is a digitally
continuous map. Hence, (Z, 2,+) is a 2−topological group. A discretization of any
topological group need not always be a digital topological group: In topological spaces,
(R∗, τs, ·) is a topological group, where R∗ denotes the set R − {0}. This does not
give a response in digital images. Consider the triple (Z∗, 2, ·), where Z∗ = Z − {0}.
Even Z∗ is not a monoid under the group operation · because the inverse of 3 does
not exist. As a result, (Z∗, 2, ·) does not have a 2−topological group structure.

We consider the same ck−adjacency for H and H×H in Definition 4.1. This means
that if the digital image H is a subset of Z, then there is only one option: H and
H×H have 2 and 4 adjacencies, respectively. For a subset H with 4−adjacency in Z2,
we have 8−adjacency on H ×H ⊂ Z4. If H has c2 = 8−adjacency in Z2, then H ×H
has c2 = 32−adjacency in Z4. Similarly, when we consider 6−adjacency on H ⊂ Z3,
H ×H ⊂ Z6 has 12−adjacency. If H ⊂ Z3 has 18−adjacency, then H ×H ⊂ Z6 has
72−adjacency. The fact H has 26−adjacency implies that H×H has 232−adjacency.
For any digital image H ⊂ Zn with n > 3, the process continues in the same way.

We begin with a trivial example of κ−topological groups. We also give another
example with a different construction.

Example 4.2. Let G = {−1, 1} ⊂ Z be a digital image. Then G is a group under
·. Consider the digital maps

α : G×G −→ G

(x, y) 7−→ α(x, y) = x · y
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and

β : G −→ G

x 7−→ β(x) = x.

In the domains of α and β, there does not exist any adjacent pair of points. It
means that α and β are trivially digitally continuous. Consequently, (G, 2, ·) is a
2−topological group.

Example 4.3. Given an integer m, let H = [m,m+ 1]Z ⊂ Z. For having a group
construction on H, take a binary operation ∗ such that for all a, b ∈ H,

∗(a, b) =

{
m, a = b

m+ 1, a 6= b.

The digital map

α : H ×H −→ H

(a, b) 7−→ α(a, b) = a ∗ b
is digitally continuous because of the fact that a∗b = m or m+1. In addition, another
digital map

β : H −→ H

m 7−→ β(m) = m

m+ 1 7−→ β(m+ 1) = m+ 1

is clearly digitally continuous. It shows that (H, 2, ∗) is a 2−topological group.

Theorem 4.4. Let m be any integer. Then there is no 2−topological group struc-
ture on the digital interval [m,m+ p− 1]Z for all prime p ≥ 3.

Proof. Let p = 3. Assume that [m,m+ 2]Z has 2−topological group structure with
any group operation ∗ and the 2−adjacency relation. It means that ([m,m + 2]Z, ∗)
is a group in the algebraic sense. Moreover, the digital maps

α : [m,m+ 2]Z × [m,m+ 2]Z → [m,m+ 2]Z and β : [m,m+ 2]Z → [m,m+ 2]Z,

defined by α(x, y) = x∗y and β(x) = x−1, respectively, are digitally continuous. Then
there are three cases for identity element of the group: e[m,m+2]Z is equal to only one
of m,m+1 and m+2. Assume that m is the identity element. Since 3 is prime, every
group of 3 elements is the cyclic group of order 3. Moreover, the set {m,m+1,m+2}
is an abelian group and every element different from the identity is a generator. This
gives us the following properties:

(m+ 2) ∗ (m+ 2) = (m+ 1),

(m+ 1) ∗ (m+ 2) = (m+ 2) ∗ (m+ 1) = e[m,m+2]Z ,

(m+ 1)−1 = m+ 2 and (m+ 2)−1 = m+ 1.

If e[m,m+2]Z = m, then we find β(m) = m and β(m+ 1) = m+ 2. This means that β
is not digitally continuous. This is a contradiction. Now consider the second case. In
other words, let m + 1 be an identity element of the group. Then α is not digitally
continuous because we get

α(m,m+ 1) = m and α(m+ 1,m+ 2) = m+ 2.
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This is again a contradiction. Consider the third case, i.e., m + 2 is the identity
element of the group. The case is symmetric to the case e[m,m+2]Z = m since the map
that swaps m and m + 2 is an isomorphism of digital images. As a consequence,
([m,m + 2]Z, 2, ∗) cannot be a 2−topological group. If p is a prime with p > 3, then
the idea can be generalized because we have two elements, namely the endpoints m
and m+ p− 1, that have only one adjacent element, while, by the symmetry induced
by the group action, each element have precisely two adjacent elements.

Proposition 4.5. Let (H, κ, ∗) be a κ−topological group and (H,
′
λ, ◦) a λ−topological

group, respectively. Then their cartesian product H ×H ′ is also a (κ+λ)-topological
group.

Proof. Let H be a κ−topological group. Then the digital maps

α1 : H ×H → H and β1 : H → H,

defined by α1(y1, z1) = y1 ∗ z1 and β1(y1) = y−11 for all y1, z1 ∈ H, respectively,
are digitally continuous. Similarly, for the λ−topological group H,

′
we have that the

digital maps

α2 : H
′ ×H ′ → H

′
and β2 : H

′ → H,
′

defined by α2(y2, z2) = y2 ◦ z2 and β2(y2) = y−12 for all y2, z2 ∈ H,
′

are digitally
continuous. Define a digital map

α = α1 × α2 : H ×H ×H ′ ×H ′ → H ×H ′

((y1, z1), (y2, z2)) 7−→ (y1 ∗ z1, y2 ◦ z2).

We shall show that α is a digitally continuous map. The product of digitally continu-
ous maps is again digitally continuous. Let ((y1, z1), (y2, z2)) and ((y1

′, z1
′), (y2

′, z2
′))

be adjacent points. Then (y1, z1) is adjacent or equal to (y1
′, z1

′) and (y2, z2) is adja-
cent or equal to (y2

′, z2
′). Since α1 is digitally continuous, y1 ∗ z1 is adjacent or equal

to y1
′∗z1′. Similarly, for the digital continuity of α2, we have that y2◦z2 is adjacent or

equal to y2
′ ◦z2′. The cartesian product adjacency gives that α is digitally continuous.

In order to satisfy the other condition, we define the digital map

β = β1 × β2 : H ×H ′ → H ×H ′

(y1, z1) 7−→ (y−11 , z−11 ).

Let (y1, z1) and (y2, z2) be adjacent points for the cartesian product. Then we have
that y1 is adjacent or equal to y2 and z1 is adjacent or equal to z2. Since β1 is digitally
continuous, we obtain that y−11 is adjacent or equal to y−12 . Similary, for the digital
continuity of β2, we obtain that z−11 is adjacent or equal to z−12 . Using the definition
of the adjacency for the cartesian product, we conclude that β is digitally continuous.
This gives the required result.

Definition 4.6. Let (H, κ, ∗) and (H ′, λ, ◦) be a κ−topological group and a
λ−topological group, respectively. Then a digital map γ : (H, κ, ∗) → (H ′, λ, ◦) is a
(κ, λ)−homomorphism between κ−topological group and λ−topological group if γ is
both digitally continuous and group homomorphism. Moreover, a (κ, λ)−isomorphism
between κ−topological group and λ−topological group is both digital isomorphism
and group homomorphism.
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Example 4.7. It is easy to see that (Z2, 4,+) is 4−topological group by Proposition
4.5. Consider the digital projection map

α : (Z2, 4,+) −→ (Z, 2,+)

(m,n) 7−→ m

We prove that α is a (4, 2)−homomorphism in the sense of topological groups but it is
not a (4, 2)−topological group isomorphism. α is a digitally continuous map because
m1 and m2 are 2−adjacent or m1 = m2 whenever (m1, n1) and (m2, n2) are 4−adjacent
points in Z2. Using the fact that the projection maps associated with a product of
groups are always group homomorphisms, we have that α is a group homomorphism.
Hence, we prove that α is a (4, 2)−topological group homomorphism. On the other
hand, the projection maps are not injective. Therefore, we show that α is not a
(4, 2)−topological group isomorphism.

Note that the digital isomorphism of two topological groups is stronger than simply
requiring a digitally continuous group isomorphism. The inverse of the digital function
must also be digitally continuous. The next example shows that two topological
groups in digital images are not digitally isomorphic in the sense of topological groups
whenever they are isomorphic as ordinary groups.

Example 4.8. Consider the 2−topological group (G, 2, ·) given in Example 4.2. Let
(H, 2, ∗) be another 2−topological group for which H = [8, 9]Z ⊂ Z and ∗ is the same
group operation given in Example 4.3. Then the digital map f : (G, 2, ·)→ (H, 2, ∗),
defined by f(1) = 8 and f(−1) = 9, is an isomorphism of algebraic groups but not
a (2, 2)−isomorphism of topological groups. It is clear that f is bijective. Further, f
preserves the group operation:

f(1 · 1) = f(1) = 8 = 8 ∗ 8 = f(1) ∗ f(1)

f(1 · −1) = f(−1) = 9 = 8 ∗ 9 = f(1) ∗ f(−1)

f(−1 · 1) = f(−1) = 9 = 9 ∗ 8 = f(−1) ∗ f(1)

f(−1 · −1) = f(1) = 8 = 9 ∗ 9 = f(−1) ∗ f(−1).

There is no pair of adjacent points in G. So, f is digitally continuous. Contrarily, 8
and 9 are 2−adjacent but f−1(8) = 1 and f−1(9) = −1 are not 2−adjacent. Hence,
the inverse of f is not digitally continuous.

Theorem 4.9. If H is a subgroup of a κ−topological group (G, κ, ∗), then (H, κ, ∗)
is a κ−topological group.

Proof. Suppose that (G, κ, ∗) is a κ−topological group. Then

α : G×G→ G and β : G→ G

(x, y) 7−→ x ∗ y x 7−→ x−1

are digitally continuous. To show that the digital maps

α1 : H ×H → H and β1 : H → H

(a, b) 7−→ a ∗ b a 7−→ a−1

are digitally continuous, it is enough to demonstrate that α and β are digitally con-
tinuous. Indeed, for two adjacent points in H ×H, they are also adjacent in G × G
and their images are adjacent in G. The adjacency relation in H is the same for G.
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Therefore, their images are also adjacent in H. It shows that α1 is digitally contin-
uous. Similarly, β1 is digitally continuous. The continuity of α1 and β1 gives the
desired result.

5. Some Results For The Digital Higher Topological Complexity

Theorem 5.1. Let (H, κ, ·) be a κ−topological group such that (H, κ) is digitally
connected and n > 1. Then

TCn(H, κ) = catκ∗(H
n−1),

where κ∗ is the normal product adjacency for Hn−1.

Proof. By Corollary 3.6, it is enough to show that TCn(H, κ) ≤ r when r equals
catκ∗(H

n−1). Let {M1,M2, ...,Mr} be a covering of Hn−1, where Mi is a digitally
contractible in Hn−1, for each i = 1, ..., r. In another saying, Mi contracts to an
element (h1, h2, ..., hn−1) in Hn−1 for each i. Since H is a κ−topological group, it
has the identity element eH . Each contracting homotopy on Mi can be extended to

e
(n−1)
H = (eH , eH , ..., eH) because H is κ−connected. For i = 1, ..., r, we define

Ni = {(h, hm1, ..., hmn−1) : (m1, ...,mn−1) ∈Mi, h ∈ H}.

We shall show that e
(n)
H admits a digitally continuous section over each Ni. Let

m = (m1, ...,mn−1). The digital contractibility of Mi gives a digital path αm and this

path joins e
(n−1)
H to each m ∈ Mi in Hn−1. Therefore, we define a new digital path

αm
′ from e

(n)
H to (eH ,m1, ...,mn−1) in Ni. Then for any h ∈ H, hαm

′ is a digital path

in Hn from (h, h, ..., h) = he
(n)
H to (h, hm1, ..., hmn−1). Finally, we construct a map

si : Ni → HJn

such that si(h, hm1, ..., hmn−1) is the j−th element of hαm
′ on the j−th digital interval

of Jn. More clearly, si(h, hm1, ..., hmn−1) is a digital multipath in H from (h, h, ..., h)
to (h, hm1, ..., hmn−1). si is a digitally continuous map. Indeed, for any elements h,
h
′ ∈ H, the fact (h, hm1, ..., hmn−1) is adjacent to (h

′
, h
′
m
′
1, ..., h

′
m
′
n−1) implies that

h is adjacent to h
′

and hmj is adjacent to h
′
m
′
j for each j ∈ {1, ..., n− 1}. It follows

that si(h, hm1, ..., hmn−1)(t) is adjacent to si(h
′
, hm

′
1, ..., h

′
m
′
n−1)(t) for all t ∈ Jn.

Consider any (c1, ..., cn) ∈ Hn, and put h = c1 and mi = h−1ci. Then there exists
j such that (m1, ...,mn−1) ∈ Mj. This means that (c1, ..., cn) ∈ Nj. Hence, we get
Hn = N1 ∪ ... ∪Nr. As a result, TCn(H, κ) ≤ r.

Example 5.2. Consider the digital image H given in Example 2.9. (H, 4, ◦) is a
4−topological group, where ◦ is a group operation (See Table 1). Note that H is a
cyclic group where b is the identity, and a is a generator. H is not 4−contractible
digital image, so it is true that TCn(H, 4) = 1 only when n = 1. To compute
TC2(H, 4), we use Theorem 5.1. By Example 2.9, we obtain cat4(H) = 2. As a
result, we get TC2(H, 4) = 2.
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◦ a b c d e f g h
a h a b c d e f g
b a b c d e f g h
c b c d e f g h a
d c d e f g h a b
e d e f g h a b c
f e f g h a b c d
g f g h a b c d e
h g h a b c d e f.

Table 1. The group operation ◦ for H.

6. Conclusion

We first consider a relation between the Lusternik-Schnirelmann theory and the
higher topological complexity more conceretely in digital images. Second, our task is
to include κ−topological groups in the study of digital manner of topological robotics.
While doing theoretical modeling, we also observe that examples of digital images may
be useful in future works. We try to get the properties in terms of the digital higher
topological complexity. Some theoretical infrastructure needs to be established before
accessing the applications of motion planning algorithms in digital images. This shows
the importance of our results. We wish to progress to the wide application area of
motion planning algorithms by proceeding step by step. We intend to make an impact
on at least one application area for the future works. For example, in computer games,
virtual characters have to use motion planning algorithms to determine their direction
and find a way between two locations in the virtual environment. In addition to this,
we can encounter motion planning problem in almost every aspect of our life such as
military simulations, probability and economics, artificial intelligence, urban design,
robot-assisted surgery, and the study of biomolecules.
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