BOUNDED FUNCTION ON WHICH INFINITE ITERATIONS OF WEIGHTED BEREZIN TRANSFORM EXIST

Jaesung Lee

ABSTRACT. We exhibit some properties of the weighted Berezin transform $T_{\alpha}f$ on $L^{\infty}(B_n)$ and on $L^1(B_n)$. As the main result, we prove that if $f \in L^{\infty}(B_n)$ with $\lim_{k\to\infty} T_{\alpha}^k f$ exists, then there exist unique M-harmonic function g and $h \in$ $\overline{(I-T_\alpha)L^\infty(B_n)}$ such that $f=g+h$. We also show that of the norm of weighted Berezin operator T_{α} on $L^1(B_n, \nu)$ converges to 1 as α tends to infinity, where ν is an ordinary Lebesgue measure.

1. Introduction and Preliminaries

Let B_n be the unit ball of \mathbb{C}^n and let ν be the Lebesgue measure on \mathbb{C}^n normalized to $\nu(B_n) = 1$. For $\alpha > 0$, we define a positive measure ν_α by

$$
d\nu_{\alpha}(z) = \frac{\Gamma(n+\alpha+1)}{n!\Gamma(\alpha+1)}(1-|z|^2)^{\alpha}d\nu(z)
$$

so that $\nu_{\alpha}(B_n) = 1$. For such α and $f \in L^1(B_n, \nu_{\alpha})$, the weighted Berezin transform $T_{\alpha}f$ on B_n is defined by

$$
(T_{\alpha}f)(z) = \int_{B_n} f(\varphi_z(w)) d\nu_{\alpha}(w) \text{ for } z \in B_n,
$$

where $\varphi_a \in \text{Aut}(B_n)$ is the canonical automorphism given by

$$
\varphi_a(z) = \frac{a - Pz - (1 - |a|^2)^{1/2}Qz}{1 - \langle z, a \rangle}
$$

on which P is the projection into the space spanned by $a \in B_n$ and $Q_z = z - P z$ as we follow the standard notations of [8]. Equivalently, we can write the weighted Berezin transform

(1.1)
$$
(T_{\alpha}f)(z) = \int_{B_n} f(w) \, \frac{(1-|z|^2)^{n+1+\alpha}}{|1-\langle z,w\rangle|^{2n+2+2\alpha}} \, d\nu_{\alpha}(w).
$$

The invariant Laplacian $\tilde{\Delta}$ is defined for $f \in C^2(B_n)$ by

$$
(\tilde{\Delta}f)(z) = \Delta(f \circ \varphi_z)(0).
$$

Received April 3, 2023. Revised August 29, 2023. Accepted September 5, 2023.

²⁰¹⁰ Mathematics Subject Classification: 32A70, 47G10.

Key words and phrases: weighted Berezin transform, iteration, operator norm, M-harmonic function.

[©] The Kangwon-Kyungki Mathematical Society, 2023.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

The M-harmonic functions on B_n are those for which $\tilde{\Delta}f = 0$. If a function $f \in$ $L^1(B_n, \nu_\alpha)$ is M-harmonic, then $f \circ \psi$ is also M-harmonic for every $\psi \in \text{Aut}(B_n)$, so that f satisfies

$$
(T_{\alpha}f)(z) = f(z) \text{ for every } z \in B_n.
$$

Conversely, it is proved that a bounded function f in the symmetric domain invariant under the general Berezin transform is harmonic with respect to its intrinsic metric([1], [2], [4]). Especially, $f \in L^{\infty}(B_n)$ satisfying $T_{\alpha} f = f$ is *M*-harmonic([5]).

The invariant measure τ on B_n is defined by

$$
d\tau(z) = (1 - |z|^2)^{-n-1} d\nu(z)
$$

and satisfies

$$
\int_{B_n} f \, d\tau \ = \ \int_{B_n} \ (f \circ \psi) \, d\tau
$$

for every $f \in L^1(\tau)$ and $\psi \in \text{Aut}(B_n)$.

Even though τ is not a finite measure on B_n so that a non-zero constant does not belong to $L^1(\tau)$, T_α on $L^\infty(B_n)$ is the adjoint of T_α on $L^1(\tau)$ in the sense that

(1.2)
$$
\int_{B_n} (T_{\alpha}f) \cdot g \ d\tau = \int_{B_n} f \cdot (T_{\alpha}g) \ d\tau
$$

for $f \in L^1(\tau)$ and $g \in L^{\infty}(B_n)$. For $1 \leq p \leq \infty$, we denote L^p $\binom{p}{R}$ as the subspace of $L^p(B_n, \tau)$ which consists of radial functions.

Previously, in Lemma 2.1 of [5], the author proved that

(1.3)
$$
\lim_{k \to \infty} ||T_{\alpha}^{k}(I - T_{\alpha})|| = 0 \text{ on } L_R^1(\tau),
$$

which plays an important role in this paper.

In the previous papers [5], [6] and [7], the author investigated various properties on iterates of T_α on $L^1(\tau)$, $L^\infty(B_n)$ and $L^p(\tau)$ for $1 < p < \infty$. Especially, the Corollary 2.2 of [7] shows that there exists $f \in L^{\infty}(B_n)$ for which $\lim_{k\to\infty} T_{\alpha}^k f$ does not exist. Here we answer the question on which $f \in L^{\infty}(B_n)$, $\lim_{k \to \infty} T_{\alpha}^k f$ exists.

This paper exhibits some new properties of the weighted Berezin transform $T_{\alpha}f$ on $L^{\infty}(B_n)$ and on $L^1(B_n)$. In section 2, as a main result of this paper, we characterize $f \in L^{\infty}(B_n)$ on which $\lim_{k \to \infty} T_{\alpha}^k f$ exists.

In section 3, we investigate the limit of the norm of T_{α} on $L^1(B_n, \nu)$ by showing that T_{α} is bounded on $L^1(B_n, \nu)$ and its norm converges to 1 as α tends to infinity.

2. The iterations of T_{α}

This section contains main results of the paper, which characterize $f \in L^{\infty}(B_n)$ on which $\lim_{k\to\infty} T_{\alpha}^k f$ exists. Previously, in Corollary 2.2 of [7], the author showed that there exists $f \in L^{\infty}(B_n)$ for which $\lim_{k \to \infty} T_{\alpha}^k f$ does not exist pointwise. For such f, it is quite easy to see that $\lim_{k\to\infty} T_\alpha^k f$ does not exist in $L^\infty(B_n)$ either. The proof of the following lemma is almost identical to that of Corollary 2.2 of [7].

LEMMA 2.1. There exists $f \in L^{\infty}(B_n)$ for which $\lim_{k\to\infty} T_{\alpha}^k f$ does not exist in $L^{\infty}(B_n)$.

Proof. Assume that $\lim T_\alpha^k \ell$ exists for every $\ell \in L^\infty(B_n)$. Since T_α is self-adjoint on $L^1(\tau)$ in the sense that

(2.1)
$$
\int_{B_n} (T_{\alpha}g) \cdot \ell \ d\tau = \int_{B_n} g \cdot (T_{\alpha}\ell) \ d\tau
$$

for every $g \in L^1(\tau)$. Now choose any radial function $g \in L^1_R(\tau)$ with $\int_{B_n} g d\tau \neq 0$ then

$$
\lim_{k \to \infty} \int_{B_n} (T_\alpha^k g) \ell \, d\tau = \lim_{k \to \infty} \int_{B_n} g (T_\alpha^k \ell) \, d\tau
$$

exists for every $\ell \in L^{\infty}(B_n)$. This means $\{T_{\alpha}^k g\}$ converges weakly. Therefore, by Proposition 2.1 of [7], we have

$$
\lim_{k \to \infty} ||T_{\alpha}^k g||_{L^1(\tau)} = 0.
$$

On the other hand, by Proposition 3.2 of [6], we also have

(2.2)
$$
\lim_{k \to \infty} ||T_{\alpha}^k g||_{L^1(\tau)} = \left| \int_{B_n} g \ d\tau \right| \neq 0,
$$

which is a contradiction.

The next lemma extends Lemma 2.1 of [5] to the whole $L^{\infty}(B_n)$, and plays a key role in the proof of the main theorem.

LEMMA 2.2. $\lim_{k\to\infty} ||T_{\alpha}^k(I-T_{\alpha})|| = 0$ on $L^{\infty}(B_n)$.

Proof. The Lemma 2.1 of [5] states that

(2.3)
$$
\lim_{k \to \infty} ||T_{\alpha}^{k}(I - T_{\alpha})|| = 0 \text{ on } L_R^1(\tau).
$$

Since $L_R^{\infty}(B_n)$ is a dual space of $L_R^1(\tau)$, the spectrum of the self-adjoint operator T_{α} on $L_R^{\infty}(B_n)$ is the same as the spectrum of T_{α} on $L_R^1(B_n, \tau)$. Therefore, we get

(2.4)
$$
\lim_{k \to \infty} ||T_{\alpha}^{k}(I - T_{\alpha})|| = 0 \text{ on } L_{R}^{\infty}(B_{n}).
$$

For that reason, it is enough to show that the spectrum of T_{α} on $L^{\infty}(B_n)$ is the same as the spectrum of T_{α} on $L_R^{\infty}(B_n)$. Let λ be in the spectrum of T_{α} on $L^{\infty}(B_n)$, then there exists a sequence $\{f_k\}$ in $L^{\infty}(B_n)$ with $||f_k||_{\infty} = 1$ for which

$$
\lim_{k \to \infty} \| T_{\alpha} f_k - \lambda f_k \|_{\infty} = 0.
$$

Let $\phi_k \in \text{Aut}(B_n)$ satisfy $||R(f_k \circ \phi_k)||_{\infty} = 1$ where Rf is the radialization (4.2.1 of [8]) of f. Since T_{α} and R are contractions on $L^{\infty}(B_n)$,

$$
\| T_{\alpha} (R(f_k \circ \phi_k)) - \lambda R(f_k \circ \phi_k) \|_{\infty} = \| R(T_{\alpha}(f_k \circ \phi_k)) - R(\lambda f_k \circ \phi_k) \|_{\infty}
$$

\n
$$
\leq \| T_{\alpha}(f_k \circ \phi_k) - \lambda f_k \circ \phi_k \|_{\infty}
$$

\n
$$
= \| (T_{\alpha} f_k) \circ \phi_k - \lambda f_k \circ \phi_k \|_{\infty}
$$

\n
$$
= \| T_{\alpha} f_k - \lambda f_k \|_{\infty} \to 0 \text{ as } k \to \infty
$$

Hence λ is in the spectrum of T_{α} on $L_R^{\infty}(B_n)$. Therefore the spectrum of T_{α} on $L^{\infty}(B_n)$ is the same as the spectrum of T_{α} on $L_R^{\infty}(B_n)$ so that by (2.4) we have

(2.5)
$$
\lim_{k \to \infty} ||T_{\alpha}^{k}(I - T_{\alpha})|| = 0 \text{ on } L^{\infty}(B_n).
$$

This completes the proof.

 \Box

 \Box

308 Jaesung Lee

Next theorem is the main result of the paper.

THEOREM 2.3. Let $f \in L^{\infty}(B_n)$. If $\lim_{k\to\infty} T_{\alpha}^k f$ exists, then there exist unique M-harmonic function g and $h \in (I - T_{\alpha})L^{\infty}(B_n)$ such that $f = g + h$.

Proof. If $f \in L^{\infty}(B_n)$ and $\lim_{k \to \infty} T_{\alpha}^k f$ exists, then there is $g \in L^{\infty}(B_n)$ such that $\lim_{k \to \infty} ||T_{\alpha}^k f - g||_{\infty} = 0.$

Hence we have

$$
g(z) = \lim_{k \to \infty} (T_{\alpha}^k f)(z) \quad \text{for } z \in B_n.
$$

By by the Dominated Convergence Theorem, we have

$$
T_{\alpha}g = T_{\alpha}(\lim_{k \to \infty} T_{\alpha}^k f) = \lim_{k \to \infty} T_{\alpha}^{k+1} f = g.
$$

Which means that $g \in L^{\infty}(B_n)$ satisfies $T_{\alpha}g = g$. Therefore, g is *M*-harmonic. Define $h = f - g$ so that $f = g + h$. And then we will show that

(2.6)
$$
h \in \overline{(I - T_{\alpha})L^{\infty}(B_n)}.
$$

Let $F \in L^{\infty}(B_n)^*$ satisfy $F(\ell - T_{\alpha}\ell) = 0$ for all $\ell \in L^{\infty}(B_n)$. If we denote

$$
[F, \ell] = F(\ell)
$$

then we get

$$
0 = F(\ell - T_{\alpha}\ell) = [F, \ \ell - T_{\alpha}\ell] = [F - T_{\alpha}^*F, \ \ell]
$$

for all $\ell \in L^{\infty}(B_n)$. Thus, we have $T^*_{\alpha}F = F$. Hence for every $k \geq 0$,

(2.8)
$$
[F, h] = [F, f - g] = [(T_{\alpha}^*)^k F, f - g] = [F, T_{\alpha}^k (f - g)].
$$

Since $\lim_{k\to\infty} ||T_{\alpha}^k f - g||_{\infty} = 0$ and $T_{\alpha}g = g$ we have

$$
\lim_{k \to \infty} ||T_{\alpha}^k(f - g)||_{\infty} = 0.
$$

By taking the limit $k \to \infty$ in (2.8), we get [F, h] = 0.

So far we showed that every bounded linear functional on $L^{\infty}(B_n)$ that vanishes on

 $(I - T_{\alpha})L^{\infty}(B_n)$ also vanishes at h. Hence by the Hahn-Banach theorem, we conclude $h \in \overline{(I-T_\alpha)L^\infty(B_n)}$.

Thus, it remains to prove the uniqueness of such decomposition $f = g + h$.

Suppose $f = g_1 + h_1 = g_2 + h_2$ where g_1, g_2 are *M*-harmonic and $h_1, h_2 \in$ $(I - T_{\alpha})L^{\infty}(B_n)$. Since

(2.9)
$$
g_1 - g_2 = h_2 - h_1 \in \overline{(I - T_\alpha)L^\infty(B_n)},
$$

 $g_1 - g_2$ is an M-harmonic function which belongs to $\overline{(I - T_\alpha)L^\infty(B_n)}$. By Lemma 2.2, we have

(2.10)
$$
\lim_{k \to \infty} ||T_{\alpha}^{k}(I - T_{\alpha})|| = 0 \text{ on } L^{\infty}(B_n).
$$

Therefore

$$
\lim_{k \to \infty} ||T_{\alpha}^k (g_1 - g_2)||_{\infty} = 0.
$$

However, since $g_1 - g_2$ is M-harmonic, we get $T^k_\alpha(g_1 - g_2) = g_1 - g_2$ for every $k \geq 0$. So that we have

$$
||g_1 - g_2||_{\infty} = 0.
$$

Therefore, we get

(2.11) $q_1 - q_2 = h_2 - h_1 = 0.$

And this completes the proof of the theorem.

3. The iterations of T_{α}

This section investigates the limit of the nrom of T_{α} on $L^1(B_n, \nu)$. Naturally T_{α} is an operator on $L^1(B_n,\nu_\alpha)$. However, T_α also can be an operator on $L^1(B_n,\nu)$. Even though we could find the norm of T_{α} on $L^1(B_n, \nu)$ as a closed form, we can show that T_{α} is bounded on $L^1(B_n, \nu)$ and its norm converges to 1 as α tends to infinity.

PROPOSITION 3.1. If $\alpha > 0$ then T_{α} is bounded on $L^1(B_n, \nu)$ and $\lim_{\alpha \to \infty} ||T_{\alpha}|| = 1$.

Proof. If we put $f \equiv 1$ then $T_{\alpha}f = f$ and $||f||_{L^{1}(\nu)} = 1$. Hence we have

(3.1) kTαk ≥ 1.

On the other hand, since

$$
(3.2) \qquad (T_{\alpha}f)(z) = \frac{\Gamma(n+\alpha+1)}{n!\Gamma(\alpha+1)} \int_{B_n} f(w) \, \frac{(1-|z|^2)^{n+1+\alpha}(1-|w|^2)^{\alpha}}{|1-\langle z,w\rangle|^{2n+2+2\alpha}} \, d\nu(w),
$$

the norm of T_{α} on $L^1(B_n, \nu)$ is

$$
||T_{\alpha}|| = \sup_{||f||_{L^{1}(\nu)}=1} ||T_{\alpha}f||_{L^{1}(\nu)}
$$

=
$$
\sup_{w \in B_n} \frac{\Gamma(n+\alpha+1)}{n!\Gamma(\alpha+1)} (1-|w|^2)^{\alpha} \int_{B_n} \frac{(1-|z|^2)^{n+1+\alpha}}{|1-\langle z,w \rangle|^{2n+2+\alpha}} d\nu(z).
$$

To calculate the integral by using the polar coordinate we have

$$
\int_{B_n} \frac{(1-|z|^2)^{n+1+\alpha}}{|1-\langle z,w\rangle|^{2n+2+2\alpha}} \, d\nu(z) = 2n \int_0^1 (1-r^2)^{n+1+\alpha} \int_S \frac{1}{|1-\langle r\zeta,w\rangle|^{2n+2+2\alpha}} \, d\sigma(\zeta) r^{2n-1} dr,
$$

where S is the unit sphere of \mathbb{C}^n and σ is the rotation-invariant positive Borel measure normalized to be $\sigma(S) = 1$. Using the binomial formula for $|x| < 1$ and $\lambda > 0$

$$
\frac{1}{(1-x)^{\lambda}} = \sum_{k=0}^{\infty} \frac{\Gamma(k+\lambda)}{k!\Gamma(\lambda)} x^{k},
$$

the above inner integral is

$$
\int_{S} \frac{1}{|1 - \langle rw, \zeta \rangle|^{2n+2+2\alpha}} d\sigma(\zeta) = \int_{S} \left| \sum_{k=0}^{\infty} \frac{\Gamma(k+n+1+\alpha)}{k!\Gamma(n+1+\alpha)} \langle rw, \zeta \rangle^{k} \right|^{2} d\sigma(\zeta)
$$

$$
= \sum_{k=0}^{\infty} \left| \frac{\Gamma(k+n+1+\alpha)}{k!\Gamma(n+1+\alpha)} \right|^{2} \int_{S} \left| \langle rw, \zeta \rangle^{k} \right|^{2} d\sigma(\zeta)
$$

$$
= \frac{\Gamma(n)}{\Gamma^{2}(n+\alpha+1)} \sum_{k=0}^{\infty} \frac{\Gamma^{2}(n+\alpha+1+k)|rw|^{2k}}{\Gamma(k+1)\Gamma(n+k)}.
$$

 \Box

310 Jaesung Lee

We insert the above series into inner integral of the polar coordinate and integrate term by term to obtain

$$
\int_{B_n} \frac{(1-|z|^2)^{n+1+\alpha}}{|1-\langle z,w\rangle|^{2n+2+2\alpha}} d\nu(z) = \frac{\Gamma(n+1)\Gamma(n+\alpha+2)}{\Gamma^2(n+\alpha+1)} \sum_{k=0}^{\infty} \frac{\Gamma^2(n+\alpha+1+k)|w|^{2k}}{\Gamma(k+1)\Gamma(2n+2+\alpha+k)}.
$$

Now using a well known inequality $\Gamma^2(a+b) \leq \Gamma(a)\Gamma(a+2b)$ for $a, b > 0$, we have

$$
\Gamma^{2}(n+\alpha+1+k) \leq \Gamma(k+\alpha)\Gamma(2n+2+k+\alpha).
$$

So that

$$
\sum_{k=0}^{\infty} \frac{\Gamma^2(n+\alpha+1+k)|w|^{2k}}{\Gamma(k+1)\Gamma(2n+2+\alpha+k)} \leq \sum_{k=0}^{\infty} \frac{\Gamma(k+\alpha)|w|^{2k}}{\Gamma(k+1)}.
$$

Therefore, we have

$$
||T_{\alpha}|| = \sup_{w \in B_n} \frac{\Gamma(n+\alpha+1)}{n!\Gamma(\alpha+1)} (1-|w|^2)^{\alpha} \int_{B_n} \frac{(1-|z|^2)^{n+1+\alpha}}{|1-\langle z,w \rangle|^{2n+2+2\alpha}} d\nu(z)
$$

\n
$$
\leq \sup_{w \in B_n} \frac{\Gamma(n+\alpha+1)}{n!\Gamma(\alpha+1)} (1-|w|^2)^{\alpha} \frac{\Gamma(n+1)\Gamma(n+\alpha+2)}{\Gamma^2(n+\alpha+1)} \sum_{k=0}^{\infty} \frac{\Gamma(k+\alpha) |w|^{2k}}{\Gamma(k+1)}
$$

\n
$$
= \sup_{w \in B_n} \frac{n+\alpha+1}{\alpha} (1-|w|^2)^{\alpha} \sum_{k=0}^{\infty} \frac{\Gamma(k+\alpha) |w|^{2k}}{\Gamma(\alpha)\Gamma(k+1)}
$$

\n
$$
= \frac{n+\alpha+1}{\alpha},
$$

where the last equality comes from

$$
\sum_{k=0}^{\infty} \frac{\Gamma(k+\alpha) |w|^{2k}}{\Gamma(\alpha)\Gamma(k+1)} = \frac{1}{(1-|w|^2)^{\alpha}}.
$$

Combining this with (3.1), we get

$$
1\leq \|T_\alpha\|\leq \frac{n+\alpha+1}{\alpha}
$$

on $L^1(B_n, \nu)$. By taking $\alpha \to \infty$ we complete the proof.

 \Box

References

- [1] P. Ahern, M. Flores and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (2) (1993), 380–397.
- [2] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. 77 (2) (1963), 335–386.
- [3] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313–328,
- [4] J. Lee., Weighted Berezin transform in the polydisc, J. Math. Anal. Appl. 338 (2) (2008), 1489—1493.
- [5] J. Lee, A Characterization of M-harmonicity, Bull. Korean Math. Soc. 47 (2010), 113–119.
- [6] J. Lee, Iterates of weighted Berezin transform under invariant measure in the unit ball, Korean J. Math. 28 (3) (2020), 449–457.
- [7] J. Lee, More properties of weighted Berezin transform in the unit ball of \mathbb{C}^n , Korean J. Math. 30 (3) (2022), 459–465.
- [8] W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer-Verlag, New York Inc., 1980.

Jaesung Lee

Department of Mathematics, Sogang University, Seoul, Korea $E\text{-}mail:$ jalee@sogang.ac.kr