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A STUDY OF GENERALIZED ADAMS-MOULTON

METHOD FOR THE SATELLITE ORBIT

DETERMINATION PROBLEM

Bum Il Hong† and Nahmwoo Hahm∗

Abstract. In this paper, a generalized Adams-Moulton method
that is a m-step method derived by using the Taylor’s series is pro-
posed to solve the satellite orbit determination problem. We show
that our proposed method has produced much smaller error than the
original Adams-Moulton method. Finally, the accuracy performance
is demonstrated in the satellite orbit correction problem by giving a
numerical example.

1. Introduction

Because a strongly stable multistep method in terms of round-off er-
rors produces a relatively accurate approximation solution, the Adams-
Bashforth-Moulton predictor-corrector method that is strongly stable is
effectively used in many packages [1, 4]. In addition, since the multi-
step integrator needs relatively small number of function values [5], a
multistep method for the orbit prediction and correction determination
problem is preferable to a single step method. In [3], Hahm and Hong
suggested a generalized Adams-Bashforth method that is explicit for the
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satellite orbit determination problem. In this paper, we propose a gen-
eralized Adams-Moulton method for the same problem and our method
is implicit.

Note that the original Adams-Moulton method is of the form

(1.1) yi+1 = yi + h

m−1∑
l=−1

blf(ti−l, yi−l)

where b−1, b0, . . . , bm−1 are constants to be determined. In this paper,
by utilizing the Taylor’s series, we formulate the generalized Adams-
Moulton method associated with error control parameters

(1.2) yi+1 =
m−1∑
k=0

akyi−k + h
m−1∑
l=−1

blf(ti−l, yi−l)

where {a0, a1, . . . , am−1} and {b−1, b0, . . . , bm−1} are constants to be de-
termined. Then this method becomes a special case of the general mul-
tistep method and is only the method that can produce smaller local
truncation error than the original Adams-Moulton method even if there
are infinitely many strongly stable multistep methods.

For the comparison purposes, the two body problem of the Earth’s
satellite is integrated numerically. The two body problem is considered
since it has an exact solution that can be used in the error quantifica-
tion. The satellite for the numerical integration is a Geoscience Laser
Altimeter System type low-altitude satellite [2].

2. Preliminaries

Let the first-order initial-value problem be of the form

(2.1) y′ = f(t, y); a ≤ t ≤ b, y(a) = y0.

Suppose that h = b−a
N
, ti = a+ ih for i = 0, 1, . . . , N, and that yi is

the approximation to y(ti) for each i = 0, 1, . . . ,m−1. Then the original
m-step Adams-Moulton (AM) method is represented by

(2.2) yi+1 = yi + h
m−1∑
l=−1

blf(ti−l, yi−l)
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for i = m− 1,m, . . . , N − 1, where b−1, b0, . . . , bm−1 are constants satis-
fying the property

(2.3) 1 =
m−1∑
l=−1

bl.

Moreover, this method is implicit since yi+1 occurs on both sides of (2.2).
Note that the Taylor’s series for yi+1 is given by

(2.4) yi+1 = yi +
∞∑
j=1

Di,jh
j

where

(2.5) Di,j =
1

j!

djy

dtj
(ti) .

In other word, Di,j is an operator representing the j-th derivative of y at
ti divided by j!. Therefore, we can easily show that the Taylor’s series
for yi−k is

(2.6) yi−k = yi +
∞∑
j=1

(−k)jDi,jh
j

since ti−k = ti−kh. As a result, if we use the Taylor’s series of yi−k (2.6)
for i = m−1,m, . . . , N−1, then we have the implicit m-step generalized
Adams-Moulton (GAM) method for solving the problem (2.1) given by
the difference equation

(2.7) yi+1 =
m−1∑
k=0

akyi−k + h

m−1∑
l=−1

blf(ti−l, yi−l)

where {a0, a1, . . . , am−1} and {b−1, b0, . . . , bm−1} are constants to be de-
termined.

Remark 2.1. In practice, each ak should be constrained to provide
the method with the roundoff stability. It is well known that the roots
of the characteristic equation

(2.8) λm − a0λm−1 − a1λm−2 − · · · − am−1 = 0

must satisfy the root conditions to be a strongly stable method:

Criterion 1 λ = 1 is a simple root and is the only root of magnitude
one.
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Criterion 2 All roots except λ = 1 have absolute value less than 1.

For all roots λ, |λ| < 1 except λ = 1.

Remark 2.2. If we set a0 = 1 and a1 = · · · = am−1 = 0 in the GAM
method (2.7), then we simply obtain the original AM method (2.2).

3. Main results

In this subsection, the generalized Adams-Moulton method that is a
multistep method is derived by utilizing the Taylor’s series. The coef-
ficient matrix and the error vector of the generalized Adams-Moulton
method are formulated. Strongly stable multistep methods can be ob-
tained by choosing appropriate values of parameters associated with the
local truncation error. The formula for the local truncation error gives
an idea how to choose such values, however, it might not meet with
good results because of the accumulative errors. It is known that those
parameters should be non-negative.

3.1. The local truncation error of the GAM Method. In this
subsection, we actually compute the local truncation error τi+1(h) at
each step of the m-step GAM method which is smaller than that of the
original m-step AM method.

Theorem 3.1. For i = m−1,m, . . . , N−1, the local truncation error
τi+1(h) for the GAM method (2.7) is

τi+1(h) =

{
1−

m−1∑
k=0

(−k)m+2ak −
m−1∑
l=−1

(m+ 2)(−l)m+1bl

}
Di,m+2h

m+1.

(3.1)

Remark 3.2. If we apply Criterion 1 to (2.8), then we can obtain a0
by the equation

a0 = 1−
m−1∑
k=1

ak.(3.2)

During the proof of Theorem 3.1, we will show that each bl can be
expressed as a linear combination of {a0, a1, . . . , am−1}. However, due to
(3.2), it is sufficient to determine {a1, . . . , am−1} only.
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Proof. To compute the local truncation error τi+1(h), let us apply the
Taylor’s series expansion to the equation f = y′ by considering that f is
a function of t. Then the equation f = y′ is in the following form

(3.3) f(ti−l, yi−l) =
∞∑
j=1

j(−l)j−1Di,jh
j−1.

Substituting (2.4), (2.6) and (3.3) into (2.7) and equating coefficients
of the same powers of h give the system of equations,

(3.4) 1 =
m−1∑
k=0

(−k)jak +
m−1∑
l=−1

j(−l)j−1bl for j = 1, 2, . . . ,m+ 1.

Therefore, a simple calculation gives that the local truncation error
τi+1(h) at this step is

τi+1(h) =
(
yi+1 −

m−1∑
k=0

akyi−k
)
/h−

m−1∑
l=0

blf(ti−l, yi−l)

=

{
1−

m−1∑
k=0

(−k)m+2ak −
m−1∑
l=−1

(m+ 2)(−l)m+1bl

}
Di,m+2h

m+1.

(3.5)

Remark 3.3. From the equation (3.4), we have two things mentioned
earlier. One is that, if we put j = 1 in the equation (3.4), then

(3.6) 1 =
m−1∑
l=−1

bl −
m−1∑
k=1

kak.

Therefore, since a0 = 1 and a1 = · · · = am−1 = 0 in the AM method, we
have

1 =
m−1∑
l=−1

bl

as shown in the equation (2.3). The other is that each bl in the equation
(3.4) is expressed in the linear combination of {a1, . . . , am−1} only as
mentioned in Remark 3.2.
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3.2. The vector and matrix form of the GAM Method. In this
subsection, we use vectors and matrices to represent the GAM method
for a convenient computer computation. That is, we theoretically com-
pute the coefficient matrix C̃ and the error vector ẽ of the GAM method.

First, we rewrite the system of equations in (3.4) as a vector-matrix
form. For the first sum

(3.7)
m−1∑
k=0

(−k)jak for j = 1, 2, . . . ,m+ 1

of the equation (3.4), we let A be an (m + 1)×m coefficient matrix of
(3.7) such that

(3.8) A =

(k+1)-th
...

· · · −(−k)j · · ·
...

j-th
for j = 1, 2, . . . ,m + 1 and k = 0, 1, . . . ,m − 1. Note that the first
column of A is associated with the constant a0 in (3.7). Therefore, we
can easily see that the first column of A becomes a zero vector because
(−k)jak = 0 when k = 0.

Similarly, we define an (m+ 1)× (m+ 1) coefficient matrix B of the
second sum

(3.9)
m−1∑
l=−1

j(−l)j−1bl for j = 1, 2, . . . ,m+ 1

by

(3.10) B =

(l+2)-th
...

· · · j(−l)j−1 · · ·
...

j-th
for j = 1, 2, . . . ,m+ 1 and l = −1, 0, . . . ,m− 1. But only in the case of
j = 1 and l = 0, we set B12 = 1.
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Also, let ã be an m-dimensional column vector and let b and 1 be
(m+ 1)-dimensional vectors such that

(3.11) ã =


1
a1
...

am−1

 , b =


b−1
b0
b1
...

bm−1

 and 1 =


1
1
1
...
1

 .
Then the system of equations (3.4) is reduced to a vector-matrix form

(3.12) 1 = −Aã + Bb.

From the equation (3.12), we end up with

(3.13) Bb = 1 + Aã.

We now define a new matrix Ã by replacing the first column of the
matrix A that is zero vector by a column vector 1. Then the new matrix
Ã is of the form

(3.14) Ã =
[
1
∣∣∣Aj,k+1

]
for j = 1, 2, . . . ,m+ 1; k = 1, . . . ,m− 1.

As we can see that the matrix Ã is the same as the matrix A except
for the first column. Therefore we have

(3.15) Ãã = 1 + Aã.

From (3.13) and (3.15), we have

(3.16) Bb = Ãã.

Let

C̃ = B−1Ã.(3.17)

Then, by (3.16) and (3.17), b can be expressed in a simple form

b = C̃ã.(3.18)

So, equation (3.18) shows that bl for each l = 1, 2, . . . ,m + 1 is a linear
combination of {a1, . . . , am−1}.

If we set

b0 = B−11 and C = B−1A,(3.19)



278 Bum Il Hong† and Nahmwoo Hahm∗

then, similar to Ã, the matrix C̃ is the same as the matrix C except for
the first column. In fact, the first column of C̃ is b0 so that C̃ can be
expressed as

(3.20) C̃ =
[
b0

∣∣∣Cj,k+1

]
for j = 1, 2, . . . ,m+ 1; k = 1, . . . ,m− 1.

Now, combining (3.15), (3.18) and (3.19) gives that b can be expressed
in an additional form

(3.21) b = b0 + Cã.

Note that since the AM method has

(3.22) ãT =
[
1 0 · · · 0

]
,

equation (3.21) becomes b = b0 as expected and 1Tb0 = 1TB−11 =∑m−1
l=−1 bl = 1 as shown in (2.3). Moreover, if we compare (3.6) to (3.21),

an easy computation shows that

(3.23) 1TC =
[
0 1 · · · m− 1

]
.

3.3. Error Analysis. In this paper, we theoretically find ã that pro-
vides a smaller local truncation error τi+1(h) in (3.5)of the GAM method
than that of the AM method.

For simplicity, let define ε by

ε = 1−
m−1∑
k=0

(−k)m+2ak −
m−1∑
l=−1

(m+ 2)(−l)m+1bl.(3.24)

Then local truncation error τi+1(h) in (3.5) is

τi+1(h) = εDi,m+2h
m+1.(3.25)

We now express ε in the equation (3.24) in terms of vectors and ma-
trices. If we define an m-dimensional column vector c and an m + 1-
dimensional column vector d by

(3.26) c =


...

−(−k)m+2

...

(k + 1)-th and d =


...

−(m+ 2)(−l)m+1

...

(l + 2)-th
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for k = 0, 1, . . . ,m − 1 and l = −1, 0, . . . ,m − 1, then by (3.21) and
(3.26), ε in (3.24) becomes

ε = 1 + dTb + cT ã(3.27)

= 1 + dTb0 + (dTC + cT )ã(3.28)

= εo + eT ã(3.29)

where εo = 1 + dTb0 and eT = dTC + cT .

Note that the first entry of e is zero. Therefore if we replace the first
entry of e by εo, we get a new column vector ẽ such that

(3.30) ẽT =
[
εo

∣∣∣ eT
k+1

]
for k = 1, 2, . . . ,m− 1.

As a result, this makes us have a compact form of ε

(3.31) ε = ẽT ã.

Since eT ã = 0 in the AM method, it is easy to see that the local
truncation error of the AM method is as follows,

(3.32) ε = εo and τi+1(h) = εoDi,m+2h
m+1.

3.4. Numerical values of coefficient matrix C̃ and the error vec-
tor ẽ. In this subsection, we provide numerical values of the coefficient
matrix C̃ and the error vector ẽ of the GAM method through the C
program for the numerical computation. As we can see in Subsections
3.2 and 3.3, the first column of C̃ and the first entry of ẽ represent the
AM method.

The followings are numerical values of the coefficient matrix C̃ and
the error vector ẽ of the GAM method. Because the error has been
accumulated during the numerical computation, all numerical values of
ẽ below, except the first entry, are not non-negative always. But 2, 4
and 6-step methods do have non-negative values except the first entry.

2-step method:

(3.33) C̃ =
1

12

 5 −1
8 8
−1 5

 and ẽT/4! =
1

24

[
−1 1

]
.
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3-step method:

(3.34) C̃ =
1

24


9 −1 0
19 13 8
−5 13 32
1 −1 8

 and ẽT/5! =
1

720

[
−19 11 −8

]
.

4-step method:

C̃ =
1

720


251 −19 −8 −27
646 346 272 378
−264 456 912 648
106 −74 272 918
−19 11 −8 243

 ,

and ẽT/6! =
1

1440

[
−27 11 0 27

]
.

(3.35)

5-step method:

C̃ =
1

1440


475 −27 −16 −27 0
1427 637 544 621 448
−798 1022 1824 1566 2048
482 −258 544 1566 768
−173 77 −16 621 2048

27 −11 0 −27 448

 ,

and ẽT/7! =
1

60480

[
−863 271 80 351 −512

]
.

(3.36)

6-step method:

C̃ =
1

60480



19087 −863 −592 −783 −512 −1375
65112 25128 22368 23976 21888 28200
−46461 46989 77808 71037 78336 58125
37504 −16256 21248 58752 42496 80000
−20211 7299 528 31347 78336 31875

6312 −2088 −480 −3240 21888 87000
−863 271 80 351 −512 18575


,

ẽT/8! =
1

120960

[
−1375 351 160 351 110 1375

]
.

(3.37)
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4. Numerical result

Since the two body problem of the Earth’s satellite has an exact
solution, we choose it as a numerical example for the error quantification
of the GAM method. Also, this numerical integration is a Geoscience
Laser Altimeter System type low-altitude satellite [2]. We consider the
case that our satellite problem has a low altitude about 800 km.

The equation of a satellite orbit prediction problem is given by

(4.1)

[
ṙ
v̇

]
=

[
v

−(µ/r3)r

]
where r and v are position and velocity vectors, respectively; µ is a grav-
itational constant and r is the magnitude of r with the initial condition

(4.2) r0 =

7082414.740
3.957
−56.618

 and v0 =

 −9.567
−1039.545
7485.424

 .
In practice, low-step methods give relatively low accuracy, we apply the
6-step method to this example.

As shown in (3.37), all entries of ẽ are non-negative except for the
first element. Therefore, the error of the GAM method should be less
than or equal to the error of the AM method in each case of

(4.3) ã1 =


1
a1
0
0
0
0

 , ã2 =


1
0
a2
0
0
0

 , ã3 =


1
0
0
a3
0
0

 , ã4 =


1
0
0
0
a4
0

 , ã5 =


1
0
0
0
0
a5


for ak ≥ 0; k = 1, 2, . . . , 5. Figure 1 shows the results of these when

the ak is increased by 0.1 from 0 to 1. The error is represented by
the positional root mean squares (rms). As the ak approaches to 1, it
becomes unstable because of the Criterion 2. Since the unstable method
is not necessary, unstable cases are omitted in the figure.

In fact, ã5 reduces the error significantly. Since the error has been
accumulated by its nature, this contradictable behavior can be explained
in a way that the approximate solution yi−5 contains less error than
yi−4, yi−3, . . . , yi. For the same reason, it is shown that ã5 reduces the
error much less than ã1, ã2, ã3 and ã4.
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Figure 1. GAM Method for Satellite Orbit Prediction Problem

Among all cases of (4.3), the minimum error occurs when a5 = 0.9 in
ã5. Moreover, we tried the following cases to find the better approxima-
tion: ãT

1,5 =
[
1 a1 0 0 0 0.9

]
, ãT

2,5 =
[
1 0 a2 0 0 0.9

]
, ãT

3,5 =[
1 0 0 a3 0 0.9

]
and ãT

4,5 =
[
1 0 0 0 a4 0.9

]
, and found that

ãi,5 for i = 1, 2, 3 are very unstable while ã4,5 provides a smaller error as
shown as the lowest curve in the figure. Consequently, a better empirical
values for ã is

Better 6-step GAM method (empirical): ãT =
[
1 0 0 0 0.9 0.9

]
.
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