BOUNDED FUNCTION ON WHICH INFINITE ITERATIONS OF WEIGHTED BEREZIN TRANSFORM EXIST

JAESUNG LEE

ABSTRACT. We exhibit some properties of the weighted Berezin transform $T_{\alpha}f$ on $L^{\infty}(B_n)$ and on $L^1(B_n)$. As the main result, we prove that if $f \in L^{\infty}(B_n)$ with $\lim_{k\to\infty} T_{\alpha}^k f$ exists, then there exist unique \mathcal{M} -harmonic function g and $h \in (\overline{I-T_{\alpha}})L^{\infty}(B_n)$ such that f = g + h. We also show that of the norm of weighted Berezin operator T_{α} on $L^1(B_n, \nu)$ converges to 1 as α tends to infinity, where ν is an ordinary Lebesgue measure.

1. Introduction and Preliminaries

Let B_n be the unit ball of \mathbb{C}^n and let ν be the Lebesgue measure on \mathbb{C}^n normalized to $\nu(B_n) = 1$. For $\alpha > 0$, we define a positive measure ν_{α} by

$$d\nu_{\alpha}(z) = \frac{\Gamma(n+\alpha+1)}{n!\Gamma(\alpha+1)} (1-|z|^2)^{\alpha} d\nu(z)$$

so that $\nu_{\alpha}(B_n) = 1$. For such α and $f \in L^1(B_n, \nu_{\alpha})$, the weighted Berezin transform $T_{\alpha}f$ on B_n is defined by

$$(T_{\alpha}f)(z) = \int_{B_n} f(\varphi_z(w)) d\nu_{\alpha}(w) \text{ for } z \in B_n,$$

where $\varphi_a \in \operatorname{Aut}(B_n)$ is the canonical automorphism given by

$$\varphi_a(z) = \frac{a - Pz - (1 - |a|^2)^{1/2}Qz}{1 - \langle z, a \rangle}$$

on which P is the projection into the space spanned by $a \in B_n$ and $Q_z = z - Pz$ as we follow the standard notations of [8]. Equivalently, we can write the weighted Berezin transform

(1.1)
$$(T_{\alpha}f)(z) = \int_{B_n} f(w) \frac{(1-|z|^2)^{n+1+\alpha}}{|1-\langle z,w\rangle|^{2n+2+2\alpha}} d\nu_{\alpha}(w).$$

The invariant Laplacian $\tilde{\Delta}$ is defined for $f \in C^2(B_n)$ by

$$(\tilde{\Delta}f)(z) = \Delta(f \circ \varphi_z)(0).$$

Received April 3, 2023. Revised August 29, 2023. Accepted September 5, 2023.

²⁰¹⁰ Mathematics Subject Classification: 32A70, 47G10.

Key words and phrases: weighted Berezin transform, iteration, operator norm, \mathcal{M} -harmonic function.

⁽C) The Kangwon-Kyungki Mathematical Society, 2023.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

The \mathcal{M} -harmonic functions on B_n are those for which $\Delta f = 0$. If a function $f \in L^1(B_n, \nu_\alpha)$ is \mathcal{M} -harmonic, then $f \circ \psi$ is also \mathcal{M} -harmonic for every $\psi \in \operatorname{Aut}(B_n)$, so that f satisfies

$$(T_{\alpha}f)(z) = f(z)$$
 for every $z \in B_n$.

Conversely, it is proved that a bounded function f in the symmetric domain invariant under the general Berezin transform is harmonic with respect to its intrinsic metric([1], [2], [4]). Especially, $f \in L^{\infty}(B_n)$ satisfying $T_{\alpha}f = f$ is \mathcal{M} -harmonic([5]).

The invariant measure τ on B_n is defined by

$$d\tau(z) = (1 - |z|^2)^{-n-1} d\nu(z)$$

and satisfies

$$\int_{B_n} f \ d\tau = \int_{B_n} (f \circ \psi) \ d\tau$$

for every $f \in L^1(\tau)$ and $\psi \in \operatorname{Aut}(B_n)$.

Even though τ is not a finite measure on B_n so that a non-zero constant does not belong to $L^1(\tau)$, T_{α} on $L^{\infty}(B_n)$ is the adjoint of T_{α} on $L^1(\tau)$ in the sense that

(1.2)
$$\int_{B_n} (T_\alpha f) \cdot g \, d\tau = \int_{B_n} f \cdot (T_\alpha g) \, d\tau$$

for $f \in L^1(\tau)$ and $g \in L^{\infty}(B_n)$. For $1 \leq p \leq \infty$, we denote $L^p_R(\tau)$ as the subspace of $L^p(B_n, \tau)$ which consists of radial functions.

Previously, in Lemma 2.1 of [5], the author proved that

(1.3)
$$\lim_{k \to \infty} \|T^k_{\alpha}(I - T_{\alpha})\| = 0 \quad \text{on} \quad L^1_R(\tau),$$

which plays an important role in this paper.

In the previous papers [5], [6] and [7], the author investigated various properties on iterates of T_{α} on $L^{1}(\tau)$, $L^{\infty}(B_{n})$ and $L^{p}(\tau)$ for 1 . Especially, the Corollary $2.2 of [7] shows that there exists <math>f \in L^{\infty}(B_{n})$ for which $\lim_{k\to\infty} T_{\alpha}^{k}f$ does not exist. Here we answer the question on which $f \in L^{\infty}(B_{n})$, $\lim_{k\to\infty} T_{\alpha}^{k}f$ exists.

This paper exhibits some new properties of the weighted Berezin transform $T_{\alpha}f$ on $L^{\infty}(B_n)$ and on $L^1(B_n)$. In section 2, as a main result of this paper, we characterize $f \in L^{\infty}(B_n)$ on which $\lim_{k\to\infty} T^k_{\alpha}f$ exists.

In section 3, we investigate the limit of the norm of T_{α} on $L^{1}(B_{n}, \nu)$ by showing that T_{α} is bounded on $L^{1}(B_{n}, \nu)$ and its norm converges to 1 as α tends to infinity.

2. The iterations of T_{α}

This section contains main results of the paper, which characterize $f \in L^{\infty}(B_n)$ on which $\lim_{k\to\infty} T^k_{\alpha} f$ exists. Previously, in Corollary 2.2 of [7], the author showed that there exists $f \in L^{\infty}(B_n)$ for which $\lim_{k\to\infty} T^k_{\alpha} f$ does not exist pointwise. For such f, it is quite easy to see that $\lim_{k\to\infty} T^k_{\alpha} f$ does not exist in $L^{\infty}(B_n)$ either. The proof of the following lemma is almost identical to that of Corollary 2.2 of [7].

LEMMA 2.1. There exists $f \in L^{\infty}(B_n)$ for which $\lim_{k\to\infty} T^k_{\alpha} f$ does not exist in $L^{\infty}(B_n)$.

306

Proof. Assume that $\lim T_{\alpha}^{k}\ell$ exists for every $\ell \in L^{\infty}(B_{n})$. Since T_{α} is self-adjoint on $L^{1}(\tau)$ in the sense that

(2.1)
$$\int_{B_n} (T_{\alpha}g) \cdot \ell \, d\tau = \int_{B_n} g \cdot (T_{\alpha}\ell) \, d\tau$$

for every $g \in L^1(\tau)$. Now choose any radial function $g \in L^1_R(\tau)$ with $\int_{B_n} g \ d\tau \neq 0$ then

$$\lim_{k \to \infty} \int_{B_n} (T^k_{\alpha}g) \ell d\tau = \lim_{k \to \infty} \int_{B_n} g (T^k_{\alpha}\ell) d\tau$$

exists for every $\ell \in L^{\infty}(B_n)$. This means $\{T_{\alpha}^k g\}$ converges weakly. Therefore, by Proposition 2.1 of [7], we have

$$\lim_{k \to \infty} \|T^k_{\alpha}g\|_{L^1(\tau)} = 0.$$

On the other hand, by Proposition 3.2 of [6], we also have

(2.2)
$$\lim_{k \to \infty} \|T^k_{\alpha}g\|_{L^1(\tau)} = \left|\int_{B_n} g \ d\tau\right| \neq 0,$$

which is a contradiction.

The next lemma extends Lemma 2.1 of [5] to the whole $L^{\infty}(B_n)$, and plays a key role in the proof of the main theorem.

LEMMA 2.2. $\lim_{k\to\infty} ||T^k_{\alpha}(I-T_{\alpha})|| = 0$ on $L^{\infty}(B_n)$.

Proof. The Lemma 2.1 of [5] states that

(2.3)
$$\lim_{k \to \infty} \|T^k_{\alpha}(I - T_{\alpha})\| = 0 \quad \text{on} \quad L^1_R(\tau).$$

Since $L_R^{\infty}(B_n)$ is a dual space of $L_R^1(\tau)$, the spectrum of the self-adjoint operator T_{α} on $L_R^{\infty}(B_n)$ is the same as the spectrum of T_{α} on $L_R^1(B_n, \tau)$. Therefore, we get

(2.4)
$$\lim_{k \to \infty} \|T_{\alpha}^{k}(I - T_{\alpha})\| = 0 \quad \text{on} \quad L_{R}^{\infty}(B_{n})$$

For that reason, it is enough to show that the spectrum of T_{α} on $L^{\infty}(B_n)$ is the same as the spectrum of T_{α} on $L_R^{\infty}(B_n)$. Let λ be in the spectrum of T_{α} on $L^{\infty}(B_n)$, then there exists a sequence $\{f_k\}$ in $L^{\infty}(B_n)$ with $||f_k||_{\infty} = 1$ for which

$$\lim_{k \to \infty} \| T_{\alpha} f_k - \lambda f_k \|_{\infty} = 0$$

Let $\phi_k \in \operatorname{Aut}(B_n)$ satisfy $||R(f_k \circ \phi_k)||_{\infty} = 1$ where Rf is the radialization (4.2.1 of [8]) of f. Since T_{α} and R are contractions on $L^{\infty}(B_n)$,

$$\| T_{\alpha} (R(f_{k} \circ \phi_{k})) - \lambda R(f_{k} \circ \phi_{k}) \|_{\infty} = \| R(T_{\alpha}(f_{k} \circ \phi_{k})) - R(\lambda f_{k} \circ \phi_{k}) \|_{\infty}$$

$$\leq \| T_{\alpha}(f_{k} \circ \phi_{k}) - \lambda f_{k} \circ \phi_{k} \|_{\infty}$$

$$= \| (T_{\alpha}f_{k}) \circ \phi_{k} - \lambda f_{k} \circ \phi_{k} \|_{\infty}$$

$$= \| T_{\alpha}f_{k} - \lambda f_{k} \|_{\infty} \to 0 \text{ as } k \to \infty$$

Hence λ is in the spectrum of T_{α} on $L_{R}^{\infty}(B_{n})$. Therefore the spectrum of T_{α} on $L^{\infty}(B_{n})$ is the same as the spectrum of T_{α} on $L_{R}^{\infty}(B_{n})$ so that by (2.4) we have

(2.5)
$$\lim_{k \to \infty} \|T_{\alpha}^{k}(I - T_{\alpha})\| = 0 \quad \text{on} \quad L^{\infty}(B_{n}).$$

This completes the proof.

Jaesung Lee

Next theorem is the main result of the paper.

THEOREM 2.3. Let $f \in L^{\infty}(B_n)$. If $\lim_{k\to\infty} T^k_{\alpha} f$ exists, then there exist unique \mathcal{M} -harmonic function g and $h \in \overline{(I - T_{\alpha})L^{\infty}(B_n)}$ such that f = g + h.

Proof. If $f \in L^{\infty}(B_n)$ and $\lim_{k\to\infty} T^k_{\alpha} f$ exists, then there is $g \in L^{\infty}(B_n)$ such that $\lim_{k\to\infty} ||T^k_{\alpha} f - g||_{\infty} = 0.$

Hence we have

$$g(z) = \lim_{k \to \infty} (T^k_{\alpha} f)(z) \text{ for } z \in B_n.$$

By by the Dominated Convergence Theorem, we have

$$T_{\alpha}g = T_{\alpha}(\lim_{k \to \infty} T_{\alpha}^{k}f) = \lim_{k \to \infty} T_{\alpha}^{k+1}f = g.$$

Which means that $g \in L^{\infty}(B_n)$ satisfies $T_{\alpha}g = g$. Therefore, g is \mathcal{M} -harmonic. Define h = f - g so that f = g + h. And then we will show that

(2.6)
$$h \in \overline{(I - T_{\alpha})L^{\infty}(B_n)}.$$

Let $F \in L^{\infty}(B_n)^*$ satisfy $F(\ell - T_{\alpha}\ell) = 0$ for all $\ell \in L^{\infty}(B_n)$. If we denote

$$(2.7) [F, \ \ell] = F(\ell)$$

then we get

$$0 = F(\ell - T_{\alpha}\ell) = [F, \ \ell - T_{\alpha}\ell] = [F - T_{\alpha}^*F, \ \ell]$$

for all $\ell \in L^{\infty}(B_n)$. Thus, we have $T^*_{\alpha}F = F$. Hence for every $k \ge 0$,

(2.8)
$$[F, h] = [F, f-g] = [(T^*_{\alpha})^k F, f-g] = [F, T^k_{\alpha}(f-g)].$$

Since $\lim_{k\to\infty} ||T_{\alpha}^k f - g||_{\infty} = 0$ and $T_{\alpha}g = g$ we have

$$\lim_{k \to \infty} \|T^k_{\alpha}(f-g)\|_{\infty} = 0.$$

By taking the limit $k \to \infty$ in (2.8), we get [F, h] = 0.

So far we showed that every bounded linear functional on $L^{\infty}(B_n)$ that vanishes on

 $(I - T_{\alpha})L^{\infty}(B_n)$ also vanishes at h. Hence by the Hahn-Banach theorem, we conclude $h \in \overline{(I - T_{\alpha})L^{\infty}(B_n)}.$

Thus, it remains to prove the uniqueness of such decomposition f = g + h.

Suppose $f = g_1 + h_1 = g_2 + h_2$ where g_1, g_2 are \mathcal{M} -harmonic and $h_1, h_2 \in \overline{(I - T_\alpha)L^\infty(B_n)}$. Since

(2.9)
$$g_1 - g_2 = h_2 - h_1 \in \overline{(I - T_\alpha)L^\infty(B_n)},$$

 $g_1 - g_2$ is an \mathcal{M} -harmonic function which belongs to $(I - T_\alpha)L^\infty(B_n)$. By Lemma 2.2, we have

(2.10)
$$\lim_{k \to \infty} \|T_{\alpha}^{k}(I - T_{\alpha})\| = 0 \quad \text{on} \quad L^{\infty}(B_{n}).$$

Therefore

$$\lim_{k \to \infty} \|T_{\alpha}^k(g_1 - g_2)\|_{\infty} = 0.$$

308

However, since $g_1 - g_2$ is \mathcal{M} -harmonic, we get $T^k_{\alpha}(g_1 - g_2) = g_1 - g_2$ for every $k \ge 0$. So that we have

$$||g_1 - g_2||_{\infty} = 0.$$

Therefore, we get

 $(2.11) g_1 - g_2 = h_2 - h_1 = 0.$

And this completes the proof of the theorem.

3. The iterations of T_{α}

This section investigates the limit of the nrom of T_{α} on $L^{1}(B_{n}, \nu)$. Naturally T_{α} is an operator on $L^{1}(B_{n}, \nu_{\alpha})$. However, T_{α} also can be an operator on $L^{1}(B_{n}, \nu)$. Even though we could find the norm of T_{α} on $L^{1}(B_{n}, \nu)$ as a closed form, we can show that T_{α} is bounded on $L^{1}(B_{n}, \nu)$ and its norm converges to 1 as α tends to infinity.

PROPOSITION 3.1. If $\alpha > 0$ then T_{α} is bounded on $L^1(B_n, \nu)$ and $\lim_{\alpha \to \infty} ||T_{\alpha}|| = 1$.

Proof. If we put $f \equiv 1$ then $T_{\alpha}f = f$ and $||f||_{L^{1}(\nu)} = 1$. Hence we have

$$(3.1) ||T_{\alpha}|| \ge 1.$$

On the other hand, since

(3.2)
$$(T_{\alpha}f)(z) = \frac{\Gamma(n+\alpha+1)}{n!\Gamma(\alpha+1)} \int_{B_n} f(w) \frac{(1-|z|^2)^{n+1+\alpha}(1-|w|^2)^{\alpha}}{|1-\langle z,w\rangle|^{2n+2+2\alpha}} d\nu(w),$$

the norm of T_{α} on $L^1(B_n, \nu)$ is

$$\begin{aligned} \|T_{\alpha}\| &= \sup_{\|f\|_{L^{1}(\nu)}=1} \|T_{\alpha}f\|_{L^{1}(\nu)} \\ &= \sup_{w\in B_{n}} \frac{\Gamma(n+\alpha+1)}{n!\Gamma(\alpha+1)} (1-|w|^{2})^{\alpha} \int_{B_{n}} \frac{(1-|z|^{2})^{n+1+\alpha}}{|1-\langle z,w\rangle|^{2n+2+2\alpha}} d\nu(z). \end{aligned}$$

To calculate the integral by using the polar coordinate we have

$$\int_{B_n} \frac{(1-|z|^2)^{n+1+\alpha}}{|1-\langle z,w\rangle|^{2n+2+2\alpha}} \, d\nu(z) = 2n \int_0^1 (1-r^2)^{n+1+\alpha} \int_S \frac{1}{|1-\langle r\zeta,w\rangle|^{2n+2+2\alpha}} \, d\sigma(\zeta) r^{2n-1} dr,$$

where S is the unit sphere of \mathbb{C}^n and σ is the rotation-invariant positive Borel measure normalized to be $\sigma(S) = 1$. Using the binomial formula for |x| < 1 and $\lambda > 0$

$$\frac{1}{(1-x)^{\lambda}} = \sum_{k=0}^{\infty} \frac{\Gamma(k+\lambda)}{k! \Gamma(\lambda)} x^k,$$

the above inner integral is

$$\begin{split} \int_{S} \frac{1}{|1 - \langle rw, \zeta \rangle|^{2n+2+2\alpha}} \, d\sigma(\zeta) &= \int_{S} \left| \sum_{k=0}^{\infty} \frac{\Gamma(k+n+1+\alpha)}{k!\Gamma(n+1+\alpha)} \langle rw, \zeta \rangle^{k} \right|^{2} d\sigma(\zeta) \\ &= \sum_{k=0}^{\infty} \left| \frac{\Gamma(k+n+1+\alpha)}{k!\Gamma(n+1+\alpha)} \right|^{2} \int_{S} \left| \langle rw, \zeta \rangle^{k} \right|^{2} d\sigma(\zeta) \\ &= \frac{\Gamma(n)}{\Gamma^{2}(n+\alpha+1)} \sum_{k=0}^{\infty} \frac{\Gamma^{2}(n+\alpha+1+k)|rw|^{2k}}{\Gamma(k+1)\Gamma(n+k)}. \end{split}$$

Jaesung Lee

We insert the above series into inner integral of the polar coordinate and integrate term by term to obtain

$$\int_{B_n} \frac{(1-|z|^2)^{n+1+\alpha}}{|1-\langle z,w\rangle|^{2n+2+2\alpha}} \, d\nu(z) = \frac{\Gamma(n+1)\Gamma(n+\alpha+2)}{\Gamma^2(n+\alpha+1)} \sum_{k=0}^{\infty} \frac{\Gamma^2(n+\alpha+1+k)|w|^{2k}}{\Gamma(k+1)\Gamma(2n+2+\alpha+k)}.$$

Now using a well known inequality $\Gamma^2(a+b) \leq \Gamma(a)\Gamma(a+2b)$ for a, b > 0, we have

$$\Gamma^2(n+\alpha+1+k) \le \Gamma(k+\alpha)\Gamma(2n+2+k+\alpha).$$

So that

$$\sum_{k=0}^{\infty} \frac{\Gamma^2(n+\alpha+1+k)|w|^{2k}}{\Gamma(k+1)\Gamma(2n+2+\alpha+k)} \le \sum_{k=0}^{\infty} \frac{\Gamma(k+\alpha) |w|^{2k}}{\Gamma(k+1)}.$$

Therefore, we have

$$\begin{aligned} \|T_{\alpha}\| &= \sup_{w \in B_{n}} \frac{\Gamma(n+\alpha+1)}{n!\Gamma(\alpha+1)} (1-|w|^{2})^{\alpha} \int_{B_{n}} \frac{(1-|z|^{2})^{n+1+\alpha}}{|1-\langle z,w\rangle|^{2n+2+2\alpha}} d\nu(z) \\ &\leq \sup_{w \in B_{n}} \frac{\Gamma(n+\alpha+1)}{n!\Gamma(\alpha+1)} (1-|w|^{2})^{\alpha} \frac{\Gamma(n+1)\Gamma(n+\alpha+2)}{\Gamma^{2}(n+\alpha+1)} \sum_{k=0}^{\infty} \frac{\Gamma(k+\alpha) |w|^{2k}}{\Gamma(k+1)} \\ &= \sup_{w \in B_{n}} \frac{n+\alpha+1}{\alpha} (1-|w|^{2})^{\alpha} \sum_{k=0}^{\infty} \frac{\Gamma(k+\alpha) |w|^{2k}}{\Gamma(\alpha)\Gamma(k+1)} \\ &= \frac{n+\alpha+1}{\alpha}, \end{aligned}$$

where the last equality comes from

$$\sum_{k=0}^{\infty} \frac{\Gamma(k+\alpha) |w|^{2k}}{\Gamma(\alpha)\Gamma(k+1)} = \frac{1}{(1-|w|^2)^{\alpha}}.$$

Combining this with (3.1), we get

$$1 \le \|T_{\alpha}\| \le \frac{n+\alpha+1}{\alpha}$$

on $L^1(B_n,\nu)$. By taking $\alpha \to \infty$ we complete the proof.

References

- P. Ahern, M. Flores and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (2) (1993), 380–397.
- H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. 77 (2) (1963), 335–386.
- [3] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313–328,
- [4] J. Lee., Weighted Berezin transform in the polydisc, J. Math. Anal. Appl. 338 (2) (2008), 1489—1493.
- [5] J. Lee, A Characterization of *M*-harmonicity, Bull. Korean Math. Soc. 47 (2010), 113–119.
- [6] J. Lee, Iterates of weighted Berezin transform under invariant measure in the unit ball, Korean J. Math. 28 (3) (2020), 449–457.
- [7] J. Lee, More properties of weighted Berezin transform in the unit ball of \mathbb{C}^n , Korean J. Math. **30** (3) (2022), 459–465.
- [8] W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer-Verlag, New York Inc., 1980.

Jaesung Lee

Department of Mathematics, Sogang University, Seoul, Korea *E-mail*: jalee@sogang.ac.kr