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INTEGRATION OF BICOMPLEX VALUED FUNCTION ALONG

HYPERBOLIC CURVE

Chinmay Ghosh∗ and Soumen Mondal

Abstract. In this paper, we have defined bicomplex valued functions of bounded
variations and rectifiable hyperbolic path. We have studied the integration of
product-type bicomplex valued functions on rectifiable hyperbolic path. Also we
have established bicomplex analogue of the Fundamental Theorem of Calculus for
hyperbolic line integral.

1. Introduction

In 1883, Hamilton [9] discovered four dimensional quaternions to extend the com-
plex number system to more than two dimensions. Quaternions have algebraic proper-
ties of real and complex numbers except the commutativity of multiplication. In 1892,
C. Segre [14] introduced another four dimensional generalization of complex numbers,
called bicomplex numbers. Unlike quaternions the set of bicomplex numbers form
a commutative ring having divisors of zero. Following Segre, many mathematicians
developed the theory of functions on bicomplex numbers. The theory of bicomplex
variables is presented systematically in the book [12] of G. B. Price. There is an inter-
esting subset of the set of bicomplex numbers, called the set of hyperbolic numbers. G.
B. Price has not given much focus on hyperbolic numbers. In [15] we get a geometrical
view of the hyperbolic numbers.

In 2016, A. S. Balankin et al. [2] introduced the concept of hyperbolic intervals
and the hyperbolic length of the hyperbolic interval. In 2019, J. Bory-Rayes et al. [3]
introduced the integration of product-type functions over hyperbolic curves using
the concept of limit over a filter base. In 2022, M. E. Luna-Elizarrarás [10] defined
the partition of a hyperbolic interval and introduced the integration of functions of
hyperbolic variable.

In this paper, we have studied the integration of product-type bicomplex function
over hyperbolic path in a different way. Our results are presented in the line of the
book [5].
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2. Basic definitions

We denote the set of real and complex numbers by R and C respectively. We may
think three imaginary numbers i1, i2 and j governed by the rules

i21 = −1, i22 = −1, j2 = 1

i1i2 = i2i1 = j

i1j = ji1 = −i2

i2j = ji2 = −i1.

Then we have two complex planes C (i1) = {x+ i1y : x, y ∈ R} and C (i2) = {x+ i2y :
x, y ∈ R} , both of which are identical to C. Bicomplex numbers( [1], [13]) are defined
as ζ = z1 + i2z2 for z1, z2 ∈ C (i1). The set of all bicomplex numbers is denoted by
BC. In particular if z1 = x, z2 = i1y where x, y ∈ R we get ζ = x + jy and these
type of numbers are called hyperbolic numbers or duplex numbers. The set of all
hyperbolic numbers is denoted by D. For (z1 + i2z2) , (w1 + i2w2) ∈ BC, the addition
and multiplication are definde as

(z1 + i2z2) + (w1 + i2w2) = (z1 + w1) + i2 (z2 + w2)

(z1 + i2z2) (w1 + i2w2) = (z1w1 − z2w2) + i2 (z1w2 + z2w1) .

With these operations BC forms a commutative ring with zero divisors. The elements
z1+i2z2 ∈ BC such that z2

1 +z2
2 = 0 are the zero divisors. We denote the set of nonzero

zero divisors in BC by O whereas O0 = O ∪ {0}. On the other hand let us denote
the set of nonzero zero divisors in D by O whereas O0 = O ∪ {0} .The interesting
property of a bicomplex number is its idempotent representation. Setting e1 = 1+j

2

and e2 = 1−j
2
, we get

z1 + i2z2 = (z1 − i1z2) e1 + (z1 + i1z2) e2.

Many calculations become easier in this representation.
The set of nonnegative hyperbolic numbers is

D+ = {ν1e1 + ν2e2 : ν1, ν2 ≥ 0} .
A hyperbolic number ζ is said to be (strictly) positive if ζ ∈ D+\ {0} .The set of
nonnegative hyperbolic numbers is also defined as

D+ =
{
x+ yk : x2 − y2 ≥ 0, x ≥ 0

}
.

On the realization of D+, M.E. Luna-Elizarraras et.al. [11] defined a partial order
relation on D. For two hyperbolic numbers ζ1, ζ2 the relation �D is defined as

ζ1 �D ζ2 if and only if ζ2 − ζ1 ∈ D+.

One can check that this relation is reflexive, transitive and antisymmetric. Therefore
�D is a partial order relation on D. This partial order relation �D on D is an extension
of the total order relation ≤ on R. We say ζ1 ≺D ζ2 if ζ1 �D ζ2 but ζ1 6= ζ2. Also we
say ζ2 �D ζ1 if ζ1 �D ζ2 and ζ2 �D ζ1 if ζ1 ≺D ζ2.

Definition 2.1. [11] For any hyperbolic number ζ = ν1e1 + ν2e2, the D−modulus
of ζ is defined by

|ζ|D = |ν1e1 + ν2e2|D = |ν1| e1 + |ν2| e2 ∈ D+

where |ν1| and |ν2| are the usual modulus of real numbers.
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Definition 2.2. [11] A subset A of D is said to be D− bounded if there exists
M ∈ D+ such that |ζ|D �D M for any ζ ∈ A.

Set

A1 = {x ∈ R : ∃ y ∈ R, xe1 + ye2 ∈ A} ,
A2 = {y ∈ R : ∃ x ∈ R, xe1 + ye2 ∈ A} .

If A is D−bounded then A1 and A2 are bounded subset of R.

Definition 2.3. [11] For a D− bounded subset A of D, the supremum of A with
respect to the D− modulus is defined by

supDA = supA1e1 + supA2e2.

Definition 2.4. [11] A sequence of hyperbolic numbers {ζn}n≥1 is said to be

convergent to ζ ∈ D if for ε ∈ D+\ {0} there exists k ∈ N such that

|ζn − ζ|D ≺D ε.

Then we write
lim
n→∞

ζn = ζ.

Definition 2.5. [11] A sequence of hyperbolic numbers {ζn}n≥1 is said to be D−
Cauchy sequence ζ ∈ D if for ε ∈ D+\ {0} ∃ N ∈ N such that

|ζN+m − ζN |D ≺D ε

for all m = 1, 2, 3, ... .

Note that a sequence of hyperbolic numbers {ζn}n≥1 is convergent if and only if it
is a D− Cauchy sequence.

Definition 2.6. [11] A hyperbolic series
∞∑
n=1

ζn is convergent if and only if its

partial sum is a D− Cauchy sequence, i.e., for any ε ∈ D+\ {0} ∃ N ∈ N such that∣∣∣∣∣
m∑
k=1

ζN+k

∣∣∣∣∣
D

≺D ε

for any m ∈ N.

Definition 2.7. [11] A hyperbolic series
∞∑
n=1

ζn is D−absolutely convergent if the

series
∞∑
n=1

|ζn|D is convergent.

Every D− absolutely convergent series is convergent.

Definition 2.8. [2] Let α = a1e1 + a2e2, β = b1e1 + b2e2 ∈ D with α �D β. The
closed hyperbolic interval (D−interval) is defined by

[α, β]D = {ζ ∈ D : α �D ζ �D β} .
Similarly the open hyperbolic interval (D−interval) is defined by

(α, β)D = {ζ ∈ D : α ≺D ζ ≺D β} .
The length of the D−interval [α, β]D or (α, β)D is defined by

lD ([α, β]D) = β − α.



326 Chinmay Ghosh and Soumen Mondal

[α, β]D is called a degenerate closed D−interval if β − α is a nonnegative zero divisor
hyperbolic number and [α, β]D is called a nondegenerate closed D−interval if β − α
∈ D+\O0.

Definition 2.9. [3] A set A(⊂ D) is called product-type set if A=A1e1 +A2e2 for
some real sets A1, A2.

Definition 2.10. [10] Let [α, β]D be a nondegenerate closed D−interval. The
partition P of [α, β]D is the set {ζ0, ζ1, ζ2, ..., ζn} ⊂ [α, β]D such that

α = ζ0 ≺D ζ1 ≺D ζ2 ≺D ... ≺D ζn = β

and

ζk − ζk−1 ∈ D+\O0, k = 1, 2, ..., n.

A definition of infinity in the hyperbolic case is given in [8] as ∞D =∞e1 +∞De2.

Definition 2.11. [11] A hyperbolic path or D−path is a D−continuous function
Γ : [α, β]D → BC, for some D−interval [α, β]D.

In that case we get for τ = te1 + se2 ∈ [α, β]D ,

Γ (τ) = γ1 (t) e1 + γ2 (s) e2

where γ1 : [a1, b1] → C, γ2 : [a2, b2] → C are two paths in C for α = a1e1 + a2e2 ∈
D, β = b1e1 + b2e2 ∈ D.

Definition 2.12. [6] A function f : A=A1e1+A2e2 ⊂ BC→ BC is called product-
type if there exist fi : Ai → C for i = 1, 2 such that f(α1e1 + α2e2) = f1(α1)e1 +
f2(α2)e2 for all α1e1 + α2e2 ∈ A.

Example 2.13. A D−path Γ(= γ1e1 + γ2e2) : [α, β]D → BC is a product-type
function.

3. Main Results

In this section we prove our main results.

Definition 3.1. A function Γ : [α, β]D → BC, for [α, β]D ⊂ D, is of D−bounded
variation if there exists M ∈ D+ such that for any partition P = {ζ0, ζ1, ζ2, ..., ζn} of
[α, β]D

v (Γ;P ) =
n∑
k=1

|Γ (ζk)− Γ (ζk−1)|D �D M.

The total D−variation of Γ, V (Γ) , is defined by

V (Γ) = supD {v (Γ;P ) : P is a partition of [α, β]D} .
Obviously

V (Γ) �D M ≺D ∞D.

Proposition 3.2. Let Γ : [α, β]D → BC be of D−bounded variation.Then
(a) If P and Q are partitions of [α, β]D and P ⊂ Q then

v (Γ;P ) �D v (Γ;Q) .
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(b) If Λ : [α, β]D → BC is also of D−bounded variation and a, b ∈ BC then aΓ + bΛ
is of D−bounded variation and

V (aΓ + bΛ) �D |a|D V (Γ) + |b|D V (Λ) .

Proof. (a) Let P = {ζ0, ζ1, ζ2, ..., ζn} be a partition of [α, β]D .
First we examine the effect of adjoining one additional point η to P.
The subinterval [ζk−1, ζk]D is divided into two smaller subintervals [ζk−1, η]D and

[η, ζk]D such that

α = ζ0 ≺D ζ1 ≺D ... ≺D ζk−1 ≺D η ≺D ζk ≺D ... ≺D ζn = β,

and
η − ζk−1; ζk − η ∈ D+\O0.

Then the set P1 = {ζ0, ζ1, ζ2, ..., ζk−1, η, ζk, ..., ζn} is a partition of [α, β]D such that
P ⊂ P1.

Now,

v (Γ;P ) = |Γ(ζ1)− Γ(ζ0)|D + ...+ |Γ(ζk)− Γ(ζk−1)|D + ...+ |Γ(ζn)− Γ(ζn−1)|D ,
and

v (Γ;P1) = |Γ(ζ1)− Γ(ζ0)|D + ...+ |Γ(η)− Γ(ζk−1)|D + |Γ(ζk)− Γ(η)|D + ...

+ |Γ(ζn)− Γ(ζn−1)|D .
Since

|Γ(ζk)− Γ(ζk−1)|D = |Γ(ζk)− Γ(η) + Γ(η)− Γ(ζk−1)|D
� D |Γ(ζk)− Γ(η)|D + |Γ(η)− Γ(ζk−1)|D ,

it follows that
v (Γ;P ) �D v (Γ;P1) .

Since Q can be obtained from P by adjoining a finite number of additional points
to P, one at a time, by repeating the arguments a finite number of times, we have

v (Γ;P ) �D v (Γ;Q) .

(b) Let Ω(x) = aΓ(x) + bΛ(x), x ∈ [α, β]D .
Let P = {ζ0, ζ1, ζ2, ..., ζn} be a partition of [α, β]D . Then

v (Γ;P ) = |Γ(ζ1)− Γ(ζ0)|D + ...+ |Γ(ζk)− Γ(ζk−1)|D + ...+ |Γ(ζn)− Γ(ζn−1)|D ,
v (Λ;P ) = |Λ(ζ1)− Λ(ζ0)|D + ...+ |Λ(ζk)− Λ(ζk−1)|D + ...+ |Λ(ζn)− Λ(ζn−1)|D ,
v (Ω;P ) = |Ω(ζ1)− Ω(ζ0)|D + ...+ |Ω(ζk)− Ω(ζk−1)|D + ...+ |Ω(ζn)− Ω(ζn−1)|D .
Now,

|Ω(ζr)− Ω(ζr−1)|D = |aΓ(ζr) + bΛ(ζr)− aΓ(ζr−1)− bΛ(ζr−1)|D
� D |a|D |Γ(ζr)− Γ(ζr−1)|D + |b|D |Λ(ζr)− Λ(ζr−1)|D

Therefore
v (Ω;P ) �D |a|D v (Γ;P ) + |b|D v (Λ;P ) .

Since Γ and Λ are functions of D−bounded variations on [α, β]D , we have

v (Γ;P ) �D V (Γ),

and
v (Λ;P ) �D V (Λ),
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for all partitions P of [α, β]D .
Therefore

v (Ω;P ) �D |a|D V (Γ) + |b|D V (Λ),

for all partitions P of [α, β]D .
This shows that

supD {v (Ω;P ) : P is a partition of [α, β]D} � D |a|D V (Γ) + |b|D V (Λ)

� DM, for some M ∈ D+.

Hence Ω(= aΓ + bΛ) is a function of D−bounded variation on [α, β]D and

V (aΓ + bΛ) �D |a|D V (Γ) + |b|D V (Λ).

Definition 3.3. A function Γ : [α, β]D → BC is D−differentiable at τ = te1+se2 ∈
[α, β]D if

lim
h→0,h/∈O

Γ (τ + h)− Γ (τ)

h
exists in D. Then we say

Γ′ (τ) = lim
h→0,h/∈O

Γ (τ + h)− Γ (τ)

h
,

the D−derivative of Γ at τ.

A D−path Γ : [α, β]D → BC is called D−smooth if Γ′ (τ) exists for each τ ∈ [α, β]D.
Also Γ is piecewise D−smooth if there is a partition P = {ζ0, ζ1, ζ2, ..., ζn} of [α, β]D
such that Γ is D−smooth on each subinterval [ζk−1, ζk] .

One can easily check that if γ1, γ2 are (piecewise) smooth the Γ = γ1e1 + γ2e2 is
(piecewise) D−smooth.

Proposition 3.4. Let Γ(= γ1e1 + γ2e2) : [α, β]D → BC, for [α, β]D ⊂ D, is a
D−path. Then Γ is of D−bounded variation if and only if γ1, γ2 are of bounded
variation. Also

V (Γ) = V (γ1) e1 + V (γ2)e2.

Proof. Since Γ(= γ1e1 + γ2e2) : [α, β]D → BC is a D−path, for i = 1, 2, γi :
[αi, βi]→ C are paths in C where α = α1e1 + α2e2 and β = β1e1 + β2e2.

Let P = {ζ0, ζ1, ζ2, ..., ζn} be a partition of [α, β]D . Taking ζi = ζ1
i e1 + ζ2

i e2, we
get two partitions P1 = {ζ1

0 , ζ
1
1 , ζ

1
2 , ..., ζ

1
n} and P2 = {ζ2

0 , ζ
2
1 , ζ

2
2 , ..., ζ

2
n} of [α1, β1] and

[α2, β2] respectively. Again for any two partitions P1 of [α1, β1] and P2 of [α2, β2], we
can get a partition P of [α, β]D .

Now

v (Γ;P ) =
n∑
k=1

|Γ (ζk)− Γ (ζk−1)|D

=
n∑
k=1

∣∣γ1(ζ1
k)− γ1(ζ1

k−1)
∣∣ e1 +

n∑
k=1

∣∣γ2(ζ2
k)− γ2(ζ2

k−1)
∣∣ e2.

Therefore

(1) v (Γ;P ) = v (γ1;P1) e1 + v (γ2;P2) e2.
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Now it is clear from (1) that for M = M1e1 +M2e2 ∈ D+

v (Γ;P ) �D M ⇔ v (γ1;P1) ≤M1 and v (γ2;P2) ≤M2.

So, Γ is of D−bounded variation iff γ1 and γ2 are of bounded variation.
Also,

V (Γ) = supD {v (Γ;P ) : P is a partition of [α, β]D}
= supD{v (γ1;P1) e1 + v (γ2;P2) e2 : Pi are partitions of [αi, βi], i = 1, 2}
= V (γ1)e1 + V (γ2)e2, using Definition 2.3.

Proposition 3.5. If Γ : [α, β]D → BC is piecewise D−smooth then Γ is of
D−bounded variation and

V (Γ) =

∫
[α,β]D

|Γ′ (τ)|D dτ.

Proof. Let Γ = γ1e1 + γ2e2, α = α1e1 + α2e2 and β = β1e1 + β2e2.
Since Γ : [α, β]D → BC is piecewise D−smooth, then γi : [αi, βi] → C, for i = 1, 2

are piecewise smooth.
Then by Proposition 1.3( [5], Chapter IV), γi are of bounded variation and

V (γi) =

βi∫
αi

∣∣∣γ′i(τi)∣∣∣ dτi, for i = 1, 2.

Then by Proposition 3.4, Γ is of D−bounded variation and

V (Γ) = V (γ1)e1 + V (γ2)e2.

Since Γ
′

: [α, β]D → BC is a BC−function, then
∣∣Γ′∣∣D : [α, β]D → D is a natural

hyperbolic function (see [16]) defined by
∣∣Γ′∣∣D (τ) =

∣∣Γ′(τ)
∣∣
D for τ = τ1e1 + τ2e2.

Now ∫
[α,β]D

∣∣∣Γ′(τ)
∣∣∣
D
dτ =

 β1∫
α1

∣∣∣γ′1(τ1)
∣∣∣ dτ1

 e1 +

 β2∫
α2

∣∣∣γ′2(τ2)
∣∣∣ dτ2

 e2

= V (γ1)e1 + V (γ2)e2

= V (Γ).

So, we have

V (Γ) =

∫
[α,β]D

|Γ′ (τ)|D dτ.

Theorem 3.6. Let Γ(= γ1e1 + γ2e2) : [α, β]D → BC be product-type function of
D−bounded variation and suppose that the product-type function f(= f1e1 + f2e2) :
[α, β]D → BC is D−continuous. Then there is I ∈ BC such that for every εD �D 0
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there is a δD �D 0 such that when P = {ζ0, ζ1, ζ2, ..., ζn} be a partition of [α, β]D with
‖P‖D = supD{lD ([ζk−1, ζk]D) : 1 ≤ k ≤ n} ≺D δD then∣∣∣∣∣I −

n∑
k=1

f(τk)[Γ(ζk)− Γ(ζk−1)]

∣∣∣∣∣
D

≺D εD

for whatever choice of points τk, ζk−1 �D τk �D ζk.

Proof. Since Γ(= γ1e1 + γ2e2) : [α, β]D → BC is a product-type function of
D−bounded variation, by Proposition 3.4 for i = 1, 2 γi : [αi, βi]→ C are of bounded
variation, where α = α1e1 + α2e2 and β = β1e1 + β2e2.

Also since f(= f1e1 + f2e2) : [α, β]D → BC is D−continuous and product-type
function, for i = 1, 2 fi : [αi, βi]→ C are continuous functions.

Then by Theorem 1.4 [5], for i = 1, 2 there exist Ii ∈ C such that for every εi > 0
there is a δi > 0 such that when Pi = {ζ i0, ζ i1, ζ i2, ..., ζ in} are partitions of [αi, βi] with
‖Pi‖ = max{(ζ ik − ζ ik−1) : 1 ≤ k ≤ n} < δi then∣∣∣∣∣Ii −

n∑
k=1

fi(τ
i
k)[γi(ζ

i
k)− γi(ζ ik−1)]

∣∣∣∣∣ < εi

for whatever choice of points τ ik, ζ
i
k−1 ≤ τ ik ≤ ζ ik.

Let I = I1e1 + I2e2, εD = εie1 + ε2e2, δD = δ1e1 + δ2e2, τk = τ 1
ke1 + τ 2

ke2 and
ζk = ζ i0e1 + ζ i0e2 for k = 1, 2, ..., n.

Then P = {ζ0, ζ1, ζ2, ..., ζn} be a partition of [α, β]D with ‖P‖D = ‖P1‖ e1 +
‖P2‖ e2 ≺D δD and ζk−1 �D τk �D ζk.

Now∣∣∣∣∣I −
n∑
k=1

f(τk)[Γ(ζk)− Γ(ζk−1)]

∣∣∣∣∣
D

=

∣∣∣∣∣I1 −
n∑
k=1

f1(τ 1
k )[γ1(ζ1

k)− γi(ζ1
k−1)]

∣∣∣∣∣ e1

+

∣∣∣∣∣I2 −
n∑
k=1

f2(τ 2
k )[γ2(ζ2

k)− γ2(ζ2
k−1)]

∣∣∣∣∣ e2

≺ Dεie1 + εie2 = εD.

Remark 3.7. The number I ∈ BC of Theorem 3.6 is called the Riemann-Stieljes
D−integral of f with respect to Γ over [α, β]D and is designated by

I =

∫
[α,β]D

fdΓ =

∫
[α,β]D

f(τ)dΓ(τ).

Remark 3.8. From the proof of Theorem 3.6 and Theorem 1.4 [5], we can write

I =

∫
[α,β]D

fdΓ =

 β1∫
α1

f1(t)dγ1(t)

 e1 +

 β2∫
α2

f2(s)dγ2(s)

 e2.

The next result is very easy to prove, so we only state the result.
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Proposition 3.9. Let f and g be two product-type bicomplex functions defined
on [α, β]D and Γ,Λ : [α, β]D → BC be product-type functions of D−bounded variation.
Then for any a, b ∈ BC

(i)

∫
[α,β]D

(af + bg)dΓ = a

∫
[α,β]D

fdΓ + b

∫
[α,β]D

gdΓ

(ii)

∫
[α,β]D

fd(aΓ + bΛ) = a

∫
[α,β]D

fdΓ + b

∫
[α,β]D

fdΛ.

Proposition 3.10. Let Γ(= γ1e1 +γ2e2) : [α, β]D → BC be product-type function
of D−bounded variation and f(= f1e1 + f2e2) : [α, β]D → BC be D−continuous
product-type function. If α = ζ0 ≺D ζ1 ≺D ... ≺D ζk−1 ≺D ζk ≺D ... ≺D ζn = β, then∫

[α,β]D

fdΓ =
n∑
k=1

∫
[ζk−1,ζk]D

fdΓ.

Proof. Let α = α1e1 + α2e2 , β = β1e1 + β2e2 and ζk = ζ1
ke1 + ζ2

ke2 for k =
0, 1, 2, ..., n.

Now for i = 1, 2 γi : [αi, βi]→ C are of bounded variation and fi : [αi, βi]→ C are
continuous and also

αi = ζ i0 < ζ i1 < ... < ζ in = βi.

Then by Proposition 1.8 [5], we have for i = 1, 2

βi∫
αi

fidγi =
n∑
k=1

ζik∫
ζik−1

fidγi.

By Remark 3.8 we have∫
[α,β]D

fdΓ =

 β1∫
α1

f1(t)dγ1(t)

 e1 +

 β2∫
α2

f2(s)dγ2(s)

 e2

=

 n∑
k=1

ζ1k∫
ζ1k−1

f1(t)dγ1(t)

 e1 +

 n∑
k=1

ζ2k∫
ζ2k−1

f2(s)dγ2(s)

 e2

=
n∑
k=1

∫
[ζk−1,ζk]D

fdΓ.

Theorem 3.11. If Γ(= γ1e1 + γ2e2) : [α, β]D → BC is piecewise D−smooth and
f(= f1e1 + f2e2) : [α, β]D → BC be D−continuous product-type function, then∫

[α,β]D

fdΓ =

∫
[α,β]D

f(τ)Γ′(τ)dτ.
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Proof. Since Γ is piecewise D−smooth, for i = 1, 2 γi : [αi, βi] → C are piecewise
smooth, where α = α1e1 + α2e2 , β = β1e1 + β2e2.

Also since f is D−continuous product-type function, i = 1, 2 fi : [αi, βi] → C are
continuous function.

Then by Theorem 1.9 [5], for i = 1, 2

(2)

βi∫
αi

fidγi =

βi∫
αi

fi(ti)γ
′
i(ti)dti.

Let τ = t1e1 + t2e2. Then τ ∈ [α, β]D and Γ′(τ) = γ′1(t1)e1 + γ′2(t2)e2.
By Remark 3.8∫

[α,β]D

fdΓ =

 β1∫
α1

f1dγ1

 e1 +

 β2∫
α2

f2dγ2

 e2

=

 β1∫
α1

f1(t1)γ′1(t1)dt1

 e1 +

 β2∫
α2

f2(t2)γ′2(t2)dt2

 e2, by 2

=

∫
[α,β]D

f(τ)Γ′(τ)dτ.

If Γ(= γ1e1 + γ2e2) : [α, β]D → BC is a D−path, then the set {Γ(τ) : α �D τ �D β}
is called the trace of Γ and is denoted by {Γ}. Γ is a rectifiable D−path if Γ is a
function of D−bounded variation. For a partition P of [α, β]D , v(Γ;P ) is the sum of
hyperbolic lengths of the line segment connecting points on the trace of Γ. So Γ is
rectifiable if it has finite hyperbolic length and its length is V (Γ). If Γ is piecewise
D−smooth, then Γ is rectifiable and by Proposition 3.5, its legth is

∫
[α,β]D

|Γ′ (τ)|D dτ.

If Γ : [α, β]D → BC is a rectifiable D−path with {Γ} ⊂ E ⊂ BC and f : E→ BC
is D−continuous product-type function, then f ◦ Γ : [α, β]D → BC is a D−continuous
product-type function.

Remark 3.12. If Γ(= γ1e1 + γ2e2) : [α, β]D → BC is a D−path, then {Γ} =
{γ1}e1 + {γ2}e2.

Definition 3.13. If Γ : [α, β]D → BC is a rectifiable D−path and f is a product-
type function defined and D−continuous on the trace of Γ then the (line) integral of
f along Γ is ∫

[α,β]D

f(Γ(τ))dΓ(τ).

This line integral is also denoted by∫
Γ

f =

∫
Γ

f(z)dz.
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Remark 3.14. If Γ(= γ1e1 + γ2e2) : [α, β]D → BC is a rectifiable D−path and
f = (f1e1 + f2e2) is a product-type function defined and D−continuous on {Γ}, then
it is easy to verify that ∫

Γ

f =

∫
γ1

f1

 e1 +

∫
γ2

f2

 e2.

Definition 3.15. A function Φ : [λ, µ]D → [α, β]D is said to be D−monotone
function if any one of the following hold

i) Φ(ξ) �D Φ(τ) for any ξ, τ ∈ [λ, µ]D with ξ �D τ ;

ii) Φ(ξ) �D Φ(τ) for any ξ, τ ∈ [λ, µ]D with ξ �D τ.

Remark 3.16. In the above definition if (i) holds then Φ is said to be D−monotone
increasing function on [λ, µ]D and if (ii) holds then Φ is said to be D−monotone
decreasing function on [λ, µ]D .

Remark 3.17. If Φ = (Φ1e1+Φ2e2) : [λ, µ]D → [α, β]D is a D−monotone increasing
product-type function then for each i = 1, 2 Φi : [λi, µi] → [αi, βi] is monotone
increasing function on [λi, µi] , where λ = λ1e1 + λ2e2, µ = µ1e1 + µ2e2, α = α1e1 +
α2e2, β = β1e1 + β2e2.

If Γ : [α, β]D → BC is a rectifiable D−path and Φ : [λ, µ]D → [α, β]D is a
D−continuous, D−monotone increasing function with Φ([λ, µ]D) = [α, β]D (i.e., Φ(λ) =
α, Φ(µ) = β) then Γ ◦Φ : [λ, µ]D → BC is a D−path such that {Γ ◦Φ} = {Γ}. Also, if
Φ(z) /∈ O for all z ∈ [λ, µ]D , then Γ ◦ Φ is rectifiable because if P = {ζ0, ζ1, ζ2, ..., ζn}
be a partition of [λ, µ]D then P1 = {Φ(ζ0),Φ(ζ1),Φ(ζ2), ...,Φ(ζn)} is a partition of
[α, β]D . Therefore

n∑
k=1

|Γ(Φ(ζk))− Γ(Φ(ζk−1))|D �D V (Γ)

so that V (Γ ◦ Φ) �D V (Γ) ≺D ∞D. So if f is product-type D−continuous on
{Γ} = {Γ ◦ Φ} then

∫
Γ◦Φ

f is well defined.

Proposition 3.18. If Γ(= γ1e1 + γ2e2) : [α, β]D → BC is a rectifiable D−path
and Φ = (Φ1e1 + Φ2e2) : [λ, µ]D → [α, β]D is a D−monotone increasing product-type
function with Φ(λ) = α, Φ(µ) = β and Φ(z) /∈ O for all z ∈ [λ, µ]D ; then for any
product-type D−continuous function f(= f1e1 + f2e2) on {Γ}∫

Γ

f =

∫
Γ◦Φ

f.

Proof. Let λ = λ1e1 + λ2e2, µ = µ1e1 + µ2e2, α = α1e1 + α2e2, β = β1e1 + β2e2.
Since Γ(= γ1e1 + γ2e2) : [α, β]D → BC is a rectifiable D−path and Φ = (Φ1e1 +

Φ2e2) : [λ, µ]D → [α, β]D is a D−monotone increasing product-type function with
Φ(λ) = α, Φ(µ) = β, then for i = 1, 2 γi : [αi, βi] → C are rectifiable path and Φi :
[λi, µi]→ [αi, βi] are continuous increasing functions with Φi(λi) = αi and Φi(µi) = βi.

Also since f(= f1e1 +f2e2) is D−continuous on {Γ}, then by Remark 3.12 we have
fi are continuous on {γi} for i = 1, 2.
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Then by Proposition 1.13 ( [5], Chapter IV ), we have∫
γi

f =

∫
γi◦Φi

f, for i = 1, 2.

Then by Remark 3.14, we have∫
Γ

f =

∫
γ1

f1

 e1 +

∫
γ2

f2

 e2

=

 ∫
γ1◦Φ1

f1

 e1 +

 ∫
γ2◦Φ2

f2

 e2

=

∫
Γ◦Φ

f.

Let Γ(= γ1e1 + γ2e2) : [α, β]D → BC is a rectifiable D−path and for α �D τ �D β,
let (Γ)τ be V (Γ; [α, τ ]D). That is

(3) (Γ)τ = supD

{
n∑
k=1

|Γ(τk)− Γ(τk−1)|D : {τ0, τ1, ..., τn} is a partition of [α, τ ]D

}
.

Let α = α1e1 + α2e2, β = β1e1 + β2e2, τ = te1 + se2 and τk = tke1 + ske2 for
k = 0, 1, ...n.

Since Γ is a rectifiable D−path, for i = 1, 2 γi : [αi, βi]→ C are rectifiable path.
Let α1 ≤ t ≤ β1, α2 ≤ s ≤ β2 and also

(γ1)t = sup

{
n∑
k=1

|γ1(tk)− γ1(tk−1)| : {t0, t1, ..., tn} is a partition of [α1, t]

}
,

(γ2)s = sup

{
n∑
k=1

|γ2(sk)− γ2(sk−1)| : {s0, s1, ..., sn} is a partition of [α1, s]

}
.

Then from (3) we have

(Γ)τ = (γ1)te1 + (γ2)se2.

Since (γ1)t and (γ2)s are increasing, (γ1)t : [αi, βi] → R and (γ2)s : [αi, βi] → R
are bounded variation. So, by Proposition 3.4, (Γ)τ : [α, β]D → D is of D−bounded
variation.

If f(= f1e1 + f2e2) is product-type D−continuous function on {Γ} define

(4)

∫
Γ

f |dz|D =

∫
[α,β]D

f(Γ(τ))d(Γ)τ .

Clearly f1 is continuous on {γ1} and f2 is continuous on {γ2}. If we define∫
γ1

f1 |dz1| =
β1∫

α1

f1(γ1(t))d(γ1)t,
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∫
γ2

f2 |dz2| =
β2∫

α2

f2(γ2(s))d(γ2)s,

then for dz = dz1e1 + dz2e2, from (4) we have

(5)

∫
Γ

f |dz|D =

∫
γ1

f1 |dz1|

 e1 +

∫
γ2

f2 |dz2|

 e2.

If Γ is rectifiable D−curve in BC then denote by −Γ the D−curve defined by
(−Γ)(τ) = Γ(−τ) for −β �D τ �D −α. Also if c ∈ BC let Γ + c denote the curve
defined by (Γ + c)(τ) = Γ(τ) + c for τ ∈ [α, β]D .

Proposition 3.19. Let Γ(= γ1e1 + γ2e2) : [α, β]D → BC is a rectifiable D−path
and suppose that f(= f1e1 + f2e2) is a product-type D−continuous function on {Γ}.
Then
a)
∫
Γ

f = −
∫
−Γ

f ;

b)

∣∣∣∣∫
Γ

f

∣∣∣∣
D
�D

∫
Γ

|f |D |dz|D �D V (Γ) supD[|f(z)|D : z ∈ {Γ}];

c) If c ∈ BC then
∫
Γ

f(z)dz =
∫

Γ+c

f(z − c)dz.

Proof. Since Γ is rectifiable D−path, for i = 1, 2 γi are rectifiable curve in C and
fi are continuous on {γi}.

Then by Proposition 1.17 ( [5], Chapter IV ) we have for i = 1, 2
i)
∫
γi

fi = −
∫
−γi

fi;

ii)

∣∣∣∣∣∫γi fi
∣∣∣∣∣ ≤ ∫γi |fi| |dzi| ≤ V (γi) sup[|fi(zi)| : zi ∈ {γi}];

iii) If ci ∈ C then
∫
γi

fi(zi)dzi =
∫

γi+ci

fi(zi − ci)dzi.

Let dz = dz1e1 + dz2e2 and c = c1e1 + c2e2. Then using Remark 3.14, equation
5, Definition 2.3, Proposition 3.4 and properties of D−modulus we have the required
results.

It is easy to verify that (BC,dD) is a Hyperbolic Valued Metric Space [7], where
dD(x, y) = d1(x1, y1)e1 + d2(x2, y2)e2 for x = x1e1 + x2e2, y = y1e1 + y2e2 ∈ BC
and d1, d2 are usual metric in C. Let G = G1e1 + G2e2 be product-type open set in
(BC,dD), then G1 and G2 are open sets in complex metric space.

Definition 3.20. A product-type function F is called product-type primitive of a
product-type D−continuous function f on a product-type open set G if F ′(x) = f(x)
for all x ∈ G.

Remark 3.21. In the above definition if we take F = F1e1 +F2e2, f = f1e1 + f2e2

and G = G1e1 +G2e2, then F1, F2 are primitives of f1, f2 on G1, G2 respectively.

The next theorem is the bicomplex analogue of the Fundamental Theorem of Cal-
culus for line integrals.
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Theorem 3.22. Let G be product-type open set in the hyperbolic metric space
(BC,dD) and let Γ be a rectifiable D−path in G with initial and end points α and
β respectively. If f : G → BC is a product-type D−continuous function with a
product-tye primitive F : G→ BC, then∫

Γ

f = F (β)− F (α).

Proof. Let G = G1e1 + G2e2, F = F1e1 + F2e2, f = f1e1 + f2e2, Γ = γ1e1 + γ2e2,
α = α1e1 + α2e2, and β = β1e1 + β2e2.

Then for i = 1, 2 Gi are open sets in C and γi are rectifiable path in Gi with initial
and end points αi and βi respectively.

Therefore by Remark 3.21 and by Theorem 1.18 ( [5], Chapter IV ) we have

(6)

∫
γi

fi = Fi(βi)− Fi(αi) for i = 1, 2.

Then by Remark 3.14 we have∫
Γ

f =

∫
γ1

f1

 e1 +

∫
γ2

f2

 e2

= (F1(β1)− F1(α1))e1 + (F2(β2)− F2(α2))e2, by (6)

= F (β)− F (α).

Corollary 3.23. Let G, Γ and f satisfy the same hypothesis as in Theorem 3.22.
If Γ is closed curve then ∫

Γ

f = 0.

Proof. Let G = G1e1 +G2e2, f = f1e1 + f2e2 and Γ = γ1e1 + γ2e2.
Then by Corollary 1.22 ( [5], Chapter IV ) and using Remark 3.14 we have∫

Γ

f = 0.
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Symbolic Computations, Birkhäuser, Boston, (1996), 213–227.

[7] C. Ghosh, A. Bandyopadhyay and S. Mondal, Hyperbolic Valued Metric Space, ArXiv [math.CV]
(2021), arXiv:2108.07100.

[8] C. Ghosh, S. Biswas and T. Yasin, Hyperbolic valued signed measures, Int. J. Math. Trends
Technol., 55 (7) (2018), 515–522.

[9] W.R. Hamilton, On a new species of imaginary quantities connected with a theory of quater-
nions, Proc. R. Ir. Acad., 2 (1844), 424–434.

[10] M.E. Luna-Elizarrarás, Integration of Functions of a Hyperbolic Variable, Complex Anal. Oper.
Theory, 16, 35 (2022). https://doi.org/10.1007/s11785-022-01197-9.

[11] M.E. Luna-Elizarraras, M. Shapiro, D.C. Struppa and A. Vajiac, Bicomplex holomorphic func-
tions: The algebra, geometry and analysis of bicomplex numbers, Frontiers in Mathematics,
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