NON-LINEAR PRODUCT $\mathscr{L} \mathscr{M}^{*}-\mathscr{M} \mathscr{L}^{*}$ ON PRIME $*-$ ALGEBRAS

Mohd Arif Raza and Tahani Al-Sobhi

Abstract

In this paper, we explore the additivity of the map $\Omega: \mathscr{A} \rightarrow \mathscr{A}$ that satisfies $$
\Omega\left([\mathscr{L}, \mathscr{M}]_{*}\right)=[\Omega(\mathscr{M}), \mathscr{L}]_{*}+[\mathscr{M}, \Omega(\mathscr{L})]_{*},
$$ where $[\mathscr{L}, \mathscr{M}]_{*}=\mathscr{L} \mathscr{M}^{*}-\mathscr{M} \mathscr{L}^{*}$, for all $\mathscr{L}, \mathcal{M} \in \mathscr{A}$, a prime $*$-algebra with unit \mathscr{I}. Additionally we show that if $\Omega(\alpha \mathscr{I})$ is self-adjoint operator for $\alpha \in\{1, i\}$, then $\Omega=0$.

1. Introduction

Let \mathscr{A} be a $*$-algebra. For any $\mathscr{L}, \mathscr{M} \in \mathscr{A}$, the $*-$ Jordan $(*-$ Lie $)$ product presented as $\mathscr{L} \diamond \mathscr{M}=\mathscr{L} \mathscr{M}+\mathscr{M} \mathscr{L}^{*}\left([\mathscr{L}, \mathscr{M}]_{*}=\mathscr{L} \mathscr{M}-\mathscr{M} \mathscr{L}^{*}\right)$. These products have garnered a significant amount of attention, and allusions show a widening interest in literature $[1-6,9,11]$. Notice that a map $\Omega: \mathscr{A} \rightarrow \mathscr{A}$ is referred to as a reverse derivation if $\Omega(\mathscr{L}+\mathscr{M})=\Omega(\mathscr{L})+\Omega(\mathscr{M})$ and $\Omega(\mathscr{L} \mathscr{M})=\Omega(\mathscr{M}) \mathscr{L}+\mathcal{M} \Omega(\mathscr{L})$ for all $\mathscr{L}, \mathscr{M} \in \mathscr{A}$. A map Ω is additive $*$-derivation if it is an additive derivation and $\Omega\left(\mathscr{L}^{*}\right)=\Omega(\mathscr{L})^{*}$. Define a new product $[\mathscr{L}, \mathscr{M}]_{*}=\mathscr{L} \mathscr{M}^{*}-\mathscr{M} \mathscr{L}^{*}$. In 2020, Taghavi and Razeghi [10] studied $[\mathscr{L}, \mathscr{M}]_{*}=\mathscr{L}^{*} \mathscr{M}-\mathscr{M}^{*} \mathscr{L}$ product on $*$-algebras. In particular, they established that the map $\Omega: \mathscr{A} \rightarrow \mathscr{A}$ satisfying $\Omega(\mathscr{L} \mathscr{M})=\Omega(\mathscr{L}) \mathscr{M}+\mathscr{L} \Omega(\mathscr{M})$ is a $*-$ derivation. The study of non-linear preserving problems is one of the premier areas in matrix theory as well as operator theory. It was Martindale [7] who first asked the question that when are multiplicative/nonadditive maps additive? He answered his question for a multiplicative isomorphism of a ring under the existence of a family of idempotent elements of rings which satisfies some conditions. This spawned a wealth of diverse methods on different algebraic structures like operator algebras, von Neumann algebras, Banach algebras etcetera to establish a variety of interesting results concerning nonadditive maps. Possibly the most obvious approach is the method of algebraic decompositions. A wealth of fundamentally different methods to deal with nonlinear mappings can be found in $[1-8,11]$ and references therein.

Our main objective of this manuscript is to explore the structure of a non-linear maps on prime $*$-algebras satisfying $\Omega\left([\mathscr{L}, \mathscr{M}]_{*}\right)=[\Omega(\mathscr{M}), \mathscr{L}]_{*}+[\mathscr{M}, \Omega(\mathscr{L})]_{*}$, where $[\mathscr{L}, \mathcal{M}]_{*}=\mathscr{L} \mathscr{M}^{*}-\mathscr{M} \mathscr{L}^{*}$, for all $\mathscr{L}, \mathscr{M} \in \mathscr{A}$. We systematize the proof of above theorem in two parts. Firstly, we prove the additivity of Ω by using several claims.

[^0]Secondly, we shall provide numerous constructive facts to elaborate the essertion of our main theorem.

2. Main results

Theorem 2.1. Let \mathscr{A} be a prime $*-$ algebra with unit \mathscr{I} and a nontrivial projection. Then the map $\Omega: \mathscr{A} \rightarrow \mathscr{A}$ that satisfies

$$
\begin{equation*}
\Omega\left([\mathscr{L}, \mathscr{M}]_{*}\right)=[\Omega(\mathscr{M}), \mathscr{L}]_{*}+[\mathscr{M}, \Omega(\mathscr{L})]_{*}, \tag{2.1}
\end{equation*}
$$

where $[\mathscr{L}, \mathcal{M}]_{*}=\mathscr{L} \mathscr{M}^{*}-\mathscr{M} \mathscr{L}^{*}$, for all $\mathscr{L}, \mathcal{M} \in \mathscr{A}$ is additive.
Proof. Let \mathscr{P}_{1} be a nontrivial projection in \mathscr{A} and $\mathscr{P}_{2}=\mathscr{I}_{\mathscr{A}}-\mathscr{P}_{1}$. Denote $\mathscr{A}_{i j}=$ $\mathscr{P}_{i} \mathscr{A} \mathscr{P}_{j}, i, j=1,2$, then $\mathscr{A}=\sum_{i, j=1}^{2} \mathscr{A}_{i j}$. For every $\mathscr{L} \in \mathscr{A}$, we may write $\mathscr{L}=$ $\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}+\mathscr{L}_{22}$. From now on, if we mention $\mathscr{L}_{i j}$, it means that $\mathscr{L}_{i j} \in \mathscr{A}_{i j}$. To illustrate the additivity of Ω on \mathscr{A}, we take the aforementioned partition of \mathscr{A} and present several claims that prove Ω is additive on each $\mathscr{A}_{i j}, i, j=1,2$.

Several claims are used to prove the preceding theorem.
Claim 1. $\Omega(0)=0$.
Take $\mathscr{L}=\mathscr{M}=0$, then

$$
\Omega(0)=\Omega\left([0,0]_{*}\right)=[\Omega(0), 0]_{*}+[0, \Omega(0)]_{*}=0 .
$$

Claim 2. $\Omega(i \mathscr{L})=i \Omega(\mathscr{L})+\mathscr{L}^{*} K$, where $K=\Omega(i \mathscr{I})-i \Omega(\mathscr{I})$.
Consider

$$
\Omega\left([-i \mathscr{L}, \mathscr{I}]_{*}\right)=\Omega\left([\mathscr{L}, i \mathscr{I}]_{*}\right) .
$$

So, we have

$$
\begin{align*}
& \quad[\Omega(\mathscr{I}),(-i \mathscr{L})]_{*}+[\mathscr{I}, \Omega(-i \mathscr{L})]_{*}=[\Omega(i \mathscr{I}), \mathscr{L}]_{*}+[(i \mathscr{I}), \Omega(\mathscr{L})]_{*} \\
& i \mathscr{L}^{*} \Omega(\mathscr{I})+i \mathscr{L} \Omega(\mathscr{I})^{*}+\Omega(-i \mathscr{L})^{*} \\
& 2) \quad \begin{aligned}
2) & =\mathscr{L}^{*} \Omega(i \mathscr{I})-\Omega(i \mathscr{I})^{*} \mathscr{L}+i \Omega(\mathscr{L})^{*}+i \Omega(\mathscr{L}) .
\end{aligned} \tag{2.2}\\
& 2
\end{align*}
$$

Consider

$$
\Omega\left([-i \mathscr{L}, i \mathscr{I}]_{*}\right)=\Omega\left([\mathscr{I}, \mathscr{L}]_{*}\right) .
$$

So, we have

$$
\begin{aligned}
& {[\Omega(i \mathscr{I}),(-i \mathscr{L})]_{*}+[(i \mathscr{I}), \Omega(-i \mathscr{L})]_{*}=[\Omega(\mathscr{L}), \mathscr{I}]_{*}+[\mathscr{L}, \Omega(\mathscr{I})]_{*} } \\
& i \mathscr{L}^{*} \Omega(i \mathscr{I})+i \mathscr{L} \Omega(i \mathscr{I})^{*}+i \Omega(-i \mathscr{L})^{*}+i \Omega(-i \mathscr{L}) \\
&=\Omega(\mathscr{L})-\Omega(\mathscr{L})^{*}+\Omega(\mathscr{I})^{*} \mathscr{L}-\mathscr{L}^{*} \Omega(\mathscr{I}) .
\end{aligned}
$$

Equivalently we obtain

$$
\begin{align*}
-\mathscr{L}^{*} \Omega(i \mathscr{I})-\mathscr{L} \Omega(i \mathscr{I})^{*}-\Omega(-i \mathscr{L})^{*} & -\Omega(-i \mathscr{L}) \\
2.3) & =i \Omega(\mathscr{L})-i \Omega(\mathscr{L})^{*}+i \Omega(\mathscr{I})^{*} \mathscr{L}-i \mathscr{L}^{*} \Omega(\mathscr{I}) . \tag{2.3}
\end{align*}
$$

By adding equations (2.2) and (2.3), we have

$$
i \Omega(\mathscr{L})+\Omega(-i \mathscr{L})=i \mathscr{L}^{*} \Omega(\mathscr{I})-\mathscr{L}^{*} \Omega(i \mathscr{I}) .
$$

Substiting $i \mathscr{L}$ instead of \mathscr{L} in the above equation, we get

$$
i \Omega(i \mathscr{L})+\Omega(\mathscr{L})=\mathscr{L}^{*} \Omega(\mathscr{I})+i \mathscr{L}^{*} \Omega(i \mathscr{I})
$$

$$
\Omega(i \mathscr{L})=i \Omega(\mathscr{L})+\mathscr{L}^{*}(\Omega(i \mathscr{I})-i \Omega(\mathscr{I}))
$$

So $\Omega(i \mathscr{L})=i \Omega(\mathscr{L})+\mathscr{L}^{*} K$, where $K=\Omega(i \mathscr{I})-i \Omega(\mathscr{I})$.
Claim 3. $\Omega(-\mathscr{L})=-\Omega(\mathscr{L})$.
By considering $\Omega(i \mathscr{L})=i \Omega(\mathscr{L})+\mathscr{L}^{*} K$ and applying $i \mathscr{L}$ instead of \mathscr{L}, we have

$$
\begin{align*}
\Omega(-\mathscr{L}) & =i \Omega(i \mathscr{L})-i \mathscr{L}^{*} K \\
\Omega(-\mathscr{L}) & =i\left(i \Omega(\mathscr{L})+\mathscr{L}^{*} K\right)-i \mathscr{L}^{*} K \\
\Omega(-\mathscr{L}) & =-\Omega(\mathscr{L})+i \mathscr{L}^{*} K-i \mathscr{L}^{*} K \\
\Omega(-\mathscr{L}) & =-\Omega(\mathscr{L}) . \tag{2.4}
\end{align*}
$$

Claim 4. For each $\mathscr{L}_{11} \in \mathscr{A}_{11}, \mathscr{L}_{12} \in \mathscr{A}_{12}$, we have

$$
\Omega\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right)=\Omega\left(\mathscr{L}_{11}\right)+\Omega\left(\mathscr{L}_{12}\right) .
$$

Let $\mathscr{T}=\Omega\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right)-\Omega\left(\mathscr{L}_{11}\right)-\Omega\left(\mathscr{L}_{12}\right)$, we will prove that $\mathscr{T}=0$. For $\mathscr{X}_{21} \in \mathscr{A}_{21}$, we can write that

$$
\begin{aligned}
& {\left[\Omega\left(\mathscr{X}_{21}\right),\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right)\right]_{*}+\left[\mathscr{X}_{21}, \Omega\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right)\right]_{*} } \\
= & \Omega\left(\left[\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right), \mathscr{X}_{21}\right]_{*}\right) \\
= & \Omega\left(\left[\mathscr{L}_{11}, \mathscr{X}_{21}\right]_{*}\right)+\Omega\left(\left[\mathscr{L}_{12}, \mathscr{X}_{21}\right]_{*}\right) \\
= & {\left[\Omega\left(\mathscr{X}_{21}\right), \mathscr{L}_{11}\right]_{*}+\left[\mathscr{X}_{21}, \Omega\left(\mathscr{L}_{11}\right)\right]_{*}+\left[\Omega\left(\mathscr{X}_{21}\right), \mathscr{L}_{12}\right]_{*}+\left[\mathscr{X}_{21}, \Omega\left(\mathscr{L}_{12}\right)\right]_{*} } \\
= & {\left[\mathscr{X}_{21},\left(\Omega\left(\mathscr{L}_{11}\right)+\Omega\left(\mathscr{L}_{12}\right)\right)\right]_{*}+\left[\Omega\left(\mathscr{X}_{21}\right),\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right)\right]_{*} . }
\end{aligned}
$$

So, we obtain

$$
\left[\mathscr{X}_{21}, \mathscr{T}\right]_{*}=0 .
$$

Since $\mathscr{T}=\mathscr{T}_{11}+\mathscr{T}_{12}+\mathscr{T}_{21}+\mathscr{T}_{22}$, we have

$$
\mathscr{X}_{21} \mathscr{T}_{21}^{*}+\mathscr{X}_{21} \mathscr{T}_{11}^{*}-\mathscr{T}_{21} \mathscr{X}_{21}^{*}-\mathscr{T}_{11} \mathscr{X}_{21}^{*}=0 .
$$

From the above equation and primeness of \mathscr{A}, we have $\mathscr{T}_{11}=0$, and

$$
\begin{equation*}
\mathscr{X}_{21} \mathscr{T}_{21}^{*}-\mathscr{T}_{21} \mathscr{X}_{21}^{*}=0 . \tag{2.5}
\end{equation*}
$$

Alternatively, by substituting $i \mathscr{X}_{21}$ for \mathscr{X}_{21} in the preceding equation, we obtain

$$
\begin{equation*}
-\mathscr{X}_{21} \mathscr{T}_{21}^{*}-\mathscr{T}_{21} \mathscr{X}_{21}^{*}=0 . \tag{2.6}
\end{equation*}
$$

From (2.5) and (2.6), we get $\mathscr{T}_{21} \mathscr{X}_{21}^{*}=0$. Since \mathcal{A} is prime, then $\mathscr{T}_{21}=0$. It is suffices to show that $\mathscr{T}_{12}=\mathscr{T}_{22}=0$. For this purpose take $\mathscr{X}_{12} \in \mathscr{A}_{12}$, we write

$$
\begin{aligned}
& \Omega\left(\left[\left[\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right), \mathscr{X}_{12}\right]_{*}, \mathscr{P}_{1}\right]_{*}\right) \\
= & {\left[\Omega\left(\mathscr{P}_{1}\right),\left[\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right), \mathscr{X}_{12}\right]_{*}\right]_{*}+\left[\mathscr{P}_{1}, \Omega\left(\left[\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right), \mathscr{X}_{12}\right]_{*}\right)\right]_{*} } \\
= & {\left[\Omega\left(\mathscr{P}_{1}\right),\left[\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right), \mathscr{X}_{12}\right]_{*}\right]_{*}+\left[\mathscr{P}_{1},\left[\mathscr{X}_{12}, \Omega\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right)\right]_{*}\right]_{*} } \\
& +\left[\mathscr{P}_{1},\left[\Omega\left(\mathscr{X}_{12}\right),\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right)\right]_{*}\right]_{*} \\
= & {\left[\Omega\left(\mathscr{P}_{1}\right),\left[\mathscr{L}_{11}, \mathscr{X}_{12}\right]_{*}\right]_{*}+\left[\Omega\left(\mathscr{P}_{1}\right),\left[\mathscr{L}_{12}, \mathscr{X}_{12}\right]_{*}\right]_{*} } \\
& +\left[\mathscr{P}_{1},\left[\Omega\left(\mathscr{X}_{12}\right), \mathscr{L}_{11}\right]_{*}\right]_{*}+\left[\mathscr{P}_{1},\left[\Omega\left(\mathscr{X}_{12}\right), \mathscr{L}_{12}\right]_{*}\right]_{*} \\
& +\left[\mathscr{P}_{1},\left[\mathscr{X}_{12}, \Omega\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right)\right]_{*}\right]_{*} .
\end{aligned}
$$

So, we showed that

$$
\begin{aligned}
\left(2.89\left(\left[\left[\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right), \mathscr{X}_{12}\right]_{*}, \mathscr{P}_{1}\right]_{*}\right)=\right. & {\left[\Omega\left(\mathscr{P}_{1}\right),\left[\mathscr{L}_{11}, \mathscr{X}_{12}\right]_{*}\right]_{*}+\left[\Omega\left(\mathscr{P}_{1}\right),\left[\mathscr{L}_{12}, \mathscr{X}_{12}\right]_{*}\right]_{*} } \\
& +\left[\mathscr{P}_{1},\left[\Omega\left(\mathscr{X}_{12}\right), \mathscr{L}_{11}\right]_{*}\right]_{*}+\left[\mathscr{P}_{1},\left[\Omega\left(\mathscr{X}_{12}\right), \mathscr{L}_{12}\right]_{*}\right]_{*} \\
& +\left[\mathscr{P}_{1},\left[\mathscr{X}_{12}, \Omega\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right)\right]_{*}\right]_{*} .
\end{aligned}
$$

Since $\left[\left[\mathscr{L}_{12}, \mathscr{X}_{12}\right]_{*}, \mathscr{P}_{1}\right]_{*}=0$, we hvae

$$
\begin{aligned}
= & {\left[\Omega\left(\mathscr{P}_{1}\right),\left[\mathscr{L}_{11}, \mathscr{X}_{12}\right]_{*}\right]_{*}+\left[\mathscr{P}_{1}, \Omega\left(\left[\mathscr{L}_{11}, \mathscr{X}_{12}\right]_{*}\right)\right]_{*}+\left[\Omega\left(\mathscr{P}_{1}\right),\left[\mathscr{L}_{12}, \mathscr{X}_{12}\right]_{*}\right]_{*} } \\
& +\left[\mathscr{P}_{1}, \Omega\left(\left[\mathscr{L}_{12}, \mathscr{X}_{12}\right]_{*}\right)\right]_{*} \\
= & {\left[\Omega\left(\mathscr{P}_{1}\right),\left[\mathscr{L}_{11}, \mathscr{X}_{12}\right]_{*}\right]_{*}+\left[\mathscr{P}_{1},\left(\left[\Omega\left(\mathscr{X}_{12}\right), \mathscr{L}_{11}\right]_{*}+\left[\mathscr{X}_{12}, \Omega\left(\mathscr{L}_{11}\right)\right]_{*}\right)\right]_{*} } \\
& \left.+\left[\Omega\left(\mathscr{P}_{1}\right),\left[\mathscr{L}_{12}, \mathscr{X}_{12}\right]_{*}\right]_{*}+\left[\mathscr{P}_{1},\left(\left[\mathscr{X}_{12}, \Omega\left(\mathscr{L}_{12}\right)\right]_{*}\right]_{*}+\left[\Omega\left(\mathscr{X}_{12}\right), \mathscr{L}_{12}\right]_{*}\right)\right]_{*} \\
= & {\left[\Omega\left(\mathscr{P}_{1}\right),\left[\mathscr{L}_{11}, \mathscr{X}_{12}\right]_{*}\right]_{*}+\left[\Omega\left(\mathscr{P}_{1}\right),\left[\mathscr{L}_{12}, \mathscr{X}_{12}\right]_{*}\right]_{*}+\left[\mathscr{P}_{1},\left[\Omega\left(\mathscr{X}_{12}\right), \mathscr{L}_{11}\right]_{*}\right]_{*} } \\
& +\left[\mathscr{P}_{1}, \Omega\left(\mathscr{X}_{12}\right),\left[\mathscr{L}_{12}\right]_{*}\right]_{*}+\left[\mathscr{P}_{1},\left[\mathscr{X}_{12}, \Omega\left(\mathscr{L}_{11}\right)\right]_{*}\right]_{*}+\left[\mathscr{P}_{1},\left[\mathscr{X}_{12}, \Omega\left(\mathscr{L}_{12}\right)\right]_{*}\right]_{*} .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\Omega\left(\left[\left[\mathscr{L}_{11}+\mathscr{L}_{12}, \mathscr{X}_{12}\right]_{*}, \mathscr{P}_{1}\right]_{*}\right)= & {\left[\Omega\left(\mathscr{P}_{1}\right),\left[\mathscr{L}_{11}, \mathscr{X}_{12}\right]_{*}\right]_{*}+\left[\Omega\left(\mathscr{P}_{1}\right),\left[\mathscr{L}_{12}, \mathscr{X}_{12}\right]_{*}\right]_{*} } \\
& +\left[\mathscr{P}_{1},\left[\Omega\left(\mathscr{X}_{12}\right), \mathscr{L}_{12}\right]_{*}+\left[\mathscr{P}_{1},\left[\Omega\left(\mathscr{X}_{12}\right), \mathscr{L}_{12}\right]_{*}\right]_{*}\right. \\
& +\left[\mathscr{P}_{1},\left[\mathscr{X}_{12}, \Omega\left(\mathscr{L}_{11}\right)\right]_{*}\right]_{*}+\left[\mathscr{P}_{1},\left[\mathscr{X}_{12}, \Omega\left(\mathscr{L}_{12}\right)\right]_{*}\right]_{*} . \tag{2.8}
\end{align*}
$$

From (2.7) and (2.8), we have

$$
\left[\mathscr{P}_{1},\left[\mathscr{X}_{12}, \Omega\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right)\right]_{*}\right]_{*}=\left[\mathscr{P}_{1},\left[\mathscr{X}_{12}, \Omega\left(\mathscr{L}_{11}\right)\right]_{*}\right]_{*}+\left[\mathscr{P}_{1},\left[\mathscr{X}_{12}, \Omega\left(\mathscr{L}_{12}\right)\right]_{*}\right]_{*} .
$$

It follows that $\left[\mathscr{P}_{1},\left[\mathscr{X}_{12}, \mathscr{T}\right]_{*}\right]_{*}=0$, so $\mathscr{X}_{12} \mathscr{T}_{22}^{*}-\mathscr{T}_{22} \mathscr{X}_{12}^{*}=0$. We have $\mathscr{T}_{22} \mathscr{X}_{12}^{*}=0$ or $\mathscr{P}_{1} \mathscr{X} \mathscr{T}_{22}=0$ for all $\mathscr{X} \in \mathscr{A}$, then we have $\mathscr{T}_{22}=0$. Similarly, we can show that $\mathscr{T}_{12}=0$ by applying \mathscr{P}_{2} instead of \mathscr{P}_{1} in above.

Claim 5. For each $\mathscr{L}_{11} \in \mathscr{A}_{11}, \mathscr{L}_{12} \in \mathscr{A}_{12}, \mathscr{L}_{21} \in \mathscr{A}_{21}$ and $\mathscr{L}_{22} \in \mathscr{A}_{22}$, we have

$$
\begin{aligned}
& \Omega\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}\right)=\Omega\left(\mathscr{L}_{11}\right)+\Omega\left(\mathscr{L}_{12}\right)+\Omega\left(\mathscr{L}_{21}\right) \\
& \Omega\left(\mathscr{L}_{12}+\mathscr{L}_{21}+\mathscr{L}_{22}\right)=\Omega\left(\mathscr{L}_{12}\right)+\Omega\left(\mathscr{L}_{21}\right)+\Omega\left(\mathscr{L}_{22}\right)
\end{aligned}
$$

We show that $\mathscr{T}=\Omega\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}\right)-\Omega\left(\mathscr{L}_{11}\right)-\Omega\left(\mathscr{L}_{12}\right)-\Omega\left(\mathscr{L}_{21}\right)=0$. For $\mathscr{X}_{21} \in \mathscr{A}_{21}$, we have

$$
\begin{aligned}
{\left[\Omega\left(\mathscr{X}_{21}\right),\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}\right)\right]_{*}+} & {\left[\mathscr{X}_{21}, \Omega\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}\right)\right]_{*} } \\
= & \Omega\left(\left[\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}\right), \mathscr{X}_{21}\right]_{*}\right) \\
= & \Omega\left(\left[\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right), \mathscr{X}_{21}\right]_{*}\right)+\Omega\left(\left[\mathscr{L}_{21}, \mathscr{X}_{21}\right]_{*}\right) \\
= & \Omega\left(\left[\mathscr{L}_{11}, \mathscr{X}_{21}\right]_{*}\right)+\Omega\left(\left[\mathscr{L}_{12}, \mathscr{X}_{21}\right]_{*}\right)+\Omega\left(\left[\mathscr{L}_{21}, \mathscr{X}_{21}\right]_{*}\right) \\
= & {\left[\mathscr{X}_{21},\left(\Omega\left(\mathscr{L}_{11}\right)+\Omega\left(\mathscr{L}_{12}\right)+\Omega\left(\mathscr{L}_{21}\right)\right)\right]_{*} } \\
& +\left[\Omega\left(\mathscr{X}_{21}\right),\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}\right)\right]_{*} .
\end{aligned}
$$

It follows that $\left[\mathscr{X}_{21}, \mathscr{T}\right]_{*}=0$. Since $\mathscr{T}=\mathscr{T}_{11}+\mathscr{T}_{12}+\mathscr{T}_{21}+\mathscr{T}_{22}$, we have

$$
\mathscr{X}_{21} \mathscr{T}_{21}^{*}+\mathscr{X}_{21} \mathscr{T}_{11}^{*}-\mathscr{T}_{21} \mathscr{X}_{21}^{*}-\mathscr{T}_{11} \mathscr{X}_{21}^{*}=0 .
$$

Therefore, $\mathscr{T}_{11}=\mathscr{T}_{21}=0$.
From Claim 4, we obtain

$$
\begin{aligned}
{\left[\Omega\left(\mathscr{X}_{12}\right),\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}\right)\right]_{*}+} & {\left[\mathscr{X}_{12}, \Omega\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}\right)\right]_{*} } \\
= & \Omega\left(\left[\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}\right), \mathscr{X}_{12}\right]_{*}\right) \\
= & \Omega\left(\left[\left(\mathscr{L}_{11}+\mathscr{L}_{12}\right), \mathscr{X}_{12}\right]_{*}\right)+\Omega\left(\left[\mathscr{L}_{21}, \mathscr{X}_{12}\right]_{*}\right) \\
= & \Omega\left(\left[\mathscr{L}_{11}, \mathscr{X}_{12}\right]_{*}\right)+\Omega\left(\left[\mathscr{L}_{12}, \mathscr{X}_{12}\right]_{*}\right)+\Omega\left(\left[\mathscr{L}_{21}, \mathscr{X}_{12}\right]_{*}\right) \\
= & {\left[\mathscr{X}_{12},\left(\Omega\left(\mathscr{L}_{11}\right)+\Omega\left(\mathscr{L}_{12}\right)+\Omega\left(\mathscr{L}_{21}\right)\right)\right]_{*} } \\
& +\left[\Omega\left(\mathscr{X}_{12}\right),\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}\right)\right]_{*} .
\end{aligned}
$$

Hence,

$$
\mathscr{X}_{12}^{*} \mathscr{T}_{12}+\mathscr{X}_{12}^{*} \mathscr{T}_{11}-\mathscr{T}_{12}^{*} \mathscr{X}_{12}-\mathscr{T}_{11}^{*} \mathscr{X}_{12}=0 .
$$

Then, $\mathscr{J}_{11}=\mathscr{T}_{12}=0$. Similarly

$$
\Omega\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}\right)=\Omega\left(\mathscr{L}_{11}\right)+\Omega\left(\mathscr{L}_{12}\right)+\Omega\left(\mathscr{L}_{21}\right) .
$$

Claim 6. For each $\mathscr{L}_{11} \in \mathscr{A}_{11}, \mathscr{L}_{12} \in \mathscr{A}_{12}, \mathscr{L}_{21} \in \mathscr{A}_{21}$ and $\mathscr{L}_{22} \in \mathscr{A}_{22}$, we have

$$
\Omega\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}+\mathscr{L}_{22}\right)=\Omega\left(\mathscr{L}_{11}\right)+\Omega\left(\mathscr{L}_{12}\right)+\Omega\left(\mathscr{L}_{21}\right)+\left(\mathscr{L}_{22}\right) .
$$

We show that

$$
\mathscr{T}=\Omega\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}+\mathscr{L}_{22}\right)-\Omega\left(\mathscr{L}_{11}\right)-\Omega\left(\mathscr{L}_{12}\right)-\Omega\left(\mathscr{L}_{21}\right)-\left(\mathscr{L}_{22}\right)=0 .
$$

From Claim 5, we have

$$
\begin{aligned}
& {\left[\Omega\left(\mathscr{X}_{12}\right),\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}+\mathscr{L}_{22}\right)\right]_{*}+\left[\mathscr{X}_{12}, \Omega\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}+\mathscr{L}_{22}\right)\right]_{*} } \\
= & \Omega\left(\left[\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}+\mathscr{L}_{22}\right), \mathscr{X}_{12}\right]_{*}\right) \\
= & \Omega\left(\left[\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}\right), \mathscr{X}_{12}\right]_{*}\right)+\Omega\left(\left[\mathscr{L}_{22}, \mathscr{X}_{12}\right]_{*}\right) \\
= & \Omega\left(\left[\mathscr{L}_{11}, \mathscr{X}_{12}\right]_{*}\right)+\Omega\left(\left[\mathscr{L}_{12}, \mathscr{X}_{12}\right]_{*}\right)+\Omega\left(\left[\mathscr{L}_{21}, \mathscr{X}_{12}\right]_{*}\right) \\
& +\Omega\left(\left[\mathscr{L}_{22}, \mathscr{X}_{12}\right]_{*}\right) \\
= & {\left[\mathscr{X}_{12},\left(\Omega\left(\mathscr{L}_{11}\right)+\Omega\left(\mathscr{L}_{12}\right)+\Omega\left(\mathscr{L}_{21}\right)+\Omega\left(\mathscr{L}_{22}\right)\right)\right]_{*} } \\
& +\left[\Omega\left(\mathscr{X}_{12}\right),\left(\mathscr{L}_{11}+\mathscr{L}_{12}+\mathscr{L}_{21}+\mathscr{L}_{22}\right)\right]_{*} .
\end{aligned}
$$

So, $\left[\mathscr{X}_{12}, \mathscr{T}\right]_{*}=0$. It follows that

$$
\mathscr{X}_{12} \mathscr{T}_{12}^{*}+\mathscr{X}_{12} \mathscr{T}_{22}^{*}-\mathscr{T}_{12} \mathscr{X}_{12}^{*}-\mathscr{T}_{22} \mathscr{X}_{12}^{*}=0 .
$$

Then $\mathscr{T}_{22}=\mathscr{T}_{12}=0$
Similarly, by applying \mathscr{X}_{21} instead of \mathscr{X}_{12} in above, we obtain $\mathscr{T}_{22}=\mathscr{T}_{21}=0$.
Claim 7. For each $\mathscr{L}_{i j}, \mathscr{M}_{i j} \in \mathscr{A}_{i j}$ such that $i \neq j$, we have

$$
\Omega\left(\mathscr{L}_{i j}+\mathscr{M}_{i j}\right)=\Omega\left(\mathscr{L}_{i j}\right)+\Omega\left(\mathscr{M}_{i j}\right) .
$$

It is easy to show that

$$
\left(\mathscr{P}_{i}+\mathscr{L}_{i j}\right)\left(\mathscr{P}_{j}+\mathscr{M}_{i j}\right)-\left(\mathscr{P}_{j}+\mathscr{M}_{i j}^{*}\right)\left(\mathscr{P}_{i}+\mathscr{L}_{i j}^{*}\right)=\mathscr{L}_{i j}+\mathscr{M}_{i j}-\mathscr{L}_{i j}^{*}-\mathscr{M}_{i j}^{*} .
$$

So, we can write

$$
\begin{aligned}
& \Omega\left(\mathscr{L}_{i j}+\mathscr{M}_{i j}\right)+\Omega\left(-\mathscr{L}_{i j}^{*}-\mathscr{M}_{j i}^{*}\right) \\
= & \Omega\left(\left[\left(\mathscr{P}_{i}+\mathscr{L}_{i j}\right),\left(\mathscr{P}_{j}+\mathscr{M}_{i j}^{*}\right)\right]_{*}\right) \\
= & {\left[\Omega\left(\mathscr{P}_{j}+\mathscr{M}_{i j}^{*}\right),\left(\mathscr{P}_{i}+\mathscr{L}_{i j}\right)\right]_{*}+\left[\left(\mathscr{P}_{j}+\mathscr{M}_{i j}^{*}\right), \Omega\left(\mathscr{P}_{i}+\mathscr{L}_{i j}\right)\right]_{*} } \\
= & {\left[\left(\Omega\left(\mathscr{P}_{j}\right)+\Omega\left(\mathscr{M}_{i j}^{*}\right)\right),\left(\mathscr{P}_{i}+\mathscr{L}_{i j}\right)\right]_{*} } \\
& +\left[\left(\mathscr{P}_{j}+\mathscr{M}_{i j}^{*}\right),\left(\Omega\left(\mathscr{P}_{i}\right)+\Omega\left(\mathscr{L}_{i j}\right)\right)\right]_{*} \\
= & {\left[\Omega\left(\mathscr{M}_{i j}^{*}\right), \mathscr{P}_{i}\right]_{*}+\left[\mathscr{M}_{i j}^{*}, \Omega\left(\mathscr{P}_{i}\right)\right]_{*}+\left[\Omega\left(\mathscr{P}_{j}\right), \mathscr{L}_{i j}\right]_{*}+\left[\mathscr{P}_{j}, \Omega\left(\mathscr{L}_{i j}\right)\right]_{*} } \\
= & \Omega\left(\left[\mathscr{P}_{i}, \mathscr{M}_{i j}^{*}\right]_{*}\right)+\Omega\left(\left[\mathscr{L}_{i j}, \mathscr{P}_{j}\right]_{*}\right) \\
= & \Omega\left(\mathscr{M}_{i j}\right)-\Omega\left(\mathscr{M}_{i j}^{*}\right)+\Omega\left(\mathscr{L}_{i j}\right)-\Omega\left(\mathscr{L}_{i j}^{*}\right)
\end{aligned}
$$

Therefore, we show that

$$
(2.9) \Omega\left(\mathscr{L}_{i j}+\mathscr{M}_{i j}\right)+\Omega\left(-\mathscr{L}_{i j}^{*}-\mathscr{M}_{j i}^{*}\right)=\Omega\left(\mathscr{M}_{i j}\right)-\Omega\left(\mathscr{M}_{i j}^{*}\right)-\Omega\left(\mathscr{L}_{i j}^{*}\right)+\Omega\left(\mathscr{L}_{i j}\right)
$$

By an easy computation, we can write

$$
\left(i \mathscr{P}_{i}+i \mathscr{L}_{i j}\right)\left(\mathscr{P}_{j}+\mathscr{M}_{i j}\right)-\left(\mathscr{P}_{j}+\mathscr{M}_{i j}^{*}\right)\left(-i \mathscr{P}_{i}-i \mathscr{L}_{i j}^{*}\right)=i \mathscr{L}_{i j}+i \mathscr{M}_{i j}+i \mathscr{L}_{i j}^{*}+i \mathscr{M}_{i j}^{*} .
$$

Then, we have

$$
\begin{aligned}
& \Omega\left(\mathscr{L}_{i j}+\mathscr{M}_{i j}\right)+\Omega\left(i \mathscr{L}_{i j}^{*}+i \mathscr{M}_{j i}^{*}\right) \\
= & \Omega\left(\left[\left(i \mathscr{P}_{i}+i \mathscr{L}_{i j}\right),\left(\mathscr{P}_{j}+\mathscr{M}_{i j}^{*}\right)\right]_{*}\right) \\
= & {\left[\Omega\left(\mathscr{P}_{j}+\mathscr{M}_{i j}^{*}\right),\left(i \mathscr{P}_{i}+i \mathscr{L}_{i j}\right)\right]_{*}+\left[\left(\mathscr{P}_{j}+\mathscr{M}_{i j}^{*}\right), \Omega\left(i \mathscr{P}_{i}+i \mathscr{L}_{i j}\right)\right]_{*} } \\
= & {\left[\left(\Omega\left(\mathscr{P}_{j}\right)+\Omega\left(\mathscr{M}_{i j}^{*}\right)\right),\left(i \mathscr{P}_{i}+i \mathscr{L}_{i j}\right)\right]_{*} } \\
& +\left[\left(\mathscr{P}_{j}+\mathscr{M}_{i j}^{*}\right),\left(\Omega\left(i \mathscr{P}_{i}\right)+\Omega\left(i \mathscr{L}_{i j}\right)\right)\right]_{*} \\
= & {\left[\Omega\left(\mathscr{M}_{i j}^{*}\right), i \mathscr{P}_{i}\right]_{*}+\left[\mathscr{M}_{i}^{*}, \Omega\left(i \mathscr{P}_{i}\right)\right]_{*}+\left[\Omega\left(\mathscr{P}_{j}\right), i \mathscr{L}_{i j}\right]_{*}+\left[\mathscr{P}_{j}, \Omega\left(i \mathscr{L}_{i j}\right)\right]_{*} } \\
= & \Omega\left(\left[i \mathscr{P}_{i}, \mathscr{M}_{i j}^{*}\right]_{*}\right)+\Omega\left(\left[i \mathscr{L}_{i j}, \mathscr{P}_{j}\right]_{*}\right) \\
= & \Omega\left(i \mathscr{M}_{i j}\right)+\Omega\left(i \mathscr{M}_{i j}^{*}\right)+\Omega\left(\mathscr{L}_{i j}\right)+\Omega\left(i \mathscr{L}_{i j}^{*}\right)
\end{aligned}
$$

We showed that

$$
\Omega\left(i \mathscr{L}_{i j}+i \mathscr{M}_{i j}\right)+\Omega\left(i \mathscr{L}_{i j}^{*}+i \mathscr{M}_{j i}^{*}\right)=\Omega\left(i \mathscr{M}_{i j}\right)+\Omega\left(i \mathcal{M}_{i j}^{*}\right)+\Omega\left(i \mathscr{L}_{i j}^{*}\right)+\Omega\left(i \mathscr{L}_{i j}\right)
$$

From Claims 2, 3 and the above equation, we have
$(2.10) \Omega\left(\mathscr{L}_{i j}+\mathscr{M}_{i j}\right)+\Omega\left(\mathscr{L}_{i j}^{*}+\mathscr{M}_{j i}^{*}\right)=\Omega\left(\mathscr{M}_{i j}\right)+\Omega\left(\mathscr{M}_{i j}^{*}\right)+\Omega\left(\mathscr{L}_{i j}^{*}\right)+\Omega\left(\mathscr{L}_{i j}\right)$.
By adding equations (2.10) and (2.9), we obtain

$$
\Omega\left(\mathscr{L}_{i j}+\mathscr{M}_{i j}\right)=\Omega\left(\mathscr{L}_{i j}\right)+\Omega\left(\mathscr{M}_{i j}\right) .
$$

Claim 8. For each $\mathscr{L}_{i i}, \mathscr{M}_{i i} \in \mathscr{A}_{i i}$ such that $1 \leq i \leq 2$, we have

$$
\Omega\left(\mathscr{L}_{i i}+\mathscr{M}_{i i}\right)=\Omega\left(\mathscr{L}_{i i}\right)+\Omega\left(\mathscr{M}_{i i}\right) .
$$

We show that $\mathscr{T}=\Omega\left(\mathscr{L}_{i i}+\mathscr{M}_{i i}\right)-\Omega\left(\mathscr{L}_{i i}\right)-\Omega\left(\mathscr{M}_{i i}\right)=0$. We can write that

$$
\begin{aligned}
& {\left[\Omega\left(\mathscr{P}_{j}\right),\left(\mathscr{L}_{i i}+\mathscr{M}_{i i}\right)\right]_{*}+\left[\mathscr{P}_{j}, \Omega\left(\mathscr{L}_{i i}+\mathscr{M}_{i i}\right)\right]_{*} } \\
= & \Omega\left(\left[\left(\mathscr{L}_{i i}+\mathscr{M}_{i i}\right), \mathscr{P}_{j}\right]_{*}\right) \\
= & \Omega\left(\left[\mathscr{L}_{i i} \mathscr{P}_{j}\right]_{*}\right)+\Omega\left(\left[\mathscr{M}_{i i}, \mathscr{P}_{j}\right]_{*}\right) \\
= & {\left[\Omega\left(\mathscr{P}_{j}\right), \mathscr{L}_{i i}\right]_{*}+\left[\mathscr{P}_{j}, \Omega\left(\mathscr{L}_{i i}\right)\right]_{*}+\left[\Omega\left(\mathscr{P}_{j}\right), \mathscr{M}_{i i}\right]_{*} } \\
& +\left[\mathscr{P}_{j}, \Omega\left(\mathscr{M}_{i i}\right)\right]_{*} \\
= & {\left[\Omega\left(\mathscr{P}_{j}\right),\left(\mathscr{L}_{i i}+\mathscr{M}_{i i}\right)\right]_{*}+\left[\mathscr{P}_{j},\left(\Omega\left(\mathscr{L}_{i i}\right)+\Omega\left(\mathscr{M}_{i i}\right)\right)\right]_{*} . }
\end{aligned}
$$

So, we have

$$
\left[\mathscr{P}_{j}, \mathscr{T}\right]_{*}=0 .
$$

Therefore, we obtain $\mathscr{T}_{i j}=\mathscr{T}_{j i}=\mathscr{T}_{j j}=0$ On the other hand, for every $\mathscr{X}_{j i} \in \mathscr{A}_{j i}$, we have

$$
\begin{aligned}
& {\left[\Omega\left(\mathscr{X}_{j i}\right),\left(\mathscr{L}_{i i}+\mathscr{M}_{i i}\right)\right]_{*}+\left[\mathscr{X}_{i j}, \Omega\left(\mathscr{L}_{i i}+\mathscr{M}_{i i}\right)\right]_{*} } \\
= & \Omega\left(\left[\left(\mathscr{L}_{i i}+\mathscr{M}_{i i}\right), \mathscr{X}_{j i}\right]_{*}\right) \\
= & \Omega\left(\left[\mathscr{L}_{i i}, \mathscr{X}_{j i}\right)+\Omega\left(\left[\mathscr{M}_{i i}, \mathscr{X}_{i j}\right]_{*}\right)\right. \\
= & {\left[\Omega\left(\mathscr{X}_{j i}\right), \mathscr{L}_{i i}\right]_{*}+\left[\mathscr{X}_{j i}, \Omega\left(\mathscr{L}_{i i}\right)\right]_{*}+\left[\Omega\left(\mathscr{X}_{j i}\right), \mathscr{M}_{i i}\right]_{*} } \\
& +\left[\mathscr{X}_{j i}, \Omega\left(\mathscr{M}_{i i}\right)\right]_{*} \\
= & {\left[\Omega\left(\mathscr{X}_{j i}\right),\left(\mathscr{L}_{i i}+\mathscr{M}_{i i}\right)\right]_{*}+\left[\mathscr{X}_{j i},\left(\Omega\left(\mathscr{L}_{i i}\right)+\Omega\left(\mathscr{M}_{i i}\right)\right)\right]_{*} . }
\end{aligned}
$$

So,

$$
\left[\left(\Omega\left(\mathscr{L}_{i i}+\mathscr{M}_{i i}\right)-\Omega\left(\mathscr{L}_{i i}\right)-\Omega\left(\mathscr{M}_{i i}\right)\right), \mathscr{X}_{j i}\right]_{*}=0
$$

It follows that $\left[\mathscr{X}_{j i}, \mathscr{T}\right]_{*}=0$ or $\mathscr{X}_{j i} \mathscr{T}_{i i}=0$. By knowing that \mathscr{A} is prime, we have $\mathscr{T}_{i i}=0$. Hence, the additivity of Ω comes from the above claims.
In the rest of this paper we show that $\Omega=0$.
THEOREM 2.2. Taking reference to the preceding theorem, if $\Omega(\alpha \mathscr{I})$ is self-adjoint operator for $\alpha \in\{1, i\}$, then $\Omega=0$.

Proof. Several claims are used to verify the above theorem.
Claim 9. $\Omega(i \mathscr{I})=\Omega(\mathscr{I})=0$.
Consider $\Omega\left([i \mathscr{I}, \mathscr{I}]_{*}\right)=[\Omega(\mathscr{I}), i \mathscr{I}]_{*}+[\mathscr{I}, \Omega(i \mathscr{I})]_{*}$ that imply

$$
\begin{align*}
\Omega(2 i \mathscr{I}) & =-i \Omega(\mathscr{I})-i \Omega(\mathscr{I})^{*}+\Omega(i \mathscr{I})^{*}-\Omega(i \mathscr{I}) \\
2 \Omega(i \mathscr{I}) & =-2 i \Omega(\mathscr{I}) \tag{2.11}
\end{align*}
$$

By taking the adjoint of above equation we have $\Omega(i \mathscr{I})=\Omega(\mathscr{I})=0$.
Claim 10. Ω preserves *.
Since $\Omega(i \mathscr{I})=\Omega(\mathscr{I})=0$, then we can write

$$
\begin{gathered}
\Omega\left([\mathscr{I},(i \mathscr{L})]_{*}\right)=[\Omega(i \mathscr{L}), \mathscr{I}]_{*}+[(i \mathscr{L}), \Omega(\mathscr{I})]_{*} \\
\Omega\left(i \mathscr{L}+i \mathscr{L}^{*}\right)=\Omega(i \mathscr{L})^{*}-\Omega(i \mathscr{L})
\end{gathered}
$$

Substiting $i \mathscr{L}$ instead of \mathscr{L} in the above equation, we get

$$
\begin{equation*}
\Omega\left(\mathscr{L}^{*}-\mathscr{L}\right)=\Omega(\mathscr{L})-\Omega(\mathscr{L})^{*} \tag{2.12}
\end{equation*}
$$

Replace \mathscr{L} by \mathscr{L}^{*} in (2.12), we have

$$
\begin{equation*}
\Omega\left(\mathscr{L}-\mathscr{L}^{*}\right)=\Omega\left(\mathscr{L}^{*}\right)-\Omega\left(\mathscr{L}^{*}\right)^{*} \tag{2.13}
\end{equation*}
$$

Adding (2.12) and (2.13), we get

$$
\begin{align*}
\Omega(0) & =\Omega(\mathscr{L})-\Omega(\mathscr{L})^{*}+\Omega\left(\mathscr{L}^{*}\right)-\Omega\left(\mathscr{L}^{*}\right)^{*} \\
0 & =\Omega\left(\mathscr{L}+\mathscr{L}^{*}\right)-\Omega(\mathscr{L})^{*}-\Omega\left(\mathscr{L}^{*}\right)^{*} \tag{2.14}
\end{align*}
$$

Replace \mathscr{L} by $i \mathscr{L}$ in (2.14), we obtain

$$
\begin{align*}
0 & =\Omega\left(i \mathscr{L}-i \mathscr{L}^{*}\right)-\Omega(i \mathscr{L})^{*}-\Omega\left(-i \mathscr{L}^{*}\right)^{*} \\
0 & =i \Omega\left(\mathscr{L}-\mathscr{L}^{*}\right)+i \Omega(\mathscr{L})^{*}+i \Omega\left(-\mathscr{L}^{*}\right)^{*} \\
0 & =\Omega\left(\mathscr{L}-\mathscr{L}^{*}\right)+\Omega(\mathscr{L})^{*}-\Omega\left(\mathscr{L}^{*}\right)^{*} \tag{2.15}
\end{align*}
$$

By adding (2.14) and (2.15), we obtain

$$
\Omega(\mathscr{L})=\Omega\left(\mathscr{L}^{*}\right)^{*}
$$

Therefore, Ω preserves *.
Claim 11. We prove that $\Omega=0$.
For every $\mathscr{L}, \mathscr{M} \in \mathscr{A}$, we have

$$
\begin{align*}
\Omega\left(\mathscr{L} \mathscr{M}-\mathscr{M}^{*} \mathscr{L}^{*}\right) & =\Omega\left(\left[\mathscr{L}, \mathscr{M}^{*}\right]_{*}\right) \\
& =\left[\Omega\left(\mathscr{M}^{*}\right), \mathscr{L}\right]_{*}+\left[\mathscr{M}^{*}, \Omega(\mathscr{L})\right]_{*} \\
& =\Omega\left(\mathscr{M}^{*}\right) \mathscr{L}^{*}-\mathscr{L} \Omega\left(\mathscr{M}^{*}\right)^{*}+\mathscr{M}^{*} \Omega(\mathscr{L})^{*}-\Omega(\mathscr{L}) \mathscr{M} \\
\Omega\left(\mathscr{L} \mathscr{M}-\mathscr{M}^{*} \mathscr{L}^{*}\right) & =\Omega(\mathscr{M})^{*} \mathscr{L}^{*}-\mathscr{L} \Omega(\mathscr{M})+\mathscr{M}^{*} \Omega(\mathscr{L})^{*}-\Omega(\mathscr{L}) \mathscr{M} \tag{2.16}
\end{align*}
$$

Replace \mathscr{M} by $i \mathcal{M}$ in (2.16) and using Claims 2 and 9 , we obtain

$$
\begin{equation*}
\Omega\left(\mathscr{L} \mathscr{M}+\mathscr{M}^{*} \mathscr{L}^{*}\right)=-\Omega(\mathscr{M})^{*} \mathscr{L}^{*}-\mathscr{L} \Omega(\mathscr{M})-\mathscr{M}^{*} \Omega(\mathscr{L})^{*}-\Omega(\mathscr{L}) \mathscr{M} \tag{2.17}
\end{equation*}
$$

By adding (2.16) and (2.17), we have

$$
\Omega(\mathscr{L} \mathscr{M})=-\mathscr{L} \Omega(\mathscr{M})-\Omega(\mathscr{L}) \mathscr{M}
$$

Taking $\mathscr{M}=\mathscr{I}$, we see that $\Omega(\mathscr{L})=-\Omega(\mathscr{L})$ which gives $\Omega(\mathscr{L})=0$ and hence $\Omega=0$. This completes the proof.

References

[1] Bai, Z. F., and Du, S. P., Maps preserving products $X Y-Y X^{*}$ on von Neumann algebras, J. Math. Anal. Appl. 386 (1) (2012), 103-109.
[2] Cui. J., and Li, C. K., Maps preserving product $X Y-Y X^{*}$ on factor von Neumann algebras, Linear Algebra Appl. 431 (5-7) (2009), 833-842.
[3] Dai, L., and Lu, F., Nonlinear maps preserving Jordan *-products. J. Math. Anal. Appl. 409 (1) (2014), 180-188.
[4] Huo, D., Zheng, B., Xu, J., and Liu, H., Nonlinear mappings preserving Jordan multiple *-product on factor von Neumann algebras, Linear Multilinear Algebra 63 (5) (2015), 10261036.
[5] Ji, P., and Liu, Z., Additivity of Jordan maps on standard Jordan operator algebras, Linear Algebra Appl. 430 (1) (2009), 335-343.
[6] Lu, F., Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002), 123-131.
[7] Martindale III, W. S., When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969), 695-698.
[8] Taghavi, A., Darvish, V., and Rohi, H., Additivity of maps preserving products $A P \pm P A^{*}$ on C^{*}-algebras, Math. Slov. 67 (2017), 213-220.
[9] Taghavi, A., Rohi, H., and Darvish, V., Non-linear *-Jordan derivations on von Neumann algebras, Linear Multilinear Algebra 64 (3) (2016), 426-439.
[10] Taghavi, A., and Razeghi, M., Non-linear new product $A^{*} B-B^{*} A$ derivation on $*-$ algebra, Proyecciones (Antofagasta, On line) 39 (2) (2020), 467-479.
[11] Yang, Z., and Zhang, Y., Nonlinear maps preserving the second mixed Lie triple products on factor von Neumann algebras, Linear Multilinear Algebra 68 (2) (2020), 377-390.

Mohd Arif Raza

Department of Mathematics, College of Science \& Arts-Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia.
E-mail: arifraza03@gmail.com

Tahani Al-Sobhi

Department of Mathematics, College of Science \& Arts-Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia.
E-mail: talialsobhi@stu.kau.edu.sa

[^0]: Received March 21, 2023. Revised July 4, 2023. Accepted August 1, 2023.
 2010 Mathematics Subject Classification: 46J10, 47B48, 46L10.
 Key words and phrases: Prime *-algrebra, additive map, non-linear product.
 (C) The Kangwon-Kyungki Mathematical Society, 2023.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

