ON THE BOUNDS OF THE EIGENVALUES OF MATRIX POLYNOMIALS

Wali Mohammad Shah and Zahid Bashir Monga*

AbStract. Let $P(z):=\sum_{j=0}^{n} A_{j} z^{j}, A_{j} \in \mathbb{C}^{m \times m}, 0 \leq j \leq n$ be a matrix polynomial of degree n, such that

$$
A_{n} \geq A_{n-1} \geq \ldots \geq A_{0} \geq 0, A_{n}>0
$$

Then the eigenvalues of $P(z)$ lie in the closed unit disk.
This theorem proved by Dirr and Wimmer [IEEE Trans. Automat. Control $\mathbf{5 2}(2007)$, 2151-2153] is infact a matrix extension of a famous and elegant result on the distribution of zeros of polynomials known as Eneström-Kakeya theorem. In this paper, we prove a more general result which inter alia includes the above result as a special case. We also prove an improvement of a result due to Lê, Du, Nguyên [Oper. Matrices, 13(2019), 937-954] besides a matrix extention of a result proved by Mohammad [Amer. Math. Monthly, vol.74, No.3, March 1967].

1. Introduction and statement of results

Let $\mathbb{C}^{m \times m}$ be the set of all $m \times m$ matrices with entries from the field \mathbb{C}. By a matrix polynomial we mean a function $P: \mathbb{C} \rightarrow \mathbb{C}^{m \times m}$ defined by

$$
\begin{equation*}
P(z):=\sum_{j=0}^{n} A_{j} z^{j}, A_{j} \in \mathbb{C}^{m \times m} \tag{1}
\end{equation*}
$$

If $A_{n} \neq 0$, then $P(z)$ is said to be a matrix polynomial of degree n. If $A_{n}=I$, where I is the identity matrix, then the matrix polynomial $P(z)$ is called monic. We say λ is an eigenvalue of $P(z)$ if there exists $u \in \mathbb{C}^{m} \backslash\{0\}$ such that $P(\lambda) u=0$. In this case \mathbf{u} is said to be an eigenvector of $P(z)$.

For matrices $A, B \in \mathbb{C}^{m \times m}$, we write $A \geq 0$ and $A>0$ if A is positive semidefinite and positive definite, respectively. $A \geq B$ and $A>B$ mean $A-B \geq 0$ and $A-B>0$, respectively.

We denote by $\lambda_{\max }(A)$ and $\lambda_{\min }(A)$ the maximum and minimum eigenvalues of a Hermitian matrix A respectively. Also the spectral radius denoted by $\rho(A)$ of a

[^0]matrix A is defined by
\[

$$
\begin{equation*}
\rho(A)=\max \{|\lambda| ; \lambda \text { is an eigenvalue of } \mathrm{A}\} . \tag{2}
\end{equation*}
$$

\]

Dirr and Wimmer [3] proved the following result concerning the bounds on the eigenvalues of matrix polynomials.

Theorem 1.1. Let $P(z):=\sum_{j=0}^{n} A_{j} z^{j}, A_{j} \in \mathbb{C}^{m \times m}, 0 \leq j \leq n$ be a matrix polynomial of degree n such that

$$
\begin{equation*}
A_{n} \geq A_{n-1} \geq \ldots \geq A_{0} \geq 0, A_{n}>0 \tag{3}
\end{equation*}
$$

Then the eigenvalues of $P(z)$ lie in the closed unit disk $|\lambda| \leq 1$.
The Eneström-Kakeya theorem $[4,7]$ is a special case of Theorem 1.1 if we put $m=1$. Note that conclusion of Theorem 1.1 is also true if we replace relation symbol $">"$ by $" \geq "$ in (3).

In this paper we first obtain the following generalization of Theorem 1.1.
Theorem 1.2. Let $P(z):=\sum_{j=0}^{n} A_{j} z^{j}$ be a matrix polynomial such that $A_{j} \in$ $\mathbb{C}^{m \times m}, 0 \leq j \leq n$, are positive-definite. If the scalars $t_{1}>t_{2} \geq 0$ can be found such that

$$
\begin{equation*}
t_{1} t_{2} A_{j}+\left(t_{1}-t_{2}\right) A_{j-1}-A_{j-2} \geq 0, j=1,2, \cdots, n+1, \tag{4}
\end{equation*}
$$

where $A_{-1}=A_{n+1}=0$. Then the eigenvalues of $P(z)$ lie in the closed disk

$$
\begin{equation*}
|\lambda| \leq t_{1} . \tag{5}
\end{equation*}
$$

For $t_{1}=1, t_{2}=0$, Theorem 1.2 reduces to Theorem 1.1. Moreover a result due to Aziz and Mohammad [2] is a special case of Theorem 1.2 if we put $m=1$.

On applying Theorem 1.2, to the matrix polynomial $Q(z)=z^{n} P\left(\frac{1}{z}\right)$, we get the following:

Corollary 1.3. Let $P(z):=\sum_{j=0}^{n} A_{j} z^{j}$ be a matrix polynomial such that $A_{j} \in$ $\mathbb{C}^{m \times m}, 0 \leq j \leq n$ are positive-definite. If $t_{1}>t_{2} \geq 0$ can be found such that

$$
\begin{equation*}
t_{1} t_{2} A_{j}+\left(t_{1}-t_{2}\right) A_{j+1}-A_{j+2} \geq 0, j=-1,0, \cdots, n-1 \tag{6}
\end{equation*}
$$

where $A_{-1}=A_{n+1}=0$. Then the eigenvalues of $P(z)$ lie in the region

$$
\begin{equation*}
|\lambda| \geq \frac{1}{t_{1}} . \tag{7}
\end{equation*}
$$

On combining Theorem 1.2 and Corollary 1.3 and making $t_{2}=0$, a result due to Lê, Du and Nguyên [8, Theorem 2.6] follows immediately .

We next prove the following improvement of a result due to Lê, Du and Nguyên [8, Theorem 2.3].

Theorem 1.4. Let $P(z):=\sum_{j=0}^{n} A_{j} z^{j}$, be a matrix polynomial such that $A_{j} \in$ $\mathbb{C}^{m \times m}, 0 \leq j \leq n$ satisfy

$$
\begin{equation*}
A_{n} \geq A_{n-1} \geq \ldots \geq A_{0} \geq 0, A_{n}>0 \tag{8}
\end{equation*}
$$

Then the eigenvalues of $P(z)$ lie in the annular region

$$
\begin{equation*}
\frac{\lambda_{\min }\left(A_{0}\right)}{\lambda_{\max }\left(2 A_{n}-A_{0}\right)} \leq|\lambda| \leq 1 \tag{9}
\end{equation*}
$$

The bound obtained is sharp and equality holds for $P(z)=\sum_{j=0}^{n} I z^{j}$.
A result due to Gardner and Govil [5] is a special case of Theorem 1.4, if we put in particular $m=1$. Also note that if $A_{0}>0$, then the lower bound given by Theorem 1.4 is always better than that obtained in [8, Theorem 2.3].

Finally we obtain the following result.
ThEOREM 1.5. Let $P(z):=\sum_{j=0}^{n-1} A_{j} z^{j}+I z^{n}, A_{j} \in \mathbb{C}^{m \times m}, 0 \leq j \leq n$ be a monic matrix polynomial. Denote

$$
\begin{equation*}
L_{p}=n^{\frac{1}{q}}\left(\sum_{j=0}^{n-1}\left\|A_{j}\right\|^{p}\right)^{\frac{1}{p}} \tag{10}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$ and $\|\cdot\|$ is the subordinate matrix norm.
Then the eigenvalues of $P(z)$ lie in the closed disk

$$
\begin{equation*}
|\lambda| \leq \max \left(L_{p}, L_{p}^{\frac{1}{n}}\right) \tag{11}
\end{equation*}
$$

The bound obtained is sharp and equality holds for $P(z)=I z^{n}-\frac{1}{n} \sum_{j=0}^{n-1} I z^{j}$.
A result due to Mohammad [10] is a special case of Theorem 1.5, if we put $m=1$. Letting $q \rightarrow \infty$ in Theorem 1.5 we get the following.

Corollary 1.6. The eigenvalues of $P(z):=\sum_{j=0}^{n-1} A_{j} z^{j}+I z^{n}, A_{j} \in \mathbb{C}^{m \times m}, 0 \leq j \leq$ $n-1$ lie in the closed disk

$$
\begin{equation*}
|\lambda| \leq \max \left(L_{1}, L_{1}^{\frac{1}{n}}\right) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{1}=\sum_{j=0}^{n-1}\left\|A_{j}\right\| \tag{13}
\end{equation*}
$$

In the special case when $\|\cdot\|$ is the subordinate norm $\|\cdot\|_{2}$ defined by $\|A\|_{2}:=$ $\max _{\mathbf{u}^{*} \mathbf{u}=1} \sqrt{(A \mathbf{u})^{*}(A \mathbf{u})}, A \in \mathbb{C}^{m \times m}$, then for a Hermitian matrix $A,\|A\|_{2}=\rho(A)$. In this context we have the following.

Corollary 1.7. Let $P(z):=\sum_{j=0}^{n-1} A_{j} z^{j}+I z^{n}$ be a matrix polynomial such that $A_{j} \in \mathbb{C}^{m \times m}, 0 \leq j \leq n-1$ are Hermitian matrices. Denote

$$
\begin{equation*}
L_{p}^{\prime}=n^{\frac{1}{q}}\left(\sum_{j=0}^{n-1}\left(\rho\left(A_{j}\right)\right)^{p}\right)^{\frac{1}{p}}, \frac{1}{p}+\frac{1}{q}=1 . \tag{14}
\end{equation*}
$$

Then the eigenvalues of $P(z)$ satisfy

$$
\begin{equation*}
|\lambda| \leq \max \left(L_{p}^{\prime}, L_{p}^{\prime \frac{1}{n}}\right) \tag{15}
\end{equation*}
$$

Letting $q \rightarrow \infty$ in Corollary 1.7 we get the following.
Corollary 1.8. Let $P(z):=\sum_{j=0}^{n-1} A_{j} z^{j}+I z^{n}$ be a matrix polynomial $A_{j} \in \mathbb{C}^{m \times m}, 0 \leq$ $j \leq n-1$ are Hermitian. Then the eigenvalues of $P(z)$ lie in the closed disk

$$
\begin{equation*}
|\lambda| \leq \max \left(L_{1}^{\prime}, L_{1}^{\prime \frac{1}{n}}\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{1}^{\prime}=\sum_{j=0}^{n-1} \rho\left(A_{j}\right) . \tag{17}
\end{equation*}
$$

2. Lemma and proofs of theorems

For the proof of these theorems we need the following lemma (for reference see. [6]).
Lemma 2.1. Let $M \in \mathbb{C}^{m \times m}$ be a Hermitian matrix, then

$$
\begin{equation*}
\lambda_{\min }(M)=\min _{u \in \mathbb{C}^{m}, \mathbf{u}^{*} u=1}\left\{\mathbf{u}^{*} M \boldsymbol{u}\right\} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{\max }(M)=\max _{u \in C^{m}, \boldsymbol{u}^{*} \boldsymbol{u}=1}\left\{\boldsymbol{u}^{*} M \boldsymbol{u}\right\} . \tag{19}
\end{equation*}
$$

Proof of Theorem 1.2: Let λ be an eigenvalue of $P(z)$ and \mathbf{u} be the corresponding eigenvector. Define

$$
\begin{aligned}
P_{\mathbf{u}}(z) & =\mathbf{u}^{*} P(z) \mathbf{u} \\
& =\sum_{j=0}^{n} \mathbf{u}^{*} A_{j} \mathbf{u} z^{j} .
\end{aligned}
$$

Since $\mathbf{u}^{*} A_{j} \mathbf{u} \in \mathbb{C}$, therefore $\mathbf{u}^{*} P(z) \mathbf{u}$ is a polynomial with complex coefficients. Since

$$
t_{1} t_{2} A_{j}+\left(t_{1}-t_{2}\right) A_{j-1}-A_{j-2} \geq 0, j=1,2, \ldots, n+1,
$$

we obtain

$$
\mathbf{u}^{*}\left(t_{1} t_{2} A_{j}+\left(t_{1}-t_{2}\right) A_{j-1}-A_{j-2}\right) \mathbf{u} \geq 0,
$$

i.e.,

$$
\begin{equation*}
t_{1} t_{2} \mathbf{u}^{*} A_{j} \mathbf{u}+\left(t_{1}-t_{2}\right) \mathbf{u}^{*} A_{j-1} \mathbf{u}-\mathbf{u}^{*} A_{j-2} \mathbf{u} \geq 0 \tag{20}
\end{equation*}
$$

Define

$$
\begin{aligned}
G_{\mathbf{u}}(z) & =\left(t_{2}+z\right)\left(t_{1}-z\right) P_{\mathbf{u}}(z) \\
& =\mathbf{u}^{*}\left(\left(t_{1} t_{2}+\left(t_{1}-t_{2}\right) z-z^{2}\right) \sum_{j=0}^{n} A_{j} z^{j}\right) \mathbf{u} \\
& =\mathbf{u}^{*}\left(\sum_{j=0}^{n+2}\left(t_{1} t_{2} A_{j}+\left(t_{1}-t_{2}\right) A_{j-1}-A_{j-2}\right) z^{j}\right) \mathbf{u},
\end{aligned}
$$

where

$$
A_{-2}=A_{-1}=A_{n+1}=A_{n+2}=0 .
$$

Let

$$
\begin{align*}
H_{\mathbf{u}}(z) & =z^{n+2} G_{\mathbf{u}}\left(\frac{1}{z}\right) \\
& =\mathbf{u}^{*}\left(\sum_{j=0}^{n+2}\left(t_{1} t_{2} A_{j}+\left(t_{1}-t_{2}\right) A_{j-1}-A_{j-2}\right) z^{n-j+2}\right) \mathbf{u} \\
& =-\mathbf{u}^{*} A_{n} \mathbf{u}+K_{\mathbf{u}}(z), \tag{21}
\end{align*}
$$

where

$$
K_{\mathbf{u}}(z)=\mathbf{u}^{*}\left(\sum_{j=1}^{n+2}\left(t_{1} t_{2} A_{n-j+2}+\left(t_{1}-t_{2}\right) A_{n-j+1}-A_{n-j}\right) z^{j}\right) \mathbf{u} .
$$

Then, by (20),

$$
\begin{aligned}
\max _{|z|=\frac{1}{t_{1}}}\left|K_{u}(z)\right| & \leq \sum_{j=1}^{n+2}\left|\mathbf{u}^{*}\left(t_{1} t_{2} A_{n-j+2}+\left(t_{1}-t_{2}\right) A_{n-j+1}-A_{n-j}\right) \mathbf{u}\right| \frac{1}{t_{1}^{j}} \\
& =\sum_{j=1}^{n+2} \mathbf{u}^{*}\left(t_{1} t_{2} A_{n-j+2}+\left(t_{1}-t_{2}\right) A_{n-j+1}-A_{n-j}\right) \mathbf{u} \frac{1}{t_{1}^{j}} \\
& =\mathbf{u}^{*} A_{n} \mathbf{u} .
\end{aligned}
$$

Since $K_{\mathbf{u}}(z)$ is a polynomial with complex coefficients, by Schwarz's lemma (for ref. see [1]) we have for $|z| \leq \frac{1}{t_{1}}$

$$
\left|K_{\mathbf{u}}(z)\right| \leq\left(\mathbf{u}^{*} A_{n} \mathbf{u}\right) t_{1}|z| .
$$

Therefore from (21), we have for $|z| \leq \frac{1}{t_{1}}$

$$
\begin{aligned}
\left|H_{\mathbf{u}}(z)\right| & \geq\left|\mathbf{u}^{*} A_{n} \mathbf{u}\right|-\left|\mathbf{u}^{*} A_{n} \mathbf{u} z t_{1}\right| \\
& =\mathbf{u}^{*} A_{n} \mathbf{u}\left(1-|z| t_{1}\right) .
\end{aligned}
$$

Thus we get for $|z|<\frac{1}{t_{1}}$

$$
\left|H_{\mathbf{u}}(z)\right|>0 .
$$

Consequently the zeros of $H_{\mathbf{u}}(z)$ lie in $|z| \geq \frac{1}{t_{1}}$ and thus that of $G_{\mathbf{u}}(z)$ lie in $|z| \leq t_{1}$. Therefore all the zeros of $P_{\mathbf{u}}(z)$ lie in the closed disk $|z| \leq t_{1}$. Since λ is a zero of
$P_{\mathbf{u}}(z)$, therefore $|\lambda| \leq t_{1}$. That is the eigenvalues of $P(z)$ lie in the closed disk

$$
|\lambda| \leq t_{1} .
$$

This proves the theorem.
Proof of Theorem 1.4: For the proof of the upper bound (see [3, Theorem 2.1]). To prove the lower bound, let λ be an eigenvalue of $P(z)$ and \mathbf{u} be the corresponding unit eigenvector. Define

$$
\begin{align*}
P_{\mathbf{u}}(z) & =\mathbf{u}^{*} P(z) \mathbf{u} \\
& =\sum_{j=0}^{n} \mathbf{u}^{*} A_{j} \mathbf{u} z^{j} . \tag{22}
\end{align*}
$$

From (8), it follows that

$$
\begin{equation*}
\mathbf{u}^{*} A_{n} \mathbf{u} \geq \mathbf{u}^{*} A_{n-1} \mathbf{u} \geq \ldots \geq \mathbf{u}^{*} A_{0} \mathbf{u} \geq 0 \tag{23}
\end{equation*}
$$

Define

$$
\begin{aligned}
G_{\mathbf{u}}(z) & =(1-z) P_{\mathbf{u}}(z) \\
& =(1-z) \sum_{j=0}^{n} \mathbf{u}^{*} A_{j} \mathbf{u} z^{j} \\
& =\mathbf{u}^{*} A_{0} \mathbf{u}+\mathbf{u}^{*}\left(\sum_{j=1}^{n}\left(A_{j}-A_{j-1}\right) z^{j}-A_{n} z^{n+1}\right) \mathbf{u} \\
& =\mathbf{u}^{*} A_{0} \mathbf{u}+H_{\mathbf{u}}(z),
\end{aligned}
$$

where

$$
H_{\mathbf{u}}(z)=\mathbf{u}^{*}\left(\sum_{j=1}^{n}\left(A_{j}-A_{j-1}\right) z^{j}-A_{n} z^{n+1}\right) \mathbf{u} .
$$

Thus for $|z|=1$, we have on using (23)

$$
\begin{aligned}
\left|H_{\mathbf{u}}(z)\right| & =\left|\mathbf{u}^{*}\left(\sum_{j=1}^{n}\left(A_{j}-A_{j-1}\right) z^{j}-A_{n} z^{n+1}\right) \mathbf{u}\right| \\
& \leq \sum_{j=1}^{n}\left(\mathbf{u}^{*} A_{j} \mathbf{u}-\mathbf{u}^{*} A_{j-1} \mathbf{u}\right)+\mathbf{u}^{*} A_{n} \mathbf{u} \\
& =\mathbf{u}^{*}\left(2 A_{n}-A_{0}\right) \mathbf{u} .
\end{aligned}
$$

Now $H_{\mathbf{u}}(z)$ is a polynomial with complex coefficients, therefore by Schwarz's lemma (for ref. see [1]) we have for $|z| \leq 1$

$$
\left|H_{\mathbf{u}}(z)\right| \leq \mathbf{u}^{*}\left(2 A_{n}-A_{0}\right) \mathbf{u}|z| .
$$

Thus we have for $|z| \leq 1$

$$
\begin{aligned}
\left|G_{\mathbf{u}}(z)\right| & \geq\left|\mathbf{u}^{*} A_{0} \mathbf{u}\right|-\left|\mathbf{u}^{*}\left(2 A_{n}-A_{0}\right) \mathbf{u} z\right| \\
& =\mathbf{u}^{*} A_{0} \mathbf{u}-\mathbf{u}^{*}\left(2 A_{n}-A_{0}\right) \mathbf{u}|z| .
\end{aligned}
$$

Notice that $\frac{\mathbf{u}^{*} A_{0} \mathbf{u}}{\mathbf{u}^{*}\left(2 A_{n}-A_{0}\right) \mathbf{u}} \leq 1$. So that if $|z|<\frac{\mathbf{u}^{*} A_{0} \mathbf{u}}{\mathbf{u}^{*}\left(2 A_{n}-A_{0}\right) \mathbf{u}}$, then $G_{\mathbf{u}}(z) \neq 0$ and in turn $P_{\mathbf{u}}(z) \neq 0$. Therefore, the zeros of $P_{\mathbf{u}}(z)$ lie in the region

$$
|z| \geq \frac{\mathbf{u}^{*} A_{0} \mathbf{u}}{2 \mathbf{u}^{*} A_{n} \mathbf{u}-\mathbf{u}^{*} A_{0} \mathbf{u}} .
$$

Since λ is a zero of $P_{\mathbf{u}}(z)$, therefore

$$
\begin{equation*}
|\lambda| \geq \frac{\mathbf{u}^{*} A_{0} \mathbf{u}}{2 \mathbf{u}^{*} A_{n} \mathbf{u}-\mathbf{u}^{*} A_{0} \mathbf{u}} \tag{24}
\end{equation*}
$$

This gives on using Lemma 2.1

$$
\begin{equation*}
|\lambda| \geq \frac{\lambda_{\min }\left(A_{0}\right)}{\lambda_{\max }\left(2 A_{n}-A_{0}\right)} \tag{25}
\end{equation*}
$$

This proves the theorem completely.
Proof of Theorem 1.5: Let \mathbf{u} be a unit vector. Then

$$
\begin{aligned}
\|P(z) \mathbf{u}\| & =\left\|\mathbf{u} z^{n}+\sum_{j=0}^{n-1} A_{j} \mathbf{u} z^{j}\right\| \\
& \geq\left\|\mathbf{u} z^{n}\right\|-\sum_{j=0}^{n-1}\left\|A_{j} \mathbf{u} z^{j}\right\| \\
& \geq\left|z^{n}\right|-\sum_{j=0}^{n-1}\left\|A_{j}\right\||z|^{j} .
\end{aligned}
$$

Thus by Holder's inequality, we have

$$
\begin{align*}
& \|P(z) \mathbf{u}\| \geq|z|^{n}-n^{\frac{1}{q}}\left(\sum_{j=0}^{n-1}\left(\left\|A_{j}\right\||z|^{j}\right)^{p}\right)^{\frac{1}{p}} \\
& =|z|^{n}\left(1-n^{\frac{1}{q}}\left(\sum_{j=0}^{n-1}\left(\frac{\left\|A_{j}\right\|}{|z|^{(n-j)}}\right)^{p}\right)^{\frac{1}{p}}\right) . \tag{27}
\end{align*}
$$

Let $|z|>\max \left(1, L_{p}\right)$. Then

$$
\begin{aligned}
\|P(z) \mathbf{u}\| \geq & \geq|z|^{n}\left(1-\frac{n^{\frac{1}{q}}}{|z|}\left(\sum_{j=0}^{n-1}\left\|A_{j}\right\|^{p}\right)^{\frac{1}{p}}\right) \\
& =|z|^{n}\left(1-\frac{L_{p}}{|z|}\right) \\
& >0
\end{aligned}
$$

Therefore each eigenvalue of $P(z)$ lies in the closed disk

$$
\begin{equation*}
|\lambda| \leq \max \left\{1, L_{p}\right\} . \tag{28}
\end{equation*}
$$

The result follows from (28), if $L_{p} \geq 1$. If however $L_{p}<1$, then from (28), it follows

$$
|\lambda| \leq 1
$$

Assume $L_{p}^{\frac{1}{n}}<|z| \leq 1$, then from (27) we have

$$
\begin{aligned}
\|P(z) \mathbf{u}\| & \geq|z|^{n}\left(1-\frac{n^{\frac{1}{q}}}{|z|^{n}}\left(\sum_{j=0}^{n-1}\left\|A_{j}\right\|^{p}\right)^{\frac{1}{p}}\right) \\
& =|z|^{n}\left(1-\frac{L_{p}}{|z|^{n}}\right) \\
& >0 .
\end{aligned}
$$

Thus in this case the result also follows and hence the theorem is proved completely.

References

[1] L. V. Ahlfors, Complex analysis: an introduction to the theory of analytic functions of one complex variable, 3rd ed., McGraw-Hill Book Co., New York, 1978.
[2] A. Aziz and Q. G. Mohammad, On the zeros of a certain class of polynomials and related analytic functions, J. Math. Anal. Appl. 75 (1980), 495-502.
[3] G. Dirr and H. K. Wimmer, An Eneström-Kakeya theorem for hermitian polynomial matrices, IEEE Trans. Automat. Control 52 (2007), 2151-2153.
[4] G. Eneström, Härledning af en allmän formel för antalet pensionärer, Öfv. af. Kungl. Vetenskaps-Akademeins Förhandlingen, No. (Stockholm, 1893).
[5] R. B. Gardner and N. K. Govil, Some generalizations of Eneström-Kakeya theorem, Acta Math. Hungar., 74(1-2) (1997), 125-134.
[6] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 2013.
[7] S. Kakeya, On the limits of the roots of an algebraic equations with positive coefficients, Tohoku Math J. 2 (1912-13), 140-142.
[8] C. T. Lê, T. H. B. Du, T. D. Nguyên, On the location of eigenvalues of matrix polynomials, Oper. Matrices, 13(2019), 937-954.
[9] M. Marden, Geometry of Polynomials, Mathematical Surveys Number 3, Providence, RI: American Mathematical Society (1966).
[10] Q. G. Mohammad, Location of the Zeros of Polynomials, Amer. Math. Monthly, vol.74, No.3, March 1967.

Wali Mohammad Shah

Department of Mathematics, Central University of Kashmir, Ganderbal-191201, India
E-mail: wali@cukashmir.ac.in

Zahid Bashir Monga

Department of Mathematics, Central University of Kashmir, Ganderbal-191201, India
E-mail: zahidmonga@cukashmir.ac.in.

[^0]: Received January 28, 2023. Revised April 14, 2023. Accepted April 14, 2023.
 2010 Mathematics Subject Classification: 12D10, 15A18, 30C15.
 Key words and phrases: Matrix polynomial, Eigenvlaue, Eneström-Kakeya theorem.

 * Corresponding author.
 (C) The Kangwon-Kyungki Mathematical Society, 2023.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

