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A REMARK ON STATISTICAL MANIFOLDS WITH TORSION

Hwajeong Kim

Abstract. Consider a Riemannian manifold M equipped with a metric g. In this
article, we study a notion for statistical manifolds (M, g,∇), which can have a non-
zero torsion, abbreviated to SMT. Then it turns out that the tensor fields ∇g and
∇̃g obtained from two different SMT-connections are different.

1. Introduction

Let M be a manifold with a metric g. Given a linear connection ∇ there exists a
unique connection ∇∗ such that

d(g(X, Y )) = g(∇X, Y ) + g(X,∇∗Y )

and we then say that ∇, ∇∗ are dual connections with respect to the metric g.

A statistical manifold can be defined using the notion of dual connections, that is,
a manifold (M, g,∇,∇∗) satisfying

T∇ = T∇
∗

= 0

where the torsion of ∇ is given by

T∇(X, Y ) = ∇XY −∇YX − [X, Y ].

There are a few equivalent ways in which statistical manifolds have been introduced;
for details we refer to [1, 3, 7, 11].

In this article, we consider statistical manifolds whose torsions are not necessarily
zero. We will use a notion of ”statistical manifolds admitting torsion” as introduced
in [6] and abreviate it as ”SMT”.

The difference between a linear connection ∇ and the Levi-Civita connection ∇g

is a (2, 1)-tensor field denoted by A, that is

(1) ∇XY = ∇g
XY + A(X, Y ).

The notation A is also used for the (3, 0)-tensor defined by

A(X, Y, Z) = g(A(X, Y ), Z).

In [5], given a SMT (M, g,∇) with ∇ = ∇g + A, an equivalent condition for the
difference tensor A is computed, see (8). In this article, we will consider the space
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of A satisfying this condition and denote the space by SMT . We also consider the
symmetric space of AS consisting of (3, 0)-tensor fields A which are symmetric with
respect to the second and third variables.

In the main Theorem, we will then construct a bijection between SMT and AS.
Here we observe that AS is actually the space of ∇g’s where (M, g,∇) is a SMT, so
we conclude that ∇g 6= ∇̃g for two different SMT-connections ∇ and ∇̃.

2. Preliminaries

Let (M, g) be a Riemannian manifold and Γ(M), Γ∗(M) the set of sections of the
tangent bundle TM , T ∗M , respectively.

A linear connection ∇ is then a map

∇ : Γ(M)⊗ Γ(M)→ Γ(M)

with some properties and gives a way how to transport a vector field along a direction.

A metric connection ∇ is a linear connection, which gives isometries between tan-
gent spaces by parallel transport, that is

(2) V (g(X, Y )) = g(∇VX, Y ) + g(X,∇V Y ).

The condition (2) is equivalent to ∇g = 0, since for (2, 0)- tensor field g

(∇V g)(X, Y ) = V (g(X, Y ))− g(∇VX, Y )− g(X,∇V Y ).

The Levi-Civita connection, denoted by ∇g, is the unique metric connection with
torsion T = 0.

The difference between a linear connection ∇ and the Levi-Civita connection ∇g

is a (2, 1)-tensor (field) A, that is, for any tangent vector fields X, Y ∈ Γ(M),

∇XY = ∇g
XY + A(X, Y ).

Using the same notation, a (3, 0)-tensor A is defined by

A(X, Y, Z) = 〈A(X, Y ), Z〉.
We now consider the case where isometries between tangent spaces are obtained by
parallel transports with respect to two connections ∇, ∇∗ as follows.

Definition 2.1 (Dual Connections). For a linear connection ∇, the dual connec-
tion ∇∗ of ∇ with respect to g is defined by

Z(g(X, Y )) = g(∇ZX, Y ) + g(X,∇∗ZY )).

By the expression (1) let

∇XY = ∇g + A(X, Y )(3)

∇∗XY = ∇g + A∗(X, Y ).(4)

We can then easily check the following.

Lemma 2.2. Given a linear connection ∇ and its dual connection ∇∗ defined as
above, the following equality holds:

(5) 〈A(Z,X), Y 〉+ 〈X,A∗(Z, Y )〉 = A(Z,X, Y ) + A∗(Z, Y,X) = 0.

So, a linear connection ∇ has a unique dual connection ∇∗
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3. Statistical manifolds admitting torsion

A statistical manifold in a classical sense is a torsion-free manifold with some
properties.

In [6] a notion for generalized statistical manifolds is introduced. There are some
well-known equivalent properties of these statistical manifolds. In this article, we take
the following properties as definitions.

Definition 3.1. [2, 3, 6, 8]

(i) A Riemannian manifold (M, g,∇) is a statistical manifold if

(6) (∇Xg)(Y, Z)− (∇Y g)(X,Z) = 0,

for X, Y, Z ∈ Γ(TM).
(ii) A Riemannian manifold (M, g,∇) is a statistical manifold admitting torsion,

(SMT) for short, if

(7) (∇Xg)(Y, Z)− (∇Y g)(X,Z) = −g(T∇(X, Y ), Z),

for X, Y, Z ∈ Γ(TM), where T∇ is the torsion tensor of ∇.

Considering the difference tensor field A as in (3), we obtain the following result.

Proposition 3.2. [5, 8] Given a Riemannian manifold (M, g,∇) the following
conditions are equivalent.

(i) (M, g,∇,∇∗) is a SMT.
(ii) Let ∇ = ∇g + A. Then it holds

(8) A(X, Y, Z) = A(Z, Y,X) for X, Y, Z ∈ Γ(TM).

(iii) T∇
∗

= 0.

Here we note that a statistical manifold (M, g,∇,∇∗) in a classical sense is the
manifold with T∇ = T∇

∗
= 0.

We consider the (3, 0)- tensor field A as an element of ⊗3TM , identifying TM with
TM∗. Then by Proposition 3.2 (ii), for the set of SMT’s we can consider a space as
follows:

SMT = {A ∈ ⊗3TM |A(X, Y, Z) = A(Z, Y,X)}.
We also take a symmetric space:

AS = {A ∈ ⊗3TM |A(X, Y, Z) = A(X,Z, Y )} = TM ⊗ S2TM.

We will then find a bijection between the above two spaces in the following theorem.

Theorem 3.3. A bijection between SMT and AS arises from the following:

For S ∈ SMT , we associate G ∈ AS by

(9) G(X, Y, Z) = S(X, Y, Z) + S(X,Z, Y ).

And for G ∈ AS, we associate S ∈ SMT by

2S(X, Y, Z) = G(X, Y, Z)−G(Y, Z,X) + G(Z,X, Y ).
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Proof. Given S ∈ SMT , we get G ∈ AS by

G(X, Y, Z) = S(X, Y, Z) + S(X,Z, Y ) ∈ AS.

Now since S ∈ SMT ,

G(X, Y, Z)−G(Y, Z,X) + G(Z,X, Y )

= S(X, Y, Z) + S(X,Z, Y )− S(Y, Z,X)− S(Y,X,Z)

+S(Z,X, Y ) + S(Z, Y,X)

= 2S(X, Y, Z).

We note that the above (9) gives a linear map for each TxM , x ∈M .

Finally, the elements of SMT and AS are symmetric with respect to two variables,
namely, first and third ones for SMT , second and third ones for AS. So, SMT and
AS have the same dimension.

We now conclude that the mapping (9) is a bijection from SMT to AS.

Corollary 3.4. Two different SMT-connections ∇ and ∇̃ give two different and
tensor fields ∇g and ∇̃g.

Proof. For ∇ = ∇g + A, recall that

(10) ∇g = A(X, Y, Z) + A(X,Z, Y ).

So, by the bijection in Theorem 3.3, we have two different tensor fields ∇g and ∇̃g
for two different SMT- connection ∇, ∇̃.

Here (10) follows from

∇g(X, Y, Z) = (∇Xg)(Y, Z)

= X(g(Y, Z))− g(∇XY, Z)− g(Y,∇XZ)

= ∇gg(X, Y, Z) + A(X, Y, Z) + A(X,Z, Y )

= A(X, Y, Z) + A(X,Z, Y ).

Remark 3.5. Since ⊗2TM = Λ2TM ⊕ S2TM where the tensor product Λ2 and
S2 is skew-symmetric and symmetric tensor products, respectively, we have

⊗3TM = AM ⊕AS

with

AM = {A ∈ ⊗3TM |A(X, Y, Z) = −A(X,Z, Y )} = TM ⊗ Λ2TM.

So, from the bijection in Theorem 3.3 we also have a bijection between SMT and
⊗3TM/AM . Note that AM is the space of A’s of metric connections ∇, that is, linear
connections with ∇g = 0.
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