BERWALD AND DOUGLAS SPACES OF A FINSLER SPACE WITH AN EXPONENTIAL FORM OF (α, β) - METRIC

Brijesh Kumar Tripathi and Dhruvisha Patel

ABSTRACT. In the present paper, we have undertaken a study of Berwald space and Douglas space in a Finsler space with exponential form of (α, β) -metric. We have examined the conditions under which this metric will be a Berwald and Douglas space.

1. Introduction

We consider an n-dimensional Finsler space $F^n = (M^n, L)$, i.e., a pair consisting of an n-dimensional differentiable manifold M^n equipped with a fundamental function $L(x^i, y^i)$.

DEFINITION 1.1. A Finsler space F^n of dimension n is a differentiable manifold such that the length s of the curve $x^i(t)$ of F^n is defined by $s = \int L(x^i, y^i) dt$, where $y^i = \frac{dx^i}{dt}$ is a tangent vector. The fundamental function $L(x^i, y^i) = L(x^1, ...x^n, y^1, ...y^n)$ is supposed to be differentiable on manifold M^n and satisfy the following conditions:
(i) Positively homogeneous: $L(x^i, py^i) = pL(x^i, y^i), p > 0$.

(ii) Positive: $L(x^i, y^i) > 0$, $y^i \neq 0$ on differentiable manifold $(M^n - 0)$.

(iii) Positive definite metric $g_{ij} = \frac{1}{2} \frac{\partial^2 L}{\partial y^i \partial y^j} > 0$.

The interesting and significant examples of an (α, β) - metrics are Randers metric $(\alpha + \beta)$, Kropina metric $\frac{\alpha^2}{\beta}$ and Matsumoto metric [9] $\frac{\alpha^2}{(\alpha - \beta)}$. The notion of an (α, β) -metric was introduced by M. Matsumoto [8] and has been studied by many authors [3, 13, 16].

DEFINITION 1.2. A Finsler metric $L(\alpha, \beta)$ in a differentiable manifold M^n is called an (α, β) -metric if L is a positively homogeneous function of degree one of a Riemannian metric $\alpha = (a_{ij}(x)y^iy^j)^{\frac{1}{2}}$ and a one-form $\beta = b_i(x)y^i$ on M^n .

In 1928, L. Berwald [4] defined an affinely connected Finsler space if the connection coefficients G^i_{jk} of Berwald connection $B\Gamma$ are functions of position coordinate x^i alone with respect to the linear connection and defined the equation of geodesics, which is given by

Received March 19, 2023. Revised November 21, 2024. Accepted November 21, 2024.

²⁰¹⁰ Mathematics Subject Classification: 53B40, 53C60.

Key words and phrases: Finsler space, Berwald space, Douglas space, (α,β) -metric, Exponential (α,β) -metric.

[©] The Kangwon-Kyungki Mathematical Society, 2024.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

$$\frac{d^2x^i}{ds^2} + G_{jk}^i(x)\frac{dx^j}{ds}\frac{dx^k}{ds} = 0.$$

DEFINITION 1.3. A Finsler space is called a Berwald space if the connection coefficients G_{ik}^i of B Γ are functions of position x^i alone in any coordinate system.

The notion of a Douglas space was introduced by S. Bacso and M. Matsumoto [3] as a generalization of a Berwald space from the point of view of geodesic equations. It is remarkable that a Finsler space is a Douglas space if and only if the Douglas tensor vanishes identically. Afterwards, the conditions for Finsler spaces to be Berwald space and Douglas space with different special kind of (α, β) -metrics have been studied by many authors [5, 12, 13, 17].

In 2020, Tripathi [15] considered a special type of Finsler exponential (α, β) -metric and studied the basic properties of Finsler space with this significant metric and various hypersurfaces with this metric. The present paper is devoted to study the condition for a Finsler space with the (α, β) -metric $L = \alpha e^{\frac{\beta}{\alpha}} + \beta e^{-\frac{\beta}{\alpha}}$ to be a Berwald space and Douglas space.

2. Preliminaries

In this paper we consider an n-dimensional Finsler space $F^n = \{M^n, L(\alpha, \beta)\}$, that is, a pair consisting of an n-dimensional differentiable manifold M^n equipped with a Fundamental function L as a special Finsler Space with the metric

(1)
$$L(\alpha, \beta) = \alpha e^{\frac{\beta}{\alpha}} + \beta e^{-\frac{\beta}{\alpha}},$$

where $\alpha = \sqrt{\alpha_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ a differential one form β .

Differentiating equation (1) partially with respect to α and β are given by

$$\left\{ \begin{array}{l} L_{\alpha} = \frac{\alpha^{2}e^{\frac{\beta}{\alpha}} - \alpha\beta e^{\frac{\beta}{\alpha}} + \beta^{2}e^{\frac{-\beta}{\alpha}}}{\alpha^{2}}, \quad L_{\beta} = \frac{\alpha e^{\frac{\beta}{\alpha}} + \alpha e^{\frac{-\beta}{\alpha}} - \beta e^{\frac{-\beta}{\alpha}}}{\alpha}, \\ L_{\alpha\alpha} = \frac{\alpha\beta^{2}e^{\frac{\beta}{\alpha}} - 2\alpha\beta^{2}e^{\frac{-\beta}{\alpha}} + \beta^{3}e^{\frac{-\beta}{\alpha}}}{\alpha^{4}}, \quad L_{\beta\beta} = \frac{\alpha e^{\frac{\beta}{\alpha}} - 2\alpha e^{\frac{-\beta}{\alpha}} + \beta e^{\frac{-\beta}{\alpha}}}{\alpha^{2}}, \\ L_{\alpha\beta} = \frac{-\alpha\beta e^{\frac{\beta}{\alpha}} + 2\alpha\beta e^{\frac{-\beta}{\alpha}} - \beta^{2}e^{\frac{-\beta}{\alpha}}}{\alpha^{3}}, \quad L_{\beta\alpha} = \frac{-\alpha\beta e^{\frac{\beta}{\alpha}} + 2\alpha\beta e^{\frac{-\beta}{\alpha}} - \beta^{2}e^{\frac{-\beta}{\alpha}}}{\alpha^{3}}, \\ L_{\alpha\alpha\alpha} = \frac{-3\alpha^{2}\beta^{2}e^{\frac{\beta}{\alpha}} - \alpha\beta^{3}e^{\frac{\beta}{\alpha}} + 6\alpha^{2}\beta^{2}e^{\frac{-\beta}{\alpha}} - 6\alpha\beta^{3}e^{\frac{-\beta}{\alpha}} + \beta^{4}e^{\frac{-\beta}{\alpha}}}{\alpha^{5}}, \\ L_{\alpha\alpha\beta} = \frac{2\alpha^{2}\beta e^{\frac{\beta}{\alpha}} + \alpha\beta^{2}e^{\frac{\beta}{\alpha}} - 4\alpha^{2}\beta e^{\frac{-\beta}{\alpha}} + 5\alpha\beta^{2}e^{\frac{-\beta}{\alpha}} - \beta^{3}e^{\frac{-\beta}{\alpha}}}{\alpha^{5}}. \end{array} \right.$$

Since an exponential form of Finsler (α, β) -metric (1) is a positive homogeneous function of degree one in α and β . Therefore from Eulers theorem of homogeneous functions, we determine the following relations from (2).

(3)
$$\begin{cases} L_{\alpha}\alpha + L_{\beta}\beta = L, L_{\alpha\alpha}\alpha + L_{\alpha\beta}\beta = 0, \\ L_{\beta\alpha}\alpha + L_{\beta\beta}\beta = 0, L_{\alpha\alpha\alpha}\alpha + L_{\alpha\alpha\beta}\beta = -L_{\alpha\alpha}. \end{cases}$$

On the other hand, the geodesics of a Finsler space $F^n = (M^n, L)$ are given by the system of differential equations including the function

$$4G^{i} = g^{ij}(y^{r}\dot{\partial}_{i}\partial_{r}L^{2} - \partial_{i}L^{2}),$$

where $G^i = g^{ij}G_j$ is a positive homogeneous in y^i of degree two and the fundamental tensor is given by $g_{ij} = \frac{1}{2}\partial_i\partial_j L^2$.

The covariant differentiation with respect to the Levi-Civita connection $\gamma_{jk}^i(x)$ of the associated Riemannian space $R^n = (M^n, \alpha)$ of Finsler space with $F^n = \{M^n, L(\alpha, \beta)\}$ ([1], [10]) is denoted by the symbol; We put $(a^{ij}) = (a_{ij})^{-1}$, and use the symbols as follows:

$$r_{ij} = \frac{1}{2}(b_{i;j} + b_{j;i}), \ s_{ij} = \frac{1}{2}(b_{i;j} - b_{j;i}), \ r_j^i = a^{ir}r_{rj}, \ s_j^i = a^{ir}s_{rj}, \ r_j = b_r r_j^r,$$
$$s_j = b_r s_i^r, \ b^i = a^{ir}b_r, \ b^2 = a^{rs}b_r b_s.$$

According to [11], if $\beta^2 L_{\alpha} + \alpha \gamma^2 L_{\alpha \alpha} \neq 0$, where $\gamma^2 = b^2 \alpha^2 - \beta^2$, then the function $G^i(x,y)$ of F^n with an (α,β) -metric is written in the form

$$2G^i = \gamma_{00}^i + 2B^i$$

(4)
$$B^{i} = \frac{\alpha L_{\beta}}{L_{\alpha}} s_{0}^{i} + C^{*} \left\{ \frac{\beta L_{\beta}}{\alpha L} y^{i} - \frac{\alpha L_{\alpha \alpha}}{L_{\alpha}} \left(\frac{1}{\alpha} y^{i} - \frac{\alpha}{\beta} b^{i} \right) \right\},$$

where $L_{\alpha} = \frac{\partial L}{\partial \alpha}$, $L_{\beta} = \frac{\partial L}{\partial \beta}$, $L_{\alpha\alpha} = \frac{\partial^2 L}{\partial \alpha \partial \alpha}$, the subscipt 0 means the contraction by y^i and we put

(5)
$$C^* = \frac{\alpha\beta(r_{00}L_{\alpha} - 2s_0\alpha L_{\beta})}{2(\beta^2 L_{\alpha} + \alpha\gamma^2 L_{\alpha\alpha})}.$$

Note: We shall denote the homogeneous polynomial in y^i of degree r by the symbol hp(r) for brevity. For example, γ_{00}^i is a homogeneous polynomial in y^i of degree 2 by the symbol hp(2).

From the equation (5) the Berwald connection $B\Gamma = (G_{jk}^i, G_j^i, 0)$ of F^n with an (α, β) -metric is given by

$$G_j^i = \dot{\partial}_j G^i = \gamma_{0j}^i + B_j^i,$$

$$G_{jk}^i = \dot{\partial}_k G_j^i = \gamma_{jk}^i + B_{jk}^i,$$

where we put $B_j^i = \dot{\partial}_j B^i$ and $B_{jk}^i = \dot{\partial}_k B_j^i$. $B^i(x,y)$ is called the difference vector [11]. On account of [11], B_{jk}^i is determined by

(6)
$$L_{\alpha}B_{ji}^{t}y^{j}y_{t} + \alpha L_{\beta}(B_{ji}^{t}b_{t} - b_{j;i})y^{j} = 0,$$

where $y_k = a_{ik}y^i$.

A Finsler space F^n with an (α, β) -metric is a Douglas space if and only if $B^{ij} = B^i y^j - B^j y^i$ is hp(3) [3]. From latter of (5) B^{ij} is written as follows:

(7)
$$B^{ij} = \frac{\alpha L_{\beta}}{L_{\alpha}} (s_0^i y^j - s_0^j y^i) + \frac{\alpha^2 L_{\alpha\alpha}}{\beta L_{\alpha}} C^* (b^i y^j - b^j y^i).$$

LEMMA 2.1. [2] If $\alpha^2 \equiv 0 \pmod{\beta}$, that is, $a_{ij}(x)y^iy^j$ contains $b_i(x)y^i$ as a factor, then the dimension is equal to two and b^2 vanishes. In this case we have $\delta = d_i(x)y^i$ which satisfies $\alpha^2 = \beta \delta$ and $d_ib^i = 2$.

3. The condition to be a Berward space

In this section, we have obtained the condition for a Finsler space F^n with an exponential (α, β) -metric $L(\alpha, \beta) = \alpha e^{\frac{\beta}{\alpha}} + \beta e^{-\frac{\beta}{\alpha}}$ to be a Berwald space.

From equations (2) and (6), we have

$$(8) \quad (\alpha^2 e^{\frac{\beta}{\alpha}} - \alpha \beta e^{\frac{\beta}{\alpha}} + \beta^2 e^{\frac{-\beta}{\alpha}}) B_{ii}^t y^j y_t + \alpha^2 (\alpha e^{\frac{\beta}{\alpha}} + \alpha e^{\frac{-\beta}{\alpha}} - \beta e^{\frac{-\beta}{\alpha}}) (B_{ii}^t b_t - b_{j;i}) y^j = 0.$$

Suppose that F^n is a Berwald space, i.e., $B^i_{jk} = B^i_{jk}(x)$. Separating (8) into rational and irrational parts of y^i as

(9)
$$(\alpha^2 e^{\frac{\beta}{\alpha}} + \beta^2 e^{\frac{-\beta}{\alpha}}) B_{ii}^t y^j y_t - (\alpha^2 \beta e^{\frac{-\beta}{\alpha}}) (B_{ii}^t b_t - b_{j:i}) y^j = 0,$$

and

(10)
$$(-\beta e^{\frac{\beta}{\alpha}}) B_{ji}^t y^j y_t + (\alpha^2 e^{\frac{\beta}{\alpha}} + \alpha^2 e^{\frac{-\beta}{\alpha}}) (B_{ji}^t b_t - b_{j:i}) y^j = 0.$$

Equations (9) and (10) can be expressed as a matrix of homogeneous linear equations: AX=0,

(11)
$$\begin{bmatrix} \alpha^2 e^{\frac{\beta}{\alpha}} + \beta^2 e^{\frac{-\beta}{\alpha}} & -\alpha^2 \beta e^{\frac{-\beta}{\alpha}} \\ -\beta e^{\frac{\beta}{\alpha}} & \alpha^2 e^{\frac{-\beta}{\alpha}} + \alpha^2 e^{\frac{\beta}{\alpha}} \end{bmatrix} \begin{bmatrix} B_{ji}^t y^j y_t \\ (B_{ji}^t b_t - b_{j;i}) y^j \end{bmatrix} = 0.$$

where

(12)
$$A = \begin{bmatrix} \alpha^2 e^{\frac{\beta}{\alpha}} + \beta^2 e^{\frac{-\beta}{\alpha}} & -\alpha^2 \beta e^{\frac{-\beta}{\alpha}} \\ -\beta e^{\frac{\beta}{\alpha}} & \alpha^2 e^{\frac{-\beta}{\alpha}} + \alpha^2 e^{\frac{\beta}{\alpha}} \end{bmatrix}$$

and

(13)
$$|A| = \alpha^4 e^{\frac{2\beta}{\alpha}} + \alpha^4 + \alpha^2 \beta^2 e^{\frac{-2\beta}{\alpha}} \neq 0.$$

Which implies

$$(14) B_{ii}^t y^j y_t = 0,$$

and

(15)
$$(B_{ji}^t b_t - b_{j;i}) y^j = 0.$$

Contracting equation (15) y_t , we have

(16)
$$(B_{ji}^t b_t - b_{j;i}) y^j y_t = 0,$$

(17)
$$\Rightarrow B_{ji}^t b_t y^j y_t - b_{j;i} y^j y_t = 0$$
$$\Rightarrow (B_{ji}^t y^j y_t) b_t - b_{j;i} y^j y_t = 0$$

Using equation (14) in (17), we have

$$b_{i:i} = 0.$$

Conversely, if $b_{j;i} = 0$ in equation (15), then we have

$$B_{ii}^t = 0.$$

Thus, we have

THEOREM 3.1. A Finsler space with an exponential (α, β) -metric $L(\alpha, \beta) = \alpha e^{\frac{\beta}{\alpha}}$ + $\beta e^{-\frac{\beta}{\alpha}}$ is a Berwald space if and only if $b_{i,j} = 0$.

4. The condition to be a Douglas space

The present section is devoted to find the condition for a Finsler space F^n with an exponential (α, β) -metric (1) to be a Douglas space. In Finsler space F^n with metric (1), we have

$$C^* = \frac{\alpha^2 \beta}{2} \{ \frac{W}{\Omega} \}$$

where
$$W = r_{00} \left(\alpha^2 e^{\frac{\beta}{\alpha}} - \alpha \beta e^{\frac{\beta}{\alpha}} + \beta^2 e^{\frac{-\beta}{\alpha}}\right) - 2S_0 \alpha^2 \left(\alpha e^{\frac{\beta}{\alpha}} + \alpha e^{\frac{-\beta}{\alpha}} - \beta e^{\frac{-\beta}{\alpha}}\right),$$

$$\Omega = \alpha \beta^2 \left(\alpha^2 e^{\frac{\beta}{\alpha}} - \alpha \beta e^{\frac{\beta}{\alpha}} + \beta^2 e^{\frac{-\beta}{\alpha}}\right) + \alpha^2 b^2 \left(\alpha \beta^2 e^{\frac{\beta}{\alpha}} - 2\alpha \beta^2 e^{\frac{-\beta}{\alpha}} + \beta^3 e^{\frac{-\beta}{\alpha}}\right)$$

$$-\beta^2 \left(\alpha \beta^2 e^{\frac{\beta}{\alpha}} - 2\alpha \beta^2 e^{\frac{-\beta}{\alpha}} + \beta^3 e^{\frac{-\beta}{\alpha}}\right) \neq 0.$$

In view of [11], if $\Omega = \beta^2 L_{\alpha} + \alpha \gamma^2 L_{\alpha\alpha} \neq 0$, then the function $G^i(x,y)$ of F^n with an (α, β) -metric is written in the form

$$2G^i = \gamma_{00}^i + 2B^i,$$

where

$$B^{i} = \frac{\alpha L_{\beta} s_{0}^{i}}{L_{\alpha}} + C^{*} \left\{ \frac{\beta L_{\beta} y^{i}}{\alpha L} - \frac{\alpha L_{\alpha \alpha}}{L_{\alpha}} \left(\frac{y^{i}}{\alpha} - \frac{\alpha b^{i}}{\beta} \right) \right\}.$$

The vector $B^{i}(x,y)$ is called the difference vector. Hence B^{ij} is written as

(18)
$$B^{ij} = \frac{\alpha L_{\beta}}{L_{\alpha}} (s_0^i y^j - s_0^j y^i) + \frac{\alpha^2 L_{\alpha \alpha}}{\beta L_{\alpha}} C^* (b^i y^j - b^j y^i).$$

Substituting (2) in above equation, we get

$$\begin{cases}
(2\alpha^{5}\beta^{3}e^{\frac{2\beta}{\alpha}} - 4\alpha^{4}\beta^{4}e^{\frac{2\beta}{\alpha}} + 8\alpha^{3}\beta^{5} + 2\alpha^{5}\beta^{3}b^{2}e^{\frac{2\beta}{\alpha}} - 4\alpha^{5}\beta^{3}b^{2} + 6\alpha^{4}\beta^{4}b^{2} \\
-10\alpha^{2}\beta^{6} - 2\alpha^{4}\beta^{4}b^{2}e^{\frac{2\beta}{\alpha}} + 2\alpha^{2}\beta^{6}e^{\frac{2\beta}{\alpha}} + 6\alpha\beta^{7}e^{\frac{-2\beta}{\alpha}} - 4\alpha^{3}\beta^{5}b^{2}e^{\frac{-2\beta}{\alpha}} \\
+2\alpha^{2}\beta^{6}b^{2}e^{\frac{-2\beta}{\alpha}} - 2\beta^{8}e^{\frac{-2\beta}{\alpha}})B^{ij} + (-2\alpha^{6}\beta^{3}e^{\frac{2\beta}{\alpha}} + 2\alpha^{5}\beta^{4}e^{\frac{2\beta}{\alpha}} \\
-6\alpha^{4}\beta^{5} - 2\alpha^{6}\beta^{3}b^{2}e^{\frac{2\beta}{\alpha}} + 2\alpha^{6}\beta^{3}b^{2} + 2\alpha^{4}\beta^{5}e^{\frac{2\beta}{\alpha}} - 2\alpha^{6}\beta^{3} + 4\alpha^{5}\beta^{4} \\
-2\alpha^{4}\beta^{5}e^{\frac{-2\beta}{\alpha}} + 4\alpha^{6}\beta^{3}b^{2}e^{\frac{-2\beta}{\alpha}} - 6\alpha^{5}\beta^{4}b^{2}e^{\frac{-2\beta}{\alpha}} - 4\alpha^{4}\beta^{5}e^{\frac{-2\beta}{\alpha}} \\
+8\alpha^{3}\beta^{6}e^{\frac{-2\beta}{\alpha}} + 2\alpha^{4}\beta^{5}b^{2}e^{\frac{-2\beta}{\alpha}} - 2\alpha^{2}\beta^{7}e^{\frac{-2\beta}{\alpha}})(S_{0}^{i}y^{j} - S_{0}^{j}y^{i}) \\
+r_{00}(-\alpha^{5}\beta^{3}e^{\frac{2\beta}{\alpha}} + \alpha^{4}\beta^{4}e^{\frac{2\beta}{\alpha}} + 2\alpha^{5}\beta^{3} - 3\alpha^{4}\beta^{4} \\
+2\alpha^{3}\beta^{5}e^{\frac{-2\beta}{\alpha}} - \alpha^{2}\beta^{6}e^{\frac{-2\beta}{\alpha}}) + s_{0}(2\alpha^{6}\beta^{3}e^{\frac{2\beta}{\alpha}} \\
-2\alpha^{6}\beta^{3} - 4\alpha^{6}\beta^{3}e^{\frac{-2\beta}{\alpha}} + 6\alpha^{5}\beta^{4}e^{\frac{-2\beta}{\alpha}} \\
-2\alpha^{4}\beta^{5}e^{\frac{-2\beta}{\alpha}})(b^{i}y^{j} - b^{j}y^{i}) = 0.
\end{cases}$$

If F^n is a Douglas space, then B^{ij} are hp(8). Separating the rational and irrational terms in equation (19), we can write as

$$\begin{cases} (-4\alpha^{4}\beta^{4}e^{\frac{2\beta}{\alpha}} + 6\alpha^{4}\beta^{4}b^{2} - 10\alpha^{2}\beta^{6} - 2\alpha^{4}\beta^{4}b^{2}e^{\frac{2\beta}{\alpha}} + 2\alpha^{2}\beta^{6}e^{\frac{2\beta}{\alpha}} \\ + 2\alpha^{2}\beta^{6}b^{2}e^{\frac{-2\beta}{\alpha}} - 2\beta^{8}e^{\frac{-2\beta}{\alpha}})B^{ij} + (-2\alpha^{6}\beta^{3}e^{\frac{2\beta}{\alpha}} - 6\alpha^{4}\beta^{5} \\ -2\alpha^{6}\beta^{3}b^{2}e^{\frac{2\beta}{\alpha}} + 2\alpha^{6}\beta^{3}b^{2} + 2\alpha^{4}\beta^{5}e^{\frac{2\beta}{\alpha}} - 2\alpha^{6}\beta^{3} - 2\alpha^{4}\beta^{5}e^{\frac{-2\beta}{\alpha}} \\ + 4\alpha^{6}\beta^{3}b^{2}e^{\frac{-2\beta}{\alpha}} - 4\alpha^{4}\beta^{5}e^{\frac{-2\beta}{\alpha}} + 2\alpha^{4}\beta^{5}b^{2}e^{\frac{-2\beta}{\alpha}} - 2\alpha^{2}\beta^{7}e^{\frac{-2\beta}{\alpha}}) \\ \times (s_{0}^{i}y^{j} - s_{0}^{j}y^{i}) + r_{00}(\alpha^{4}\beta^{4}e^{\frac{2\beta}{\alpha}} - 3\alpha^{4}\beta^{4} - \alpha^{2}\beta^{6}e^{\frac{-2\beta}{\alpha}}) \\ + s_{0}(2\alpha^{6}\beta^{3}e^{\frac{2\beta}{\alpha}} - 2\alpha^{6}\beta^{3} - 4\alpha^{6}\beta^{3}e^{\frac{-2\beta}{\alpha}} - 2\alpha^{4}\beta^{5}e^{\frac{-2\beta}{\alpha}}) \\ \times (b^{i}y^{j} - b^{j}y^{i}) = 0. \end{cases}$$

and

Eliminating B^{ij} from equations (20) and (21), we

(22)
$$A(s_0^i y^j - s_0^j y^i) + B(b^i y^j - b^j y^i) = 0,$$

where

$$\begin{cases}
A = (2\alpha^{4}\beta^{3}e^{\frac{2\beta}{\alpha}} + 8\alpha^{2}\beta^{5} + 2\alpha^{4}\beta^{3}b^{2}e^{\frac{2\beta}{\alpha}} - 4\alpha^{4}\beta^{3}b^{2} + 6\beta^{7}e^{\frac{-2\beta}{\alpha}} \\
-4\alpha^{2}\beta^{5}b^{2}e^{\frac{-2\beta}{\alpha}}) \times (-2\alpha^{4}\beta^{3}e^{\frac{2\beta}{\alpha}} - 6\alpha^{2}\beta^{5} - 2\alpha^{4}\beta^{3}b^{2}e^{\frac{2\beta}{\alpha}} \\
+2\alpha^{4}\beta^{3}b^{2} + 2\alpha^{2}\beta^{5}e^{\frac{2\beta}{\alpha}} - 2\alpha^{4}\beta^{3} - 2\alpha^{2}\beta^{5}e^{\frac{-2\beta}{\alpha}} + 4\alpha^{4}\beta^{3}b^{2}e^{\frac{-2\beta}{\alpha}} \\
-4\alpha^{2}\beta^{5}e^{\frac{-2\beta}{\alpha}} + 2\alpha^{2}\beta^{5}b^{2}e^{\frac{-2\beta}{\alpha}} - 2\beta^{7}e^{\frac{-2\beta}{\alpha}}) - (-4\alpha^{4}\beta^{4}e^{\frac{2\beta}{\alpha}} \\
+6\alpha^{4}\beta^{4}b^{2} - 10\alpha^{2}\beta^{6} - 2\alpha^{4}\beta^{4}b^{2}e^{\frac{2\beta}{\alpha}} + 2\alpha^{2}\beta^{6}e^{\frac{2\beta}{\alpha}} \\
+2\alpha^{2}\beta^{6}b^{2}e^{\frac{-2\beta}{\alpha}} - 2\beta^{8}e^{\frac{-2\beta}{\alpha}}) \times (2\alpha^{2}\beta^{4}e^{\frac{2\beta}{\alpha}} \\
+4\alpha^{2}\beta^{4} - 6\alpha^{2}\beta^{4}b^{2}e^{\frac{-2\beta}{\alpha}} + 8\beta^{6}e^{\frac{-2\beta}{\alpha}}), \\
B = (2\alpha^{4}\beta^{3}e^{\frac{2\beta}{\alpha}} + 8\alpha^{2}\beta^{5} + 2\alpha^{4}\beta^{3}b^{2}e^{\frac{2\beta}{\alpha}} - 4\alpha^{4}\beta^{3}b^{2} + 6\beta^{7}e^{\frac{-2\beta}{\alpha}} \\
-4\alpha^{2}\beta^{5}b^{2}e^{\frac{-2\beta}{\alpha}}) \times r_{00}(\alpha^{2}\beta^{4}e^{\frac{2\beta}{\alpha}} - 3\alpha^{2}\beta^{4} - \beta^{6}e^{\frac{-2\beta}{\alpha}}) \\
+s_{0}(2\alpha^{4}\beta^{3}e^{\frac{2\beta}{\alpha}} - 2\alpha^{4}\beta^{3} - 4\alpha^{4}\beta^{3}e^{\frac{-2\beta}{\alpha}} - 2\alpha^{2}\beta^{5}e^{\frac{-2\beta}{\alpha}}) \\
-(-4\alpha^{4}\beta^{4}e^{\frac{2\beta}{\alpha}} + 6\alpha^{4}\beta^{4}b^{2} - 10\alpha^{2}\beta^{6} - 2\alpha^{4}\beta^{4}b^{2}e^{\frac{2\beta}{\alpha}} + 2\alpha^{2}\beta^{6}e^{\frac{2\beta}{\alpha}} \\
+2\alpha^{2}\beta^{6}b^{2}e^{\frac{-2\beta}{\alpha}} - 2\beta^{8}e^{\frac{-2\beta}{\alpha}}) \times \{r_{00}(-\alpha^{2}\beta^{3}e^{\frac{2\beta}{\alpha}} + 2\alpha^{2}\beta^{3} + 2\alpha^{2}\beta^{6}e^{\frac{2\beta}{\alpha}} \\
+2\beta^{5}e^{\frac{-2\beta}{\alpha}}) + 6s_{0}\alpha^{2}\beta^{4}e^{\frac{-2\beta}{\alpha}})\}.$$
Contraction of (22) by $b_{i}y_{j}$ leads to

Contraction of (22) by $b_i y_i$ leads to

(24)
$$As_0\alpha^2 + B(b^2\alpha^2 - \beta^2) = 0$$

The term of (24) which seemingly does not contain α^2 is $2\beta^{15}r_{00}$. Hence we have $hp(15)v_{15}$ such that

$$(25) r_{00}\beta^{15} = \alpha^2 v_{15}.$$

Here, we divide our discussion into following the three cases:

- $(1) v_{15} = 0,$
- (2) $v_{15} \neq 0, \alpha^2 \ncong 0 \pmod{\beta}$,

Berwald and Douglas spaces of a Finsler space with an exponential form of (α, β) - metric 667

(3)
$$v_{15} \neq 0, \alpha^2 \cong 0 \pmod{\beta}$$
.

Case 1: In case of $V_{15} = 0$; from (25), $r_{00} = 0$, and (24) is reduced to

(26)
$$s_0\{A + B_1(b^2\alpha^2 - \beta^2)\} = 0,$$

where

$$\begin{cases}
B_{1} = \left(2\alpha^{4}\beta^{3}e^{\frac{2\beta}{\alpha}} + 8\alpha^{2}\beta^{5} + 2\alpha^{4}\beta^{3}b^{2}e^{\frac{2\beta}{\alpha}} - 4\alpha^{4}\beta^{3}b^{2} + 6\beta^{7}e^{\frac{-2\beta}{\alpha}} - 4\alpha^{2}\beta^{5}b^{2}e^{\frac{-2\beta}{\alpha}}\right) \times \left(2\alpha^{2}\beta^{3}e^{\frac{2\beta}{\alpha}} - 2\alpha^{2}\beta^{3} - 4\alpha^{2}\beta^{3}e^{\frac{-2\beta}{\alpha}} - 2\beta^{5}e^{\frac{-2\beta}{\alpha}}\right) \\
-\left(\left(-4\alpha^{4}\beta^{4}e^{\frac{2\beta}{\alpha}} + 6\alpha^{4}\beta^{4}b^{2} - 10\alpha^{2}\beta^{6} - 2\alpha^{4}\beta^{4}b^{2}e^{\frac{2\beta}{\alpha}} + 2\alpha^{2}\beta^{6}b^{2}e^{\frac{-2\beta}{\alpha}} - 2\beta^{8}e^{\frac{-2\beta}{\alpha}}\right) \times \left(6\beta^{4}e^{\frac{-2\beta}{\alpha}}\right).
\end{cases}$$

If $A + B_1(b^2\alpha^2 - \beta^2) = 0$ in equation (26), then the term of this equation that does not contain α^2 is $4\beta^{14}$. Therefore, there exists $hp(12)v_{12}$ such that $4\beta^{14} = \alpha^2 v_{12}$.

In this case, if $\alpha^2 \ncong 0 \pmod{\beta}$, then we have $v_{12} = 0$, which leads to a contradiction. Therefore $A + B_1(b^2\alpha^2 - \beta^2) \neq 0$. If $\alpha^2 \cong 0 \pmod{\beta}$, then $A + B_1(b^2\alpha^2 - \beta^2) = 0$ is written as following,

$$\begin{cases}
 [(2\delta^{2}e^{\frac{2\beta}{\alpha}} + 8\beta\delta + 6\beta^{2}e^{\frac{-2\beta}{\alpha}}) \times (-2\delta^{2}e^{\frac{2\beta}{\alpha}} - 6\beta\delta + 2\beta\delta e^{\frac{2\beta}{\alpha}} \\
 -2\delta^{2} - 2\delta\beta e^{\frac{-2\beta}{\alpha}} - 4\delta\beta e^{\frac{-2\beta}{\alpha}} - 2\beta^{2}e^{\frac{-2\beta}{\alpha}}) - (-4\beta\delta^{2}e^{\frac{2\beta}{\alpha}} \\
 -10\beta^{2}\delta + 2\beta^{2}\delta e^{\frac{2\beta}{\alpha}} - 2\beta^{3}e^{\frac{-2\beta}{\alpha}}) \times (2\delta e^{\frac{2\beta}{\alpha}} + 4\delta + 8\beta e^{\frac{-2\beta}{\alpha}})] \\
 -[(2\delta^{2}e^{\frac{2\beta}{\alpha}} + 8\beta\delta + 6\beta^{2}e^{\frac{-2\beta}{\alpha}}) \times (2\delta\beta e^{\frac{2\beta}{\alpha}} - 2\beta\delta - 4\beta\delta e^{\frac{-2\beta}{\alpha}} \\
 -2\beta^{2}e^{\frac{-2\beta}{\alpha}}) - (-4\delta^{2}e^{\frac{2\beta}{\alpha}} - 10\beta\delta + 2\beta\delta e^{\frac{2\beta}{\alpha}} - 2\beta^{2}e^{\frac{-2\beta}{\alpha}}) \\
 \times (6\beta^{2}e^{\frac{-2\beta}{\alpha}})] = 0.
\end{cases}$$

This is provided that $b^2 = 0$ and $\alpha^2 = \beta \delta$ by Lemma (2.1). The term of (28), which does not contain β , is $-8\delta^4$. Therefore there exists $hp(3)v_3$ such that $-8\delta^4 = \beta v_3$, which leads to a contradiction. Hence $A + B_1(b^2\alpha^2 - \beta^2) \neq 0$. Therefore, in any case of $\alpha^2 \ncong 0 \pmod{\beta}$ or $\alpha^2 \cong 0 \pmod{\beta}$, we see that $A + \beta$

 $B_1(b^2\alpha^2 - \beta^2) \neq 0$. Thus $s_0 = 0$ from (26). Put $s_0 = 0$ and $r_{00} = 0$ in (22), we have

(29)
$$A(s_0^i y^j - s_0^j y^i) = 0.$$

If A=0, then we have from (23)

$$(30) \begin{cases} A = (2\alpha^{4}\beta^{3}e^{\frac{2\beta}{\alpha}} + 8\alpha^{2}\beta^{5} + 2\alpha^{4}\beta^{3}b^{2}e^{\frac{2\beta}{\alpha}} - 4\alpha^{4}\beta^{3}b^{2} + 6\beta^{7}e^{\frac{-2\beta}{\alpha}} \\ -4\alpha^{2}\beta^{5}b^{2}e^{\frac{-2\beta}{\alpha}}) \times (-2\alpha^{4}\beta^{3}e^{\frac{2\beta}{\alpha}} - 6\alpha^{2}\beta^{5} - 2\alpha^{4}\beta^{3}b^{2}e^{\frac{2\beta}{\alpha}} + 2\alpha^{4}\beta^{3}b^{2} \\ +2\alpha^{2}\beta^{5}e^{\frac{2\beta}{\alpha}} - 2\alpha^{4}\beta^{3} - 2\alpha^{2}\beta^{5}e^{\frac{-2\beta}{\alpha}} + 4\alpha^{4}\beta^{3}b^{2}e^{\frac{-2\beta}{\alpha}} - 4\alpha^{2}\beta^{5}e^{\frac{-2\beta}{\alpha}} \\ +2\alpha^{2}\beta^{5}b^{2}e^{\frac{-2\beta}{\alpha}} - 2\beta^{7}e^{\frac{-2\beta}{\alpha}}) - (-4\alpha^{4}\beta^{4}e^{\frac{2\beta}{\alpha}} + 6\alpha^{4}\beta^{4}b^{2} - 10\alpha^{2}\beta^{6} \\ -2\alpha^{4}\beta^{4}b^{2}e^{\frac{2\beta}{\alpha}} + 2\alpha^{2}\beta^{6}e^{\frac{2\beta}{\alpha}} + 2\alpha^{2}\beta^{6}b^{2}e^{\frac{-2\beta}{\alpha}} - 2\beta^{8}e^{\frac{-2\beta}{\alpha}}) \times \\ (2\alpha^{2}\beta^{4}e^{\frac{2\beta}{\alpha}} + 4\alpha^{2}\beta^{4} - 6\alpha^{2}\beta^{4}b^{2}e^{\frac{-2\beta}{\alpha}} + 8\beta^{6}e^{\frac{-2\beta}{\alpha}}) = 0. \end{cases}$$

The term of (29) that does not contain α^2 is $4\beta^{14}$. Thus, there exists $hp(12)v_{12}$ such that $4\beta^{14} = \alpha^2 v_{12}$. From this equation, we have $v_{12} = 0$, which leads to a contradiction. So $A \neq 0$. Thus we have from (29)

$$(31) s_0^i y^j - s_0^j y^i = 0.$$

Transvection of (31) by y_i gives $s_0^i = 0$. Finally $r_{ij} = s_{ij} = 0$ are concluded, that is, $b_{i;j} = 0.$

Case 2: In case of $v_{15} \neq 0, \alpha^2 \ncong 0 \pmod{\beta}$: In this case,(26) shows that there exists a function h = h(x) satisfying

$$(32) r_{00} = h\alpha^2.$$

Substituting (32) in (24), we have

$$\begin{cases}
As_0 + \left[(2\alpha^4 \beta^3 e^{\frac{2\beta}{\alpha}} + 8\alpha^2 \beta^5 + 2\alpha^4 \beta^3 b^2 e^{\frac{2\beta}{\alpha}} - 4\alpha^4 \beta^3 b^2 + 6\beta^7 e^{\frac{-2\beta}{\alpha}} \right. \\
-4\alpha^2 \beta^5 b^2 e^{\frac{-2\beta}{\alpha}} \right) \times \left(h\alpha^2 \beta^4 e^{\frac{2\beta}{\alpha}} - 3h\alpha^2 \beta^4 - h\beta^6 e^{\frac{-2\beta}{\alpha}} + 2s_0 \alpha^2 \beta^3 e^{\frac{2\beta}{\alpha}} \right. \\
-2s_0 \alpha^2 \beta^3 - 4s_0 \alpha^2 \beta^3 e^{\frac{-2\beta}{\alpha}} - 2s_0 \beta^5 e^{\frac{-2\beta}{\alpha}} \right) - \left(-4\alpha^4 \beta^4 e^{\frac{2\beta}{\alpha}} + 6\alpha^4 \beta^4 b^2 - 10\alpha^2 \beta^6 - 2\alpha^4 \beta^4 b^2 e^{\frac{2\beta}{\alpha}} + 2\alpha^2 \beta^6 e^{\frac{2\beta}{\alpha}} + 2\alpha^2 \beta^6 b^2 e^{\frac{-2\beta}{\alpha}} - 2\beta^8 e^{\frac{-2\beta}{\alpha}} \right) \\
\left(-h\alpha^2 \beta^3 e^{\frac{2\beta}{\alpha}} + 2h\alpha^2 \beta^3 + 2h\beta^5 e^{\frac{-2\beta}{\alpha}} + 6s_0 \beta^4 e^{\frac{-2\beta}{\alpha}} \right) \right] (b^2 \alpha^2 - \beta^2) = 0.
\end{cases}$$

The terms of (33) that do not contain α^2 are $(4s_0 + 2\beta h)\beta^{14}$. Hence there exists $hp(13)v_{13}$ such that $(4s_0+2\beta h)\beta^{14}=\alpha^2v_{13}$. Since $\alpha\ncong 0\pmod{\beta}$, we must have $v_{13} = 0$. Thus we have

$$(34) (4s_0 + 2\beta h)\beta^{14} = 0,$$

which implies $4s_i + 2b_i h = 0$. Transvecting this equation by b^i , we obtain $hb^2 = 0$. If $b^2 = 0$, we get from (24) and (34)

$$\begin{cases} -h/2[(2\alpha^{4}e^{\frac{2\beta}{\alpha}} + 8\alpha^{2}\beta^{2} + 6\beta^{4}e^{\frac{-2\beta}{\alpha}}) \times (-2\alpha^{4}e^{\frac{2\beta}{\alpha}} - 6\alpha^{2}\beta^{2} \\ +2\alpha^{2}\beta^{2}e^{\frac{2\beta}{\alpha}} - 2\alpha^{4} - 2\alpha^{2}\beta^{2}e^{\frac{-2\beta}{\alpha}} - 4\alpha^{2}\beta^{2}e^{\frac{-2\beta}{\alpha}} - 2\beta^{4}e^{\frac{-2\beta}{\alpha}}) \\ -(-4\alpha^{4}\beta e^{\frac{2\beta}{\alpha}} - 10\alpha^{2}\beta^{3} + 2\alpha^{2}\beta^{3}e^{\frac{2\beta}{\alpha}} - 2\beta^{5}e^{\frac{-2\beta}{\alpha}}) \times \\ (2\alpha^{2}\beta e^{\frac{2\beta}{\alpha}} + 4\alpha^{2}\beta + 8\beta^{3}e^{\frac{-2\beta}{\alpha}})] - [(2\alpha^{4}e^{\frac{2\beta}{\alpha}} + 8\alpha^{2}\beta^{2} + 6\beta^{4}e^{\frac{-2\beta}{\alpha}}) \times \\ (h\alpha^{2}\beta^{2}e^{\frac{2\beta}{\alpha}} - 3h\alpha^{2}\beta^{2} - h\beta^{4}e^{\frac{-2\beta}{\alpha}} - h\alpha^{2}\beta^{2}e^{\frac{2\beta}{\alpha}} + h\alpha^{2}\beta^{2} + 2h\alpha^{2}\beta^{2}e^{\frac{-2\beta}{\alpha}} + h\beta^{4}e^{\frac{-2\beta}{\alpha}}) - ((-4\alpha^{4}\beta^{2}e^{\frac{2\beta}{\alpha}} - 10\alpha^{2}\beta^{4} + 2\alpha^{2}\beta^{4}e^{\frac{2\beta}{\alpha}} - 2\beta^{6}e^{\frac{-2\beta}{\alpha}}) \times (-h\alpha^{2}e^{\frac{2\beta}{\alpha}} + 2h\alpha^{2} + 2h\beta^{2}e^{\frac{-2\beta}{\alpha}} - 3h\beta^{2}e^{\frac{-2\beta}{\alpha}})] = 0. \end{cases}$$

The term of (35) that does not contain β is $4h\alpha^8$. Therefore, there exists $hp(7)v_7$ such that $4h\alpha^8 = \beta v_7$. Since $\alpha^2 \ncong 0 \pmod{\beta}$, we have $v_7=0$, which leads to a contradiction. Thus we have h=0 and hence $s_0 = 0, r_{00} = 0$ from (34) and (32) respectively. Therefore (22) is reduced to $A(s_0^i y^j - s_0^j y^i) = 0$.

Since $A \neq 0$, we have $s_0^i y^j - s_0^j y^i = 0$. Transvection of this equation by y_j gives $s_0^i = 0$. Finally $r_{ij} = s_{ij} = 0$ are concluded, that is, $b_{i;j} = 0$.

Case 3 In case of $v_{15} \neq 0$, $\alpha^2 \cong 0 \pmod{\beta}$: In this case, Lemma (2.1) shows that

n=2, $b^2 = 0$ and $\alpha^2 = \beta \delta$, $\delta = d_i(x)y^i$. Therefore (22) gives

(36)
$$A'(s_0^i y^j - s_0^j y^i) + B'(b^i y^j - b^j y^i) = 0,$$

where

$$\begin{cases} A' = \left[(2\delta^{2}e^{\frac{2\beta}{\alpha}} + 8\beta\delta + 6\beta^{2}e^{\frac{-2\beta}{\alpha}} \right) \times \left(-2\delta^{2}e^{\frac{2\beta}{\alpha}} - 6\beta\delta + 2\beta\delta e^{\frac{2\beta}{\alpha}} - 2\delta^{2} - 2\delta^{2} - 2\delta\beta e^{\frac{-2\beta}{\alpha}} - 4\delta\beta e^{\frac{-2\beta}{\alpha}} - 2\beta^{2}e^{\frac{-2\beta}{\alpha}} \right) - \left(-4\beta\delta^{2}e^{\frac{2\beta}{\alpha}} - 10\beta^{2}\delta + 2\beta^{2}\delta e^{\frac{2\beta}{\alpha}} - 2\beta^{2}\delta e^{\frac{2\beta}{\alpha}} - 2\beta^{2}\delta e^{\frac{-2\beta}{\alpha}} \right) \times \left(2\delta e^{\frac{2\beta}{\alpha}} + 4\delta + 8\beta e^{\frac{-2\beta}{\alpha}} \right) \right], \\ B' = r_{00} \left[\left(2\delta^{2}e^{\frac{2\beta}{\alpha}} + 8\beta\delta + 6\beta^{2}e^{\frac{-2\beta}{\alpha}} \right) \times \left(\delta e^{\frac{2\beta}{\alpha}} - 3\delta - \beta e^{\frac{-2\beta}{\alpha}} \right) - \left(\left(-4\delta^{2}e^{\frac{2\beta}{\alpha}} - 10\beta\delta + 2\beta\delta e^{\frac{2\beta}{\alpha}} - 2\beta^{2}e^{\frac{-2\beta}{\alpha}} \right) \times \left(-\delta e^{\frac{2\beta}{\alpha}} + 2\delta + 2\beta e^{\frac{-2\beta}{\alpha}} \right) \right] + s_{0} \left[\left(2\delta^{2}e^{\frac{2\beta}{\alpha}} + 8\beta\delta + 6\beta^{2}e^{\frac{-2\beta}{\alpha}} \right) \times \left(2\delta^{2}e^{\frac{2\beta}{\alpha}} - 2\delta^{2} - 4\delta^{2}e^{\frac{-2\beta}{\alpha}} - 2\beta\delta e^{\frac{-2\beta}{\alpha}} \right) - \left(6\delta e^{\frac{-2\beta}{\alpha}} \right) \times \left(-4\delta^{2}\beta e^{\frac{2\beta}{\alpha}} - 10\beta^{2}\delta + 2\beta^{2}\delta e^{\frac{2\beta}{\alpha}} - 2\beta^{3}e^{\frac{-2\beta}{\alpha}} \right) \right]. \end{cases}$$

Transvection of (36) by $b_i y_j$ leads to

$$\begin{cases}
s_0 \delta \left[\left(2\delta^2 e^{\frac{2\beta}{\alpha}} + 8\beta\delta + 6\beta^2 e^{\frac{-2\beta}{\alpha}} \right) \times \left(-2\delta^2 e^{\frac{2\beta}{\alpha}} - 6\beta\delta + 2\beta\delta e^{\frac{2\beta}{\alpha}} \right) \\
-2\delta^2 - 2\delta\beta e^{\frac{-2\beta}{\alpha}} - 4\delta\beta e^{\frac{-2\beta}{\alpha}} - 2\beta^2 e^{\frac{-2\beta}{\alpha}} \right) - \left(-4\beta\delta^2 e^{\frac{2\beta}{\alpha}} \right) \\
-10\beta^2 \delta + 2\beta^2 \delta e^{\frac{2\beta}{\alpha}} - 2\beta^3 e^{\frac{-2\beta}{\alpha}} \right) \times \left(2\delta e^{\frac{2\beta}{\alpha}} + 4\delta \right) \\
+8\beta e^{\frac{-2\beta}{\alpha}} \right) \right] - \beta r_{00} \left[\left(2\delta^2 e^{\frac{2\beta}{\alpha}} + 8\beta\delta + 6\beta^2 e^{\frac{-2\beta}{\alpha}} \right) \right] \\
\times \left(\delta e^{\frac{2\beta}{\alpha}} - 3\delta - \beta e^{\frac{-2\beta}{\alpha}} \right) - \left(\left(-4\delta^2 e^{\frac{2\beta}{\alpha}} - 10\beta\delta + 2\beta\delta e^{\frac{2\beta}{\alpha}} \right) \right) \\
-2\beta^2 e^{\frac{-2\beta}{\alpha}} \right) \times \left(-\delta e^{\frac{2\beta}{\alpha}} + 2\delta + 2\beta e^{\frac{-2\beta}{\alpha}} \right) \right] + s_0 \left[\left(2\delta^2 e^{\frac{2\beta}{\alpha}} + 8\beta\delta + 6\beta^2 e^{\frac{-2\beta}{\alpha}} \right) \right] \\
- \left(6\delta e^{\frac{-2\beta}{\alpha}} \right) \times \left(2\delta^2 e^{\frac{2\beta}{\alpha}} - 2\delta^2 - 4\delta^2 e^{\frac{-2\beta}{\alpha}} - 2\beta\delta e^{\frac{-2\beta}{\alpha}} \right) \right] = 0.
\end{cases}$$

The term of (38), which does not contain β is $-8\delta^5 s_0$. Thus there exists hp(5) v_5 such that $-8s_0\delta^5 = \beta v_5$, which implies $s_0 = k\beta$, where there exists a function k=k(x).

On the other hand, (25) gives $r_{00}\beta^{14} = \delta v_{15}$, which must be reduced to

$$(39) r_{00} = \delta v_1.$$

where v_1 is a hp(1). Substituting $s_0 = k\beta$ and (39) in (38), we have

$$\begin{cases} K\delta[(2\delta^{2}e^{\frac{2\beta}{\alpha}} + 8\beta\delta + 6\beta^{2}e^{\frac{-2\beta}{\alpha}}) \times (-2\delta^{2}e^{\frac{2\beta}{\alpha}} - 6\beta\delta + 2\beta\delta e^{\frac{2\beta}{\alpha}} \\ -2\delta^{2} - 2\delta\beta e^{\frac{-2\beta}{\alpha}} - 4\delta\beta e^{\frac{-2\beta}{\alpha}} - 2\beta^{2}e^{\frac{-2\beta}{\alpha}}) - (-4\beta\delta^{2}e^{\frac{2\beta}{\alpha}} \\ -10\beta^{2}\delta + 2\beta^{2}\delta e^{\frac{2\beta}{\alpha}} - 2\beta^{3}e^{\frac{-2\beta}{\alpha}}) \times (2\delta e^{\frac{2\beta}{\alpha}} + 4\delta + 8\beta e^{\frac{-2\beta}{\alpha}})] \\ -\delta v_{1}[(2\delta^{2}e^{\frac{2\beta}{\alpha}} + 8\beta\delta + 6\beta^{2}e^{\frac{-2\beta}{\alpha}}) \times (\delta e^{\frac{2\beta}{\alpha}} - 3\delta - \beta e^{\frac{-2\beta}{\alpha}})] \\ -((-4\delta^{2}e^{\frac{2\beta}{\alpha}} - 10\beta\delta + 2\beta\delta e^{\frac{2\beta}{\alpha}} - 2\beta^{2}e^{\frac{-2\beta}{\alpha}}) \times (-8e^{\frac{2\beta}{\alpha}} + 2\delta + 2\beta e^{\frac{-2\beta}{\alpha}})] + k\beta[(2\delta^{2}e^{\frac{2\beta}{\alpha}} + 8\beta\delta + 6\beta^{2}e^{\frac{-2\beta}{\alpha}}) \times (2\delta^{2}e^{\frac{2\beta}{\alpha}} - 2\delta^{2} - 4\delta^{2}e^{\frac{-2\beta}{\alpha}} - 2\beta\delta e^{\frac{-2\beta}{\alpha}}) - (6\delta e^{\frac{-2\beta}{\alpha}}) \times (-4\delta^{2}\beta e^{\frac{2\beta}{\alpha}} - 10\beta^{2}\delta + 2\beta^{2}\delta e^{\frac{2\beta}{\alpha}} - 2\beta^{3}e^{\frac{-2\beta}{\alpha}})] = 0. \end{cases}$$

The term of (40), which does not contain β is $-8\delta^5 k$. Therefore, there exists hp(4) v_4 such that $-8\delta^5 k = \beta v_4$, which leads to a contradiction. Thus we have $k = 0, s_0 = 0$ and $r_{00} = 0$. From (36), we get

(41)
$$A'(s_0^i y^j - s_0^j y^i) = 0.$$

If

$$\begin{cases} A' = \left[\left(2\delta^2 e^{\frac{2\beta}{\alpha}} + 8\beta\delta + 6\beta^2 e^{\frac{-2\beta}{\alpha}} \right) \times \left(-2\delta^2 e^{\frac{2\beta}{\alpha}} - 6\beta\delta + 2\beta\delta e^{\frac{2\beta}{\alpha}} - 2\delta^2 e^{\frac{-2\beta}{\alpha}} \right) \\ -2\delta\beta e^{\frac{-2\beta}{\alpha}} - 4\delta\beta e^{\frac{-2\beta}{\alpha}} - 2\beta^2 e^{\frac{-2\beta}{\alpha}} \right) - \left(-4\beta\delta^2 e^{\frac{2\beta}{\alpha}} - 10\beta^2 \delta + 2\beta^2 \delta e^{\frac{2\beta}{\alpha}} e^{\frac{-2\beta}{\alpha}} \right) \\ -2\beta^3 e^{\frac{-2\beta}{\alpha}} \right) \times \left(2\delta e^{\frac{2\beta}{\alpha}} + 4\delta + 8\beta e^{\frac{-2\beta}{\alpha}} \right) \right] = 0. \end{cases}$$

The term of (42), which does not contain β is $-8\delta^4$. Therefore, there exists hp(3) v_3 such that $-8\delta^4k = \beta v_3$, which leads to a contradiction. Thus $A' \neq 0$ in (42). Hence we get $s_0^i y^j - s_0^j y^i = 0$. Transvection of this equation by y_j gives $s_0^i = 0$. Thus $s_{ij} = r_{ij} = 0$ are concluded, that is, $b_{i;j} = 0$.

Conversely if $b_{i,j} = 0$, then we obtain $\tilde{B}^{ij} = 0$ from (7). Hence F^n is a Douglas space. Consequently we have

THEOREM 4.1. An n-dimensional Finsler space F^n with an exponential (α, β) metric $L(\alpha, \beta) = \alpha e^{\frac{\beta}{\alpha}} + \beta e^{-\frac{\beta}{\alpha}}$ is a Douglas space, if and only if

- 1. $\alpha^2 \neq 0 (mod\beta) : b_{j,i} = 0.$
- 2. $\alpha^2 \equiv 0 \pmod{\beta}$: n=2 and $b_{j;i}=0$, where $\alpha^2=\beta\delta$, $\delta=d_i(x)y^i$ and k=k(x).

THEOREM 4.2. If an n-dimensional Finsler space F^n with an exponential (α, β) -metric $L(\alpha, \beta) = \alpha e^{\frac{\beta}{\alpha}} + \beta e^{-\frac{\beta}{\alpha}}$ is a Douglas space, then F^n is a Berwald space.

5. Conclusion

In the present paper, we have studied Berwald space and Douglas space of a Finsler space with an exponential form of (α, β) -metric such as $L(\alpha, \beta) = \alpha e^{\frac{\beta}{\alpha}} + \beta e^{-\frac{\beta}{\alpha}}$, and examined with various conditions for this metric will be a Berwald and Douglas space. In the future work, we can also find the condition for weakly Berwald/Landsberg spaces and results related to conformal change in the Finsler space F^n with an exponential (α, β) -metric, which is defined in equation (1).

References

- [1] P. L. Antonelli, R. S. Iugarden, M. Matsumoto, *The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology*, Kluwer Academic Publishers, Dordrecht, 1993. https://dx.doi.org/10.1007/978-94-015-8194-3
- [2] S. Bácsó, M. Matsumoto, Projective changes between Finsler space with (α, β) -metric, Tensor, N. S. **55** (1994), 252–257.
- [3] S. Bácsó, M. Matsumoto, On the Finsler spaces of Douglas type. A generalization of the notion of Berwald space, Publ. Math. Debrecen **51** (1997), 385–406.
- [4] L. Berwald, Parallelübertragung in allgemeinen Räumen, Atti Congr. Intern. Mat. Bologna 4 (1928), 263–270.
- P. Kumar, B. K. Tripathi, Finsler spaces with some special (α, β) metric of Douglas type, Malaya
 J. Math. 7 (2019), 132–137.
 https://dx.doi.org/10.26637/mjm0702/0001
- [6] I. Y. Lee, H. S. Park, Finsler spaces with infinite series (α, β)-metric, J. Korean Math. Soc. 41
 (3) (2004), 567–589.
 https://dx.doi.org/10.4134/jkms.2004.41.3.567
- [7] I. Y. Lee, M. H. Lee, On Weakly-Berwald spaces of special (α, β)-metric, Bull. Korean Math. Soc. 43 (2) (2006), 425–441.
 https://dx.doi.org/10.4134/bkms.2006.43.2.425

- [8] M. Matsumoto, Theory of Finsler spaces with (α, β) -metric, Rep. Math. Phys. **31** (1992), 43–83. https://dx.doi.org/10.1016/0034-4877(92)90005-1
- [9] M. Matsumoto, A slope of Mountain is a Finsler surface with respect to time measure, J. Math. Kyoto Univ. 29 (1) (1989), 17-25.
 https://dx.doi.org/10.1215/kjm/1250520303
- [10] M. Matsumoto, Foundations of Finsler Geometry and Special Finsler spaces, Kaiseisha Press, Otsu, Japan, 1986.
- [11] M. Matsumoto, The Berwald connection of a Finsler space with an (α, β) -metric, Tensor, N. S. **50** (1991), 18–21.
- [12] M. Matsumoto, Finsler spaces with (α, β) -metric of Douglas type, Tensor, N. S. **60** (1998), 123–134.
- [13] H. S. Park, E. S. Choi, Finsler spaces with an approximate Matsumoto metric of Douglas type, Comm. Korean Math. Soc. 14 (1999), 535-544. https://ckms.kms.or.kr/journal/view.html?uid=867
- [14] Z. Shen, G. Civi Yildirim, On a Class of Projectively Flat metrics with Constant Flag Curvature, Can. J. Math. 60 (2008), 443-456. https://dx.doi.org/10.4153/cjm-2008-021-1
- [15] B. K. Tripathi, Hypersurfaces of a Finsler Space with Exponential form of (α, β)-Metric, Annals of the University of Craivo Mathematics and Computer Science Series 47 (1) (2020), 132–140. http://inf.ucv.ro/~ami/index.php/ami/article/view/1086
- [16] B. K. Tripathi, S. Khan, On Weakly Berwald Space with a Special Cubic (α, β)-Metric, Surv. Math. Appl. 18 (2023), 1–11. https://www.utgjiu.ro/math/sma/v18/p18_01.pdf
- [17] B. K. Tripathi, P. Kumar, Douglas Spaces For Some (α, β)-Metric of a Finsler Space, J. Adv. Math. Stud. 15 (4) (2022), 444-455. https://www.journal.fairpartners.ro/volume-152022-no-4_37.html

Brijesh Kumar Tripathi

Department of Mathematics, L.D. College of Engineering,

Ahmedabad (Gujarat)-380015, India.

E-mail: brijeshkumartripathi4@gmail.com

Dhruvisha Patel

Science Mathematics Branch, Gujarat Technological University,

Ahmedabad, (Gujarat)-382424, India.

E-mail: dhruvisha14299@gmail.com