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APPROXIMATE BEST PROXIMITY PAIR RESULTS ON METRIC

SPACES USING CONTRACTION OPERATORS

R. Theivaraman∗,†, P. S. Srinivasan, and A. Herminau Jothy

Abstract. The aim of this paper is to prove some new approximate best proximity
pair theorems on metric spaces using contraction mappings such as P -Bianchini
contraction, P −B contraction and so on. A few examples are provided to exemplify
our findings. Finally, we discuss some applications that are related to the main
results.

1. Introduction

Best proximity point theory and fixed point theory are now crucial in many
mathematics-related fields and its applications, notably in economics, astronomy, dy-
namical systems, decision theory, and parameter estimation. In 1922 [2], Banach
proposed the Banach fixed point results. After that, various authors extended these
principle and gave many results using contractive mappings on metric spaces (re-
fer, [8], [9], [15], [19], [20], [21], [30] & [37]). In addition to that, many researchers
found new approximate fixed point theorems on metric spaces that do not require
completeness in both contractive and rational contractive operators (refer, [4], [5], [6],
[10], [11], [18], [27] & [32]). On the other hand, the best proximity point theory also
has the same importance as fixed point theory. In the absence of exact proximity
points, approximate best proximity points may be used because the best proximity
point results have overly strict limitations. There seem to be numerous problems in
applied mathematics that can be handled using the concept of best proximity pair
theory. Nonetheless, experience demonstrates that for many instances, an approxi-
mate computation is more than acceptable; hence, having the best proximity pair is
not always necessary, but having an almost-best proximity pair is essential. Another
type of growing challenge that leads to this approximate occurs when the require-
ments that must be enforced to ensure the presence of the best proximity pairings for
the major challenge at hand are much more stringent. In [24], the authors achieved
some results on the optimum proximity pairs. In the same way, the authors Antony
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Eldred. A. et al [12], proved many results on proximity pairs. One can also refer
to many results, which is also recent, about proximity point of the pairs and their
theorems in [1], [3], [13], [14], [16], [17], [23], [29], [31], [33], [34], [35], [36]. Addition-
ally, B-contraction and Bianchini contraction definitions are located in [7] & [25], and
using these, we define P −B contraction and P -Bianchini contraction.

This manuscript is laid out as follows: In Section 2, we recall the basics from
the previous literature. In Section 3, we present the main results, which include the
approximate best proximity pairs in contraction operators such as P −B contraction,
P -Bianchini contraction and so on. Also, we discuss diameter of an approximate best
proximity point for the pair (W,V ) by using various operators based on the results
of [26] and [28]. In Section 4, we provide some applications of our main results in the
field of applied mathematics. Finally, in Section 5, we reach a conclusion.

2. Preliminaries

In this section, some definitions and lemmas from earlier research are recalled.
These are then employed throughout the remainder of the main findings of this man-
uscript.

Definition 2.1. [26], [28] Let W and V be two nonempty subsets of a metric space
M and B : W∪V → W∪V such that B(W ) ⊆ V and B(V ) ⊆ W . Then w is said to be
an approximate best proximity point of the pair (W,V ), if db(w,Bw) ≤ db(W,V ) + ε.

Remark 2.2. [26], [28] Let PBε(W,V ) = {w ∈ (W,V ) : db(w,Bw) < db(W,V ) +
ε, for some, ε > 0} be denotes the set of all approximate best proximity pairs of pair
(W,V ) for a given ε > 0. Also the pair (W,V ) is said to be an approximate best
proximity pair property if db(w,Bw) ≤ db(W,V ) 6= 0.

Example 2.3. Let us take M = R2 and W = {(w, v) ∈ M : (w − v)2 + v2 ≤ 1}
and V = {(−w, v) ∈ M : (w + v)2 + v2 ≤ 1} with B(w, v) = (−w, v) for (w, v) ∈ M .
Then db(w, v), B(w, v) ≤ db(W,V ) + ε, for some ε > 0. Hence PBε(W,V ) 6= ∅.

Theorem 2.4. [26], [28] Let W and V be two nonempty subsets of a metric space
M . Suppose that the mapping B : W ∪ V → W ∪ V satisfying B(W ) ⊆ V and
B(V ) ⊆ W and limn→∞ db(B

nw,Bn+1w) = db(W,V ), for some w ∈ (W ∪ V ). Then
the pair (W,V ) is called an approximate best proximity pair.

Definition 2.5. [26], [28] Let B : W ∪ V → W ∪ V be a continuous map such
that B(W ) ⊆ V,B(V ) ⊆ W and ε > 0. We define the diameter Dtr(PBε(W,V )), i.e.,
Dtr(PBε(W,V )) = sup{db(w, v) : w, v ∈ PBε(W,V )}.

Theorem 2.6. [26], [28] Let W and V be two non-empty subsets of a metric space
M . Suppose that a mapping B : W ∪ V → W ∪ V satisfying B(W ) ⊆ V,B(V ) ⊆ W
is a P − α contraction and ε > 0. Suppose that:

(i) PBε(W,V ) 6= ∅;
(ii) for every ϕ > 0,∃ψ(ϕ) > 0 such that

db(w, v)− db(Bw,Bv) ≤ ϕ⇒ db(w, v) ≤ ψ(ϕ), for evry w, v ∈ PBε(W,V ) 6= ∅.
Then, Dtr(PBε(W,V )) ≤ ψ(2db(W,V ) + ε).
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Definition 2.7. A mapping B : W ∪ V → W ∪ V satisfying B(W ) ⊆ V and
B(V ) ⊆ W is a P − B contraction operator if there exists b1, b2, b3 ∈ (0, 1) with
b1 + b2 + b3 < 1 such that

db(Bw,Bv) ≤ b1[db(w,Bw) + db(v,Bv)] + b2[db(w, v)]

+ b3[db(w,Bv) + db(v,Bw)], for all w, v ∈ W ∪ V.(1)

Definition 2.8. A mapping B : W ∪ V → W ∪ V satisfying B(W ) ⊆ V and
B(V ) ⊆ W is a P -Bianchini contraction operator if there exists b1 ∈ (0, 1) such that

db(Bw,Bv) ≤ b1Bia(w, v),

where Bia(w, v) = max{db(w,Bw), db(v,Bv)}, for all w, v ∈ W ∪ V.(2)

Definition 2.9. A mapping B : W ∪ V → W ∪ V satisfying B(W ) ⊆ V and
B(V ) ⊆ W is a P - Hardy and Rogers contraction operator if there exists b1, b2, b3, b4, b5 ∈
(0, 1) with b1 + b2 + b3 + b4 + b5 < 1 such that

db(Bw,Bv) ≤ b1db(w, v) + b2db(w,Bw) + b3db(v,Bv)

+ b4db(w,Bv) + b5db(v,Bw), for all w, v ∈ W ∪ V.(3)

3. Main Results

This section is divided into two parts. The first one deals with qualitative results,
and the other one deals with quantitative results; both are related to the approximate
best proximity points for the pairs (V,W ) on metric spaces.

3.1. Qualitative theorems for P-contraction operators: In this subsection, we
prove some qualitative theorems about the approximate best proximity point for the
pair (V,W ) by using contraction operators such as the P − B contraction operator,
the P -Bianchini contraction operator, and the P -Hardy Rogers contraction operator
on a metric space.

Theorem 3.1. Let W and V be two non-empty subsets of a metric space M .
Suppose that a mapping B : W ∪ V → W ∪ V satisfying B(W ) ⊆ V and B(V ) ⊆ W
is a P −B contraction operator then for every ε > 0, PBε(W,V ) 6= ∅.

Proof. Let ε > 0 and w ∈ W ∪ V . Consider,

db(B
nw,Bn+1w) = db(B(Bn−1w), B(Bnw))

≤ b1[db(B
n−1w,Bnw) + db(B

nw,Bn+1w)] + b2[db(B
n−1w,Bnw)]

+ b3[db(B
n−1w,Bn+1w) + db(B

nw,Bnw)][ By equation (1)]

≤ b1db(B
n−1w,Bnw) + b1db(B

nw,Bn+1w) + b2db(B
n−1w,Bnw)

+ b3db(B
n−1w,Bnw) + b3db(B

nw,Bn+1w)

=

(
b1 + b2 + b3
1− b2 − b3

)
db(B

n−1w,Bnw)

= λdb(B
n−1w,Bnw), where λ =

b1 + b2 + b3
1− b2 − b3

.



376 R. Theivaraman, P. S. Sinivasan, and A. Herminau Jothy

But b1, b2 and b3 ∈ (0, 1) implies that λ ∈ (0, 1). Therefore,

lim
n→∞

db(B
nw,Bn+1w) = 0, for all w ∈ W ∪ V.

Hence, by Theorem 2.4, it follows that

PBε(W,V ) 6= ∅, for all ε > 0.

Theorem 3.2. Let W and V be two non-empty subsets of a metric space M .
Suppose that a mapping B : W ∪ V → W ∪ V satisfying B(W ) ⊆ V and B(V ) ⊆ W
is a P -Bianchini contraction operator then for every ε > 0, PBε(W,V ) 6= ∅.

Proof. Let ε > 0 and w ∈ W ∪ V . Consider,

CASE 1. Suppose Bia(w, v) = db(w,Bw). Then the Definition 2.8 becomes

db(Bw,Bv) ≤ b1db(w,Bw)

Substitute v = Bw we get,

db(Bw,B
2w) ≤ b1db(w,Bw)

Again substituting w = Bw implies,

db(B
2w,B3w) ≤ b1db(Bw,B

2w)

≤ (b1)
2db(w,Bw)

Continuing this process we have,

db(B
nw,Bn+1w) ≤ (b1)

ndb(w,Bw)

CASE 2. Suppose Bia(w, v) = db(v,Bv). Then the Definition 2.8 becomes

db(Bw,Bv) ≤ b1db(v,Bv)

Substitute v = Bw we get,

db(Bw,B
2w) ≤ b1db(w,B

2w)

This is impossible because b1 ∈ (0, 1). Therefore, CASE 2 does not exists. Now
using CASE 1 and Theorem 2.4, we have

lim
n→∞

db(B
nw,Bn+1w) = 0, for all w ∈ W ∪ V.

And it follows that
PBε(W,V ) 6= ∅, for all ε > 0.

Corollary 3.3. Let W and V be two non-empty subsets of a metric space M .
Suppose that a mapping B : W ∪ V → W ∪ V satisfying B(W ) ⊆ V and B(V ) ⊆ W
and defined by db(Bw,Bv) ≤ b1db(w,Bw) operator then for every ε > 0, PBε(W,V ) 6=
∅.

Proof. It is a direct consequence of Theorem 3.2.

Theorem 3.4. Let W and V be two non-empty subsets of a metric space M .
Suppose that a mapping B : W ∪ V → W ∪ V satisfying B(W ) ⊆ V and B(V ) ⊆ W
is a P -Hardy Rogers operator then for every ε > 0, PBε(W,V ) 6= ∅.
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Proof. Let ε > 0 and w ∈ W ∪ V . Consider,

db(B
nw,Bn+1w) = db(B(Bn−1w), B(Bnw))

≤ b1db(B
n−1w,Bnw) + b2db(B

n−1w,Bnw) + b3db(B
nw,Bn+1w)

+ b4db(B
n−1w,Bn+1w) + b5db(B

nw,Bnw)[ By equation (3)]

≤ b1db(B
n−1w,Bnw) + b2db(B

n−1w,Bnw) + b3db(B
nw,Bn+1w)

+ b4db(B
n−1w,Bnw) + b4db(B

nw,Bn+1w)

=

(
b1 + b2 + b4
1− b3 − b4

)
db(B

n−1w,Bnw)

= λdb(B
n−1w,Bnw), where λ =

b1 + b2 + b4
1− b3 − b4

.

But b1, b2, b3, b4 and b5 ∈ (0, 1) implies that λ ∈ (0, 1). Therefore,

lim
n→∞

db(B
nw,Bn+1w) = 0, for all w ∈ W ∪ V.

Hence, by Theorem 2.4, it follows that

PBε(W,V ) 6= ∅, for all ε > 0.

Remark 3.5. 1. In Definition 2.7, substitute b2 = α and b1 = b3 = 0, then it
becomes P − α contraction operator and for every ε > 0, PBε(W,V ) 6= ∅.

2. In Definition 2.7, substitute b2 = b3 = 0, then it becomes P -Kannan operator
and for every ε > 0, PBε(W,V ) 6= ∅.

3. In Definition 2.7, substitute b1 = b2 = 0, then it becomes P -Chatterjea operator
and for every ε > 0, PBε(W,V ) 6= ∅.

4. In Definition 2.8, substitute b4 = b5 = 0, then it becomes P -Reich operator and
for every ε > 0, PBε(W,V ) 6= ∅.

5. In Definition 2.8, substitute b4 = b5, then it becomes P -Ciric operator and for
every ε > 0, PBε(W,V ) 6= ∅.

3.2. Quantitative results for P-contraction operators: In this subsection, we
prove some quantitative results of approximate best proximity point of the pairs(V,W )
by using contraction operators such as the P−B contraction operator, the P -Bianchini
contraction operator, and the P -Hardy Rogers contraction operator on a metric space.

Theorem 3.6. Let (M,db) be a metric space and B : W ∪ V → W ∪ V satisfies
the conditions of Theorem 3.1. Then,

Dtr(PBε(W,V )) ≤ 2(b1 + b3)db(W,V ) + 2ε(b1 + b3 + 1)

1− b2 − 2b3
, for all ε > 0.

Proof. Let ε > 0. Also, condition(i) of Theorem 2.6 is proved by using Theorem
3.1. To show, condition (ii) of Theorem 2.6 holds. For that, take ϕ > 0 and w, v ∈
PBε(W,V ). Also db(w, v) − db(Bw,Bv) ≤ ϕ. Then db(w, v) ≤ db(Bw,Bv) + ϕ.
since w, v ∈ PBε(W,V ) implies that db(w,Bw) ≤ db(W,V ) + ε1 and db(v,Bv) ≤
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db(W,V ) + ε2. And choose ε = {ε1, ε2}. Now,

db(w, v) ≤ db(Bw,Bv) + ϕ

≤ b1[db(W,V ) + ε+ db(W,V ) + ε] + b2[db(w, v)]

+ b3[db(w, v) + db(v,Bv) + db(v, w) + db(w,Bw)] + ϕ

= b1[2db(W,V ) + 2ε] + b2db(w, v) + b3[2db(w, v) + 2db(W,V ) + 2ε] + ϕ

=
2(b1 + b3)db(W,V ) + 2ε(b1 + b3) + ϕ

1− b2 − 2b3
= ψ(ϕ)

Thus, for every ϕ > 0, there exists ψ(ϕ) > 0 such that db(w, v) − db(Bw,Bv) ≤ ϕ
implies db(w, v) = ψ(ϕ). Then by Theorem 2.6 ,

Dtr(PBε(W,V )) ≤ ψ(2ε), for all ε > 0.

This means exactly

Dtr(PBε(W,V )) ≤ 2(b1 + b3)db(W,V ) + 2ε(b1 + b3 + 1)

1− b2 − 2b3
, for all ε > 0.

Theorem 3.7. Let (M,db) be a metric space and B : W ∪ V → W ∪ V satisfies
the conditions of Theorem 3.2. Then,

Dtr(PBε(W,V )) ≤ b1db(W,V ) + ε(b1 + 2), for all ε > 0.

Proof. Let ε > 0. Also, condition (i) of Theorem 2.6 is proved by using Theorem
3.2. To show, condition (ii) of Theorem 2.6 holds. For that, take ϕ > 0 and w, v ∈
PBε(W,V ). Also db(w, v) − db(Bw,Bv) ≤ ϕ. Then db(w, v) ≤ db(Bw,Bv) + ϕ.
since w, v ∈ PBε(W,V ) implies that db(w,Bw) ≤ db(W,V ) + ε1 and db(v,Bv) ≤
db(W,V ) + ε2. And choose ε = {ε1, ε2}. Now,

db(w, v) ≤ db(Bw,Bv) + ϕ

≤ b1db(w,Bw) + ϕ

≤ b1(db(W,V ) + ε) + ϕ

= ψ(ϕ)

Thus, for every ϕ > 0, there exists ψ(ϕ) > 0 such that db(w, v) − db(Bw,Bv) ≤ ϕ
implies db(w, v) = ψ(ϕ). Then the Theorem 2.6 gives,

Dtr(PBε(W,V )) ≤ ψ(2ε), for all ε > 0.

This means exactly

Dtr(PBε(W,V )) ≤ b1db(W,V ) + ε(b1 + 2), for all ε > 0.

Theorem 3.8. Let (M,db) be a metric space and B : W ∪ V → W ∪ V satisfies
the conditions of Theorem 3.4. Then,

Dtr(PBε(W,V )) ≤ (1− b1)db(W,V ) + ε(3− b1)
b2 + b3

, for all ε > 0.
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Proof. ε > 0. Also, condition (i) of Theorem 2.6 is proved by using Theorem 3.4. To
show, condition (ii) of Theorem 2.6 holds. For that, take ϕ > 0 and w, v ∈ PBε(W,V ).
Also db(w, v) − db(Bw,Bv) ≤ ϕ. Then db(w, v) ≤ db(Bw,Bv) + ϕ. since w, v ∈
PBε(W,V ) implies that db(w,Bw) ≤ db(W,V ) + ε1 and db(v,Bv) ≤ db(W,V ) + ε2.
And choose ε = {ε1, ε2}. Now,

db(w, v) ≤ db(Bw,Bv) + ϕ

≤ b1db(w, v) + b2[db(W,V ) + ε] + b3[db(W,V ) + ε] + b4db(w, v)

+ b4[db(W,V ) + ε] + b5db(w, v) + b5[db(W,V ) + ε] + ϕ

= (b1 + b4 + b5)db(w, v) + (b2 + b3 + b4 + b5)[db(W,V ) + ε] + ϕ

=
(b2 + b3 + b4 + b5)[db(W,V ) + ε] + ϕ

1− (b1 + b4 + b5)

= ψ(ϕ)

Thus, for every ϕ > 0, there exists ψ(ϕ) > 0 such that db(w, v) − db(Bw,Bv) ≤ ϕ
implies db(w, v) = ψ(ϕ). Then, the Theorem 2.6 gives

Dtr(PBε(W,V )) ≤ ψ(2ε), for all ε > 0.

That is,

Dtr(PBε(W,V )) ≤ (b2 + b3 + b4 + b5)db(W,V ) + ε(b2 + b3 + b4 + b5 + 2)

1− (b1 + b+ 4 + b5)
, for all ε > 0.

This means exactly

Dtr(PBε(W,V )) ≤ (1− b1)db(W,V ) + ε(3− b1)
b2 + b3

, for all ε > 0.

Corollary 3.9. Let (M,db) be a metric space and B : W ∪ V → W ∪ V satisfies
the conditions of Corollary 3.3. Then,

Dtr(PBε(W,V )) ≤ b1db(W,V ) + ε(b1 + 2), for all ε > 0.

Proof. It is a direct consequence of Theorem 3.7.

Remark 3.10. 1. In P − α contraction operator,

Dtr(PBε(W,V )) ≤ 2(ε+ db(W,V ))

b1
, for all ε > 0.

2. In P -Kannan operator, Dtr(PBε(W,V )) ≤ 2ε(1+b1)+2b1db(W,V ), for all ε > 0.

3. In P -Chatterjea operator, Dtr(PBε(W,V )) ≤ 2[ε(1 + b1) + b1db(W,V )]

1− 2b1
, for all ε >

0.

4. In P -Reich operator, Dtr(PBε(W,V )) ≤ (1− b1)(db(W,V )) + (3− b1)ε
1− b1

, for all ε >

0.

5. In P -Ciric operator, Dtr(PBε(W,V )) ≤ (1− b1)db(W,V )) + (3− b1)ε
b2 + b3

, for all ε >

0.
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4. Applications

Approximate best proximity point theory covers a wide range of applications in
mathematics, particularly differential geometry, numerical analysis, and so on. By
reading [22] and the references there in, one can find a variety of applications involv-
ing approximate best proximity point results in the field of mathematics. The two
examples below demonstrate how to apply approximate best proximity point findings
in differential equations.

Example 4.1. Consider z′′(w) = 6z2(w), 0 ≤ w ≤ 1 subect to z(0) = 1
4
, z(1) = 1

9
.

Exact solution is z0(w) = −5w
36

+ 1
4
. Consider a mapping T : [0, 1]→ [0, 1] defined by

T (z) = z +

∫ 1

0

G(w, v)[z′′(v)− φ(v, z(v), z′(v))]dv

=
−5w

36
+

1

4
−
∫ 1

0

G(w, v)φ(v, z(v), z′(v))dv

=
−5w

36
+

1

4
−
∫ 1

0

G(w, v)6z′′(v)dv

Consider,

|T (z1)− T (z2)| = 6

∣∣∣∣−∫ 1

0

G(w, v)z21(v)dv +

∫ 1

0

G(w, v)z22(v)dv

∣∣∣∣
= 6

(∫ 1

0

|G(w, v)|2dv
) 1

2
(∫ 1

0

|z22(v)− z21(v)|2dv
) 1

2

≤ 1

4
√

3

(∫ 1

0

|z22(v)− z21(v)|2dv
) 1

2

< sup
[0,1]

|z1(v)− z2(v)|

Hence, T is a contraction and it has approximate best proximity point.

Example 4.2. Consider z′′(w) = 3v2(w)
2

, 0 ≤ v ≤ 1 subect to z(0) = 4, z(1) = 1.

Exact solution is z(w) = 4
(1+w)2

. Consider a mapping W : [0, 1]→ [0, 1] by

W (z) = w2 +

∫ 1

0

G(v, w)[z′′(w)− φ(w, z(w))]dw(4)

Consider, z′′(v) = 0 which implies

z(v) = c1v + c2(5)

By initial condition we have c2 = 4 and c1 = −3. Then (5) becomes z(v) = −3w1 + 4.

W (z) = −3v + 4 +

∫ 1

0

G(v, w)[z′′(w)− φ(w, z(w))]dw

= −3v + 4 +

∫ 1

0

G(v, w)z′′(w)dw −
∫ 1

0

G(v, w)φ(w, z(w))dw

= −3v + 4 +

∫ 1

0

G(v, w)
3

2
z2(w)dw
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Consider,

|W (z1)−W (z2)| =
∣∣∣∣−∫ 1

0
G(v, w)

3

2
z22(w)dw +

∫ 1

0
G(v, w)

3

2
z22(w)dw

∣∣∣∣
=

3

2

∣∣∣∣∫ 1

0
G(v, w)[z22(w)− z21(w)]dw

∣∣∣∣
≤ 3

2

(∫ 1

0
|G(v, w)|2dw

) 1
2
[∫ 1

0
|z22(w)− z21(w)|2dw

] 1
2

≤ 3

2

(∫ w

0
w2(1− v)2dv +

∫ 1

v
v2(1− w)2dw

) 1
2
[∫ 1

0
|z22(w)− z21(w)|2dw

] 1
2

≤ 3

2

{
(1− v)2v3

3
+
v2(1− v)3

3

} 1
2
[∫ 1

0
|z22(w)− z21(w)|2dw

] 1
2

≤ 3

2

{
(1− v)2

3
[v3 + v2(1− v)]

} 1
2
[∫ 1

0
|z22(w)− z21(w)|2dw

] 1
2

≤ 3

2

{
(1− v)2v2

3

} 1
2
[∫ 1

0
|z22(w)− z21(w)|2dw

] 1
2

≤ 3

8
√

3

[∫ 1

0
|z22(w)− z21(w)|2dw

] 1
2

≤
√

3

8

[∫ 1

0
|z22(w)− z21(w)|2dw

] 1
2

≤
√

3

8
sup
[0,1]
|z2(w)− z1(w)|

≤ sup
[0,1]
|z2(w)− z1(w)|

Hence, W is contraction, it has approximate best proximity point.

Example 4.3. Let us consider a numerical problem
∫ π
0
sinpdp. To solve this, by

using Simpson’s rule, we get p = 2.0008. Similarly, to solve this, by using Trapezoidal
rule, we get p = 1.955. But the actual solution is p = 2. Therefore, in both methods,
we get only an approximate solution.

5. Conclusion

This work provides a series of contraction mappings to demonstrate several ap-
proximate best proximity point theorems on metric spaces. It is essential to note
that all of the conclusions made in the current paper generate better constrained ap-
proximations of best proximity points, mostly in minimising condition ε −→ 0. In
order to confirm the presence of an approximate fixed points, alternative discoveries
presented in the later can be demonstrated in a lower environment. Thus, the concept
of an approximate best proximity point of the pair (W,V ) is just as significant as the
concept of best proximity point of the pair (W,V ).
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