
Korean J. Math. 31 (2023), No. 3, pp. 243–258
https://dx.doi.org/10.11568/kjm.2023.31.3.243

SUFFICIENT CONDITIONS FOR STARLIKENESS OF

RECIPROCAL ORDER

Saravanarasu Madhumitha† and Vaithiyanathan Ravichandran

Abstract. A normalized analytic function f defined on the unit disk D is starlike
of reciprocal order α, 0 ≤ α < 1, if Re(f(z)/(zf ′(z))) > α for all z ∈ D. Such
functions are starlike and therefore univalent in D. Using the well-known Miller-
Mocanu differential subordination theory, sufficient conditions involving differential
inclusions are obtained for a normalized analytic function to be starlike of reciprocal
order α. Furthermore, a few conditions are derived for a function f to belong to a
subclass of reciprocal starlike functions, satisfying |f(z)/(zf ′(z))− 1| < 1− α.

1. Introduction

Let Dr be the open disk in the complex plane with center at the origin and radius
r and let D := D1. In view of Riemann mapping theorem, we shall restrict our focus
to the class H of all analytic functions defined on D. For a ∈ C and n ∈ N, let
H[a, n] =

{
f ∈ H : f(z) = a+

∑∞
k=n akz

k
}

. Let A be the class of functions in H[0, 1]
satisfying f ′(0) = 1 and its subclass consisting of univalent functions is denoted
by S. Many subclasses of S are characterized by some geometric property such as
convexity or starlikeness of the image of D under the mapping QST (z) := zf ′(z)/f(z)
or QCV (z) := 1+zf ′′(z)/f ′(z). A set D in the complex plane is said to be starlike with
respect to its interior point w0 if the line segments joining w0 to any other points of
the set are contained in D. A function f ∈ S is said to be starlike if the image domain
f(D) is starlike with respect to the origin and the class of all such functions is denoted
by ST . The functions in this class are characterized by the property Re(QST (z)) > 0.
A class which is closely associated with the class ST is the class P of all analytic
functions p(z) = 1+

∑∞
k=1 ckz

k in D with positive real part. For 0 ≤ α < 1, let ST (α)
be the subclass of ST consisting of functions characterized by Re(QST (z)) > α. A
function f ∈ S satisfying Re(1/QST (z)) > α (0 ≤ α < 1) for every z ∈ D are said
to be starlike of reciprocal order α and the class of all such functions is denoted by
RST (α). This class has been studied by many authors in [1–5,7, 11, 15–17,21,24].

Let B denote the class of all analytic functions w : D → D which fixes the origin.
For f, g ∈ H, the function f is said to be subordinate to the function g if there exists
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a function w ∈ B such that f(z) = g(w(z)) for all z ∈ D, and it is written as f ≺ g.
The general theory of second order differential subordinations is developed by Miller
and Mocanu [12] in which for given domains Ω, ∆ in C and an analytic function
p : D → C, they determined the class of functions ψ : C3 × D → C for which the
following implication holds.

(1)
{
ψ
(
p(z), zp′(z), z2p′′(z); z

)
: z ∈ D

}
⊂ Ω =⇒ {p(z) : z ∈ D} ⊂ ∆.

If ∆ 6= C is a simply connected domain in C, then Riemann mapping theorem ensures
the existence of a function q which maps D univalently onto ∆, satisfying q(0) = p(0).
Then the implication (1) can be rewritten as{

ψ
(
p(z), zp′(z), z2p′′(z); z

)
: z ∈ D

}
⊂ Ω =⇒ p ≺ q.

The analytic functions q that are univalent on D\E(q) where

E(q) = {ζ ∈ ∂D : q(z)→∞ as z → ζ}
are called the functions with nice boundary and this class of all functions with nice
boundary is denoted by Q.

Definition 1.1. [14] Let Ω be a subset of C, q be a function with nice boundary
and n be a positive integer. The class of admissible functions Ψn(Ω, q) consists of all
functions ψ : C3 ×D→ C satisfying the admissibility condition ψ(r, s, t; z) 6∈ Ω when
r = q(ζ), s = mζq′(ζ), Re(t/s) + 1 ≥ mRe (ζq′′(ζ)/q′(ζ) + 1) for ζ ∈ ∂D\E(q) and
m ≥ n. Further, let Ψ(Ω, q) := Ψ1(Ω, q).

The following theorem of Miller and Mocanu serves the base for the first and second
order differential subordination theory.

Theorem 1.2 (Miller-Mocanu Theorem). Let q ∈ Q with q(0) = a, Ω ⊂ C and let
ψ ∈ Ψn(Ω, q). If the function p ∈ H[a, n] satisfies the differential inclusion{

ψ(p(z), zp′(z), z2p′′(z); z) : z ∈ D
}
⊂ Ω,

then p ≺ q.

In [13], the authors investigated the first order differential subordinations by con-
sidering ψ : C2 ×D→ C. For first order differential subordinations, the admissibility
condition in Definition 1.1 becomes ψ(r, s; z) 6∈ Ω where r = q(ζ), s = mζq′(ζ) for
ζ ∈ ∂D\E(q) and m ≥ n. Moreover, Miller-Mocanu theorem can be restated as
follows. Let q ∈ Q with q(0) = a and let ψ ∈ Ψn(Ω, q). If p ∈ H[a, n] satisfies
ψ(p(z), zp′(z); z) ∈ Ω for every z ∈ D, then p ≺ q. Using the theory of differential
subordinations, sufficient conditions for the starlikeness of functions are studied by
various authors [8–10,18,20,22,25].

Certain differential inequalities which serve as sufficient conditions for starlikeness
of reciprocal order are derived in [4], [15] and [7]. In this paper, we aim to obtain cer-
tain differential inclusions involving QST and QCV for functions to belong to the class
of starlike functions of reciprocal order α (0 ≤ α < 1) and its subclass of functions
satisfying f(z)/(zf ′(z)) ≺ 1+(1−α)z. First, we define a class Ψ(Ω) of admissible func-
tions and prove that f ∈ RST (α) whenever ψ ∈ Ψ(Ω) and ψ (QST (z), QCV (z); z) ∈ Ω
for every z ∈ D. Then using this class of admissible functions, for various choices of
ψ, we obtain several sufficient conditions in terms of QST and QCV for functions to
be in RST (α) and its subclass of functions satisfying |f(z)/(zf ′(z)) − 1| < 1 − α.
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Recently, in [6], [19] and [23], similar studies on analytic and meromorphic functions
are done by the authors.

2. Sufficient conditions for starlikeness of reciprocal order α

In this section, using the first order differential subordination theory, certain suffi-
cient conditions for functions to be starlike of reciprocal order α are obtained. For this,
consider the case when q(z) = (1+z)/(1−z) for which it can be seen that E(q) = {1}
and for ζ ∈ ∂D\{1}, r = q(ζ) = iρ where ρ ∈ R and s = mζq′(ζ) = −m(1 + ρ2)/2.
Thus the admissibility condition simplifies to

ψ(iρ, σ; z) 6∈ Ω when ρ ∈ R, σ ≤ −n(1 + ρ2)/2,

for every z ∈ D. Let the class of all such functions satisfying the above admissibility
condition with respect to q(z) = (1 + z)/(1− z) be denoted by Pn(Ω) and let P(Ω) :=
P1(Ω). In this case, Miller-Mocanu theorem becomes

Lemma 2.1. [14, Theorem 2.3i] Let ψ ∈ P(Ω). If the function p ∈ H[1, n] satisfies

{ψ(p(z), zp′(z); z) : z ∈ D} ⊂ Ω,

then p ∈ P .

Using Lemma 2.1, the following result is obtained which gives a condition in terms
of QST and QCV for a function f to be in RST (α).

Lemma 2.2. Let α ∈ [0, 1) and f ∈ A with f ′(z) 6= 0. For Ω ⊂ C, let Ψ(Ω) be the
class of all functions ψ : C2 × D→ C satisfying

ψ

(
1

α + iτ
, ζ + iη; z

)
6∈ Ω,

for τ ∈ R, ζ + iη ∈ C with (α + iτ)(ζ + iη) ∈ R and (α + iτ)(ζ + iη) ≥ (3 − α)/2 +
τ 2/(2(1 − α)). If ψ ∈ Ψ(Ω) and ψ (QST (z), QCV (z); z) ∈ Ω for every z ∈ D, then
f ∈ RST (α).

Proof. If the function p : D→ C is defined by

(2) p(z) =
1

1− α

(
f(z)

zf ′(z)
− α

)
,

then p is analytic and p(0) = 1. It follows that f ∈ RST (α) is equivalent to p ∈ P .
Rewriting (2) it can be seen that

(3) QST (z) =
1

(1− α)p(z) + α
.

A simple computation using (3), we get

(4) QCV (z) =
1− (1− α)zp′(z)

(1− α)p(z) + α
.

Consider the transformation defined by

u =
1

(1− α)r + α
and v =

1− (1− α)s

(1− α)r + α
.
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Let the function Θ : C2 × D→ C be related to ψ as

(5) Θ(r, s; z) = ψ(u, v; z) = ψ

(
1

(1− α)r + α
,

1− (1− α)s

(1− α)r + α
; z

)
.

Therefore, by using equations (3), (4) and (5), it follows that

Θ(p(z), zp′(z); z) = ψ(QST (z), QCV (z); z),

and so by the hypothesis, it can be seen that Θ(p(z), zp′(z); z) ∈ Ω. Now, to prove
the result, it suffices to show that Θ ∈ P(Ω). If r = iρ and s = σ with ρ ∈ R and
σ ≤ −(1+ρ2)/2, then it follows that u = 1/((1−α)iρ+α) and v = (1−(1−α)σ)/((1−
α)iρ + α). If we let τ = (1− α)ρ and ζ + iη = (1− (1− α)σ)/((1− α)iρ + α), then
u = 1/(α + iτ) and v = ζ + iη. Further, it can be observed that

v

u
= (α + iτ)(ζ + iη) = 1− (1− α)σ.

Thus, it follows that v/u ∈ R and

(α + iτ)(ζ + iη) ≥ 1 +
(1− α)(1 + ρ2)

2
=

3− α
2

+
(1− α)ρ2

2
=

3− α
2

+
τ 2

2(1− α)
.

Therefore, by the hypothesis, it follows that

ψ

(
1

α + iτ
, ζ + iη; z

)
= Θ(iρ, σ; z) 6∈ Ω

which shows that Θ ∈ P(Ω) and hence the result follows by Lemma 2.1.

For various choices of ψ, corresponding domain Ω is obtained such that ψ ∈ Ψ(Ω) and
with the aid of this lemma, many differential inequalities and inclusions are obtained
that provide sufficient conditions for functions to be starlike of reciprocal order α.

Theorem 2.3. Let 0 ≤ α < 1. If the function f ∈ A satisfies

QCV (z)

QST (z)
∈ C\

[
3− α

2
,∞
)

for every z ∈ D, then f ∈ RST (α).

Proof. Let the function ψ : C2 × D → C be defined by ψ(r, s; z) := s/r. Then for
τ ∈ R and ζ + iη ∈ C with (α + iτ)(ζ + iη) ≥ (3 − α)/2 + τ 2/(2(1 − α)), it can be
seen that

ψ

(
1

α + iτ
, ζ + iη; z

)
= (α + iτ)(ζ + iη) ≥ 3− α

2
+

τ 2

2(1− α)
≥ 3− α

2
.

Therefore, it follows that ψ ∈ Ψ(Ω1), where Ω1 is the region defined by Ω1 :=
C\ [(3− α)/2,∞). Also, by the hypothesis, we have ψ(QST (z), QCV (z); z) ∈ Ω1.
Therefore, by Lemma 2.2, it follows that f ∈ RST (α).

Theorem 2.4. Let γ ∈ (−3/2,∞) and α ∈ (α0, 1) where α0 = max{2(γ+1)/(2γ+
3), 0}. Let

(6) δγ(α) =


α

2(1− α)
, α0 < α ≤ 2γ + 3

2(γ + 2)
,

2γ + 3− α
2α

,
2γ + 3

2(γ + 2)
< α < 1.
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If the function f ∈ A satisfies

Re(γQST (z) +QCV (z)) < δγ(α)

for all z ∈ D, then f ∈ RST (α).

Proof. If a function ψ : C2 × D→ C is defined by

ψ(r, s; z) = r
(
γ +

s

r

)
,

then, for τ ∈ R, ζ + iη ∈ C with (α+ iτ)(ζ + iη) ≥ (3−α)/2 + τ 2/(2(1−α)), we have

ψ

(
1

α + iτ
, ζ + iη; z

)
=

1

α + iτ
(γ + (α + iτ)(ζ + iη)) ,

and its real part is given by

(7) Reψ

(
1

α + iτ
, ζ + iη; z

)
=

α

α2 + τ 2
(γ + (α + iτ)(ζ + iη)) .

Then it follows that

Reψ

(
1

α + iτ
, ζ + iη; z

)
≥ α

α2 + τ 2

(
γ +

3− α
2

+
τ 2

2(1− α)

)
.

Define ϕ : [0,∞)→ R by

(8) ϕ(t) =
α

α2 + t

(
γ +

3− α
2

+
t

2(1− α)

)
.

Then the first derivative of this function is given by

ϕ′(t) =
α

(α2 + t)2

(
2α(γ + 2)− 2γ − 3

2(1− α)

)
.

Thus ϕ is increasing when α > (2γ+3)/(2(γ+2)) and hence attains minimum at t = 0,
which is given by minϕ(t) = (2γ + 3− α)/(2α). When α ≤ (2γ + 3)/(2(γ + 2)), ϕ is
decreasing and hence minϕ(t) = limt→∞ ϕ(t) = α/(2(1− α)). Therefore, from (6), it
follows that Reψ (1/(α + iτ), ζ + iη; z) ≥ δγ(α), which shows that ψ ∈ Ψ(Ω2), where
Ω2 := {z : Re z < δγ(α)}. From the hypothesis, we have ψ(QST (z), QCV (z); z) ∈ Ω2.
Thus by Lemma 2.2, f ∈ RST (α) and hence the result follows. The existence of func-
tions satisfying the hypothesis is ensured if the inequality Re(γQST (z) + QCV (z)) <
δγ(α) is satisfied at the origin. Then we must have γ + 1 < δγ(α), that is γ + 1 <
α/(2(1 − α)) and γ + 1 < (2γ + 3 − α)/(2α). The inequality γ + 1 < α/(2(1 − α))
can be rewritten as 2(γ + 1) < α(2γ + 3) which gets satisfied since it is assumed that
α > α0 ≥ 2(γ + 1)/(2γ + 3). Also, the inequality γ + 1 < (2γ + 3− α)/(2α) can be
rewritten as (1− α)(2γ + 3) > 0 which holds since γ > −3/2.

The sufficient condition for a function to be starlike of reciprocal order α in terms
of QCV is obtained by taking γ = 0 in Theorem 2.4.

Corollary 2.5. Let 2/3 ≤ α < 1. If the function f ∈ A satisfies the inequality

ReQCV (z) <


α

2(1− α)
,

2

3
< α ≤ 3

4

3− α
2α

,
3

4
< α < 1

for all z ∈ D, then f ∈ RST (α).
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In [3], Banga and Sivaprasad Kumar have proved that if the function f ∈ A satisfies

(9) ReQCV (z) <


3− α

2α
, 0 < α ≤ 3

4
α

2(1− α)
,

3

4
< α < 1

for all z ∈ D, then f ∈ RST (α). In the proof of this result, they considered the
function S(z) := (z2− 2(2−α)z+ 1)/((1− z)(1 + (1− 2α)z). Instead of finding a half
plane contained in the image domain S(D), they have found a half plane containing
S(D). Corollary 2.5 serves as the correct version of their result.

Theorem 2.6. Let α ∈ [0, 1) and γ ∈ R\[0, 2]. If the function f ∈ A satisfies
either the differential inequality

(10) Re
1 + γQCV (z)

QST (z)
< α +

(3− α)γ

2
for γ > 2

or

(11) Re
1 + γQCV (z)

QST (z)
> α +

(3− α)γ

2
for γ < 0

for every z ∈ D, then f ∈ RST (α).

Proof. Let the function ψ : C2 × D→ C be defined by

ψ(r, s; z) :=
1 + γs

r
.

For τ ∈ R and ζ + iη ∈ C with (α + iτ)(ζ + iη) ≥ (3 − α)/2 + τ 2/(2(1 − α)), it can
be observed that

Reψ

(
1

α + iτ
, ζ + iη; z

)
= Re (α + iτ + γ(α + iτ)(ζ + iη)) = α + γ(α + iτ)(ζ + iη).

Then for γ ≥ 0,

(12) Reψ

(
1

α + iτ
, ζ + iη; z

)
≥ α + γ

(
3− α

2
+

τ 2

2(1− α)

)
≥ α +

(3− α)γ

2
.

Correspondingly, for γ < 0,

(13) Reψ

(
1

α + iτ
, ζ + iη; z

)
≤ α + γ

(
3− α

2
+

τ 2

2(1− α)

)
≤ α +

(3− α)γ

2
.

If Ω3 and Ω4 are the halfplanes defined by Ω3 := {z ∈ C : Re z < α + (3 − α)γ/2}
and Ω4 := {z ∈ C : Re z > α+ (3− α)γ/2}, then from the inequalities (12) and (13),
it is clear that for γ ≥ 0, ψ ∈ Ψ(Ω3) and for γ < 0, ψ ∈ Ψ(Ω4). Further, from the
hypothesis, we have ψ(QST (z), QCV (z); z) ∈ Ω3 for γ ≥ 0 and ψ(QST (z), QCV (z); z) ∈
Ω4 for γ < 0. Thus, the result follows by an application of Lemma 2.2. At the origin,
the inequality (10) reduces to (1− α)(γ − 2) > 0 which holds when γ > 2. Similarly,
at the origin, the inequality (11) reduces to (1 − α)(γ − 2) < 0 which is true for
every γ < 0. This ensures the existence of functions satisfying the hypothesis for
γ ∈ R\[0, 2].
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Theorem 2.7. Let α ∈ [0, 1) and f ∈ A. For γ ≥ −α, if the function f satisfies
the differential inequality

(14) Re
1 + γQST (z)

QCV (z)
>

2(α + γ)

3− α
for every z ∈ D, then f ∈ RST (α).

Proof. Define the function ψ : C2 × D→ C by

(15) ψ(r, s; z) :=
r

s

(
1

r
+ γ

)
.

From the hypothesis, it follows by the definition of ψ that

Reψ(QST (z), QCV (z); z) >
2(α + γ)

3− α
.

For τ ∈ R and ζ + iη ∈ C with (α+ iτ)(ζ + iη) ≥ (3−α)/2 + τ 2/(2(1−α)), it follows
from (15) that

Reψ

(
1

α + iτ
, ζ + iη; z

)
=

α + γ

(α + iτ)(ζ + iη)
≤ 2(1− α)(α + γ)

(3− α)(1− α) + τ 2
≤ 2(α + γ)

3− α
.

since γ ≥ −α. This shows that ψ ∈ Ψ(Ω5) where Ω5 = {z ∈ C : Re z > 2(α+ γ)/(3−
α)}. Thus, the result follows by an application of Lemma 2.2. Furthermore, about the
origin, inequality (14) reduces to (3 + γ)(1− α) > 0 which holds since γ ≥ −α > −3.
This ensures the existence of functions satisfying the hypothesis.

Theorem 2.8. Let α ∈ [0, 1). For γ > (α − 1)/(3 − α), if the function f ∈ A
satisfies either the differential inequality

Re
Q2

ST (z) + γQCV (z)

QST (z)QCV (z)
>

2

3− α
+ αγ

for all z ∈ D, then f ∈ RST (α).

Proof. Define a function ψ : C2 × D→ C by

ψ(r, s; z) :=
r

s
+
γ

r
.

For τ ∈ R, ζ + iη ∈ C with (α + iτ)(ζ + iη) ≥ (3 − α)/2 + τ 2/(2(1 − α)), it can be
seen that

Reψ

(
1

α + iτ
, ζ + iη; z

)
= Re

(
1

(α + iτ)(ζ + iη)
+ γ(α + iτ)

)
= αγ +

1

(α + iτ)(ζ + iη)
≤ 2(1− α)

(3− α)(1− α) + τ 2
+ αγ.

If the function ϕ : [0,∞)→ R is defined by

(16) ϕ(t) =
2(1− α)

(3− α)(1− α) + t
,

then its derivative is given by

ϕ′(t) = − 2(1− α)

((3− α)(1− α) + t)2
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which is negative. Therefore, ϕ is decreasing and its maximum is given by ϕ(0) =
2/(3− α). Thus, it follows that ψ(1/(α+ iτ), ζ + iη; z) ∈ C\Ω6 where Ω6 = {z ∈ C :
Re z > αγ+ 2/(3−α)}. From the hypothesis, we have ψ(QST (z), QCV (z); z) ∈ Ω6 for
every z ∈ D. Hence, by an application of Lemma 2.2, the result follows. The existence
of functions satisfying hypothesis is ensured since the inequality in the hypothesis
holds at the origin for γ > (α− 1)/(3− α).

Theorem 2.9. Let α ∈ [0, 1). For γ ∈ (−2/(2 − α), 0], if the function f satisfies
the differential inequality

(17) Re
QST (z) + γQCV (z)

Q2
ST (z)

> α +
αγ(3− α)

2

for every z ∈ D, then f ∈ RST (α).

Proof. For γ ∈ (−2/(2− α), 0], let the function ψ : C2 × D→ C be defined by

ψ(r, s; z) :=
1

r
+ γ

s

r2
.

For τ ∈ R, ζ+iη ∈ C satisfying the condition (α+iτ)(ζ+iη) ≥ (3−α)/2+τ 2/(2(1−α)),

Reψ

(
1

α + iτ
, ζ + iη; z

)
= Re((α+ iτ)+γ(α+ iτ)2(ζ+ iη)) = α+αγ(α+ iτ)(ζ+ iη).

Since γ ≤ 0, it follows that

Reψ

(
1

α + iτ
, ζ + iη; z

)
≤ α + αγ

(
3− α

2
+

τ 2

2(1− α)

)
≤ α +

αγ(3− α)

2
.

Let the region Ωγ be defined by Ωγ := {z ∈ C : Re z > α + αγ(3 − α)/2}. From the
hypothesis, it follows that ψ(QST (z), QCV (z); z) ∈ Ωγ for every z ∈ D. Therefore, the
result follows by an application of Lemma 2.2. Since γ > −2/(2− α), it follows that
1−α > −(1−α)(2−α)γ/2 which gives 1+γ > α+αγ(3−α)/2. Thus, the inequality
(17) hold at the origin and hence the existence of functions satisfying the hypothesis
is ensured.

Theorem 2.10. Let f ∈ A and for α ∈ [0, 1) and γ ∈ R, let

δγ(α) =


α +

(3− α)γ

2α
, α ≥ 3

4
,

α +
αγ

2(1− α)
, α <

3

4
.

If the function f ∈ A satisfies either

(18) Re(1/QST (z) + γQCV (z)) < δγ(α) for γ > max

{
2α

3
,
2(1− α)2

3α− 2

}
or

(19) Re(1/QST (z) + γQCV (z)) > δγ(α) for γ < min

{
0,

2(1− α)2

3α− 2

}
for all z ∈ D, then f ∈ RST (α).
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Proof. Let the function ψ : C2 × D→ C be defined by

ψ(r, s; z) :=
1

r
+ γs.

For τ ∈ R and ζ + iη ∈ C satisfying (α+ iτ)(ζ + iη) ≥ (3− α)/2 + τ 2/(2(1− α)), we
have
(20)

Reψ

(
1

α+ iτ
, ζ + iη; z

)
= Re

(
α+ iτ +

γ

α+ iτ
(α+ iτ)(ζ + iη)

)
= α+

αγ(α+ iτ)(ζ + iη)

α2 + τ2
.

For γ ≥ 0, it is evident that

(21) Reψ

(
1

α + iτ
, ζ + iη; z

)
≥ α +

αγ

α2 + τ 2

(
3− α

2
+

τ 2

2(1− α)

)
.

Let ϕ : [0,∞)→ C be defined by

(22) ϕ(t) :=
αγ

α2 + t

(
3− α

2
+

t

2(1− α)

)
.

Its derivative ϕ′ is given by

ϕ′(t) =
αγ(4α− 3)

2(1− α)(α2 + t)2
,

which is non-negative for α ≥ 3/4. Then, it is clear that ϕ is increasing and hence
attains its minimum at t = 0 given by (3 − α)γ/(2α). Further, for α < 3/4, it can
be observed that ϕ′(t) < 0. Thus ϕ is decreasing and attains minimum as t tends to
∞, which is given by αγ/(2(1−α)). Therefore, it follows from the definition of δγ(α)
and (21) that

(23) Reψ

(
1

α + iτ
, ζ + iη; z

)
≥ δγ(α).

Similarly, for γ < 0, we have ϕ′(t) ≤ 0 for α ≥ 3/4 and ϕ′(t) > 0 for α < 3/4.
Thus, the function ϕ defined in (22) is decreasing for α ≥ 3/4 and hence maxϕ(t) =
ϕ(0) = (3−α)γ/(2α). For α < 3/4, the function ϕ is increasing and hence attains its
maximum as t tends to infinity, which is given by αγ/(2(1− α)). So, for γ < 0, from
equation (20), it follows that

(24) Reψ

(
1

α + iτ
, ζ + iη; z

)
≤ α +

αγ

α2 + τ 2

(
3− α

2
+

τ 2

2(1− α)

)
≤ δγ(α).

From the inequalities (18), (19), (23) and (24), it can be seen that ψ(QST (z), QCV (z); z) ∈
Ωγ for every z ∈ D and ψ ∈ Ψ(Ωγ) where Ωγ := {z ∈ C : Re z < δγ(α)} for γ >
max{2α/3, (2(1−α)2)/(3α−2)} and Ωγ := {z ∈ C : Re z > δγ(α)} for γ < min{0, (2(1−
α)2)/(3α − 2)}. Therefore, it follows that f ∈ RST (α) by an application of Lemma
2.2. At the origin, the inequality (18) becomes 1 + γ < δγ(α), that is,

(25) 1 + γ < α +
(3− α)γ

2α
for α ≥ 3

4
and

(26) 1 + γ < α +
αγ

2(1− α)
for α <

3

4
.

The inequality (25) holds if γ > 2α/3 and the inequality (26) holds if γ > 2(1 −
α)2/(3α−2), which is true by the assumed conditions on γ. This ensures the existence
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of functions satisfying the inequality (18) in the hypothesis. Similarly, it can be shown
that the (19) holds at origin when γ < 0 and γ < 2(1− α)2/(3α− 2).

Theorem 2.11. Let α ∈ [0, 1) and f ∈ A. For γ ∈ [−1/α, 1/(2 − α)), if the
function f satisfies

(27) Re
QCV (z)

QST (z)

(
1 +

γ

QST (z)

)
<

(1 + αγ)(3− α)

2

for every z ∈ D, then f ∈ RST (α).

Proof. Let the function ψ : C2 × D→ C be defined by

ψ(r, s; z) :=
s

r

(
1 +

γ

r

)
.

For τ ∈ R and ζ + iη ∈ C satisfying the condition (α + iτ)(ζ + iη) ≥ (3 − α)/2 +
τ 2/(2(1− α)), it can be seen that

Reψ

(
1

α + iτ
, ζ + iη; z

)
= Re ((α + iτ)(ζ + iη)(1 + γ(α + iτ))) = (1+αγ)(α+iτ)(ζ+iη).

Since γ ≥ −1/α, it follows that,

Reψ

(
1

α + iτ
, ζ + iη; z

)
≥ (1 + αγ)

(
3− α

2
+

τ 2

2(1− α)

)
≥ (1 + αγ)(3− α)

2
.

This shows that ψ ∈ Ψ(Ω7) where Ω7 = {z ∈ C : Re z < (1 + αγ)(3 − α)/2}. From
the hypothesis, it follows by the definition of ψ that ψ(QST (z), QCV (z); z) ∈ Ω7 for
all z ∈ D. Therefore, the result follows from Lemma 2.2. Furthermore, at the origin,
inequality (27) reduces to (2− α)(1− α)γ < 1− α which holds since γ < 1/(2− α).
This proves the existence of functions satisfying the hypothesis.

Theorem 2.12. Let α ∈ [0, 1). If the function f ∈ A satisfies either

(28) Re
1

QST (z)

(
1

QST (z)
+ γQCV (z)

)
< α2 +

(3− α)γ

2
, for γ > 2(1 + α)

or

Re
1

QST (z)

(
1

QST (z)
+ γQCV (z)

)
> α2 +

(3− α)γ

2
, for γ < 0

then f ∈ RST (α).

Proof. For 0 ≤ α < 1, γ ∈ R\[0, 2(1 + α)], define the function ϕ : [0,∞)→ R by

ϕ(t) := α2 − t+ γ

(
3− α

2
+

t

2(1− α)

)
.

Its derivative is given by ϕ′(t) = −1 + γ/2(1 − α) which is non-negative when γ ≥
2(1−α) and negative otherwise. Thus, when γ ≥ 2(1−α), the function ϕ is increasing
and

min
t∈[0,∞)

ϕ(t) = ϕ(0) = α2 +
(3− α)γ

2
.

When γ < 2(1 − α), the function ϕ is decreasing and maxϕ(t) = α2 + (3 − α)γ/2.
Let the function ψ : C2 × D→ C be defined by

ψ(r, s; z) :=
1

r2
+
γs

r
.
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For τ ∈ R and ζ + iη ∈ C satisfying (α + iτ)(ζ + iη) ≥ (3− α)/2 + τ 2/(2(1− α)),
(29)

Reψ

(
1

α + iτ
, ζ + iη; z

)
= Re((α+iτ)2+γ(α+iτ)(ζ+iη)) = α2−τ 2+γ(α+iτ)(ζ+iη).

Case (i) γ > 2(1 + α). It can be clearly seen that γ > 2(1 + α) ≥ 2(1− α). Thus,
in this case, it follows from equation (29) that

Reψ

(
1

α + iτ
, ζ + iη; z

)
≥ α2−τ 2+γ

(
3− α

2
+

τ 2

2(1− α)

)
= ϕ(τ 2) ≥ α2+

(3− α)γ

2
.

Therefore, ψ ∈ Ψ(Ω8) where Ω8 := {z ∈ C : Re z < α2 + (3 − α)γ/2}. From
the hypothesis, it follows that ψ(QST (z), QCV (z); z) ∈ Ω8 for every z ∈ D. Thus,
f ∈ RST (α) by an application of Lemma 2.2. Further, at the origin, inequality (28)
reduces to

1 + γ < α2 +
(3− α)γ

2

which can be rewritten as 1 − α2 < (1 − α)γ/2 which holds as it is assumed that
γ > 2(1 + α). This proves that there exist functions satisfying the hypothesis.

Case (ii) γ < 0. In this case, since γ < 0 < 2(1−α), from equation (29), it follows
that

Reψ

(
1

α + iτ
, ζ + iη; z

)
≤ α2−τ 2+γ

(
3− α

2
+

τ 2

2(1− α)

)
= ϕ(τ 2) ≤ α2+

(3− α)γ

2
,

Therefore, ψ ∈ Ψ(Ω9) where Ω9 := {z ∈ C : Re z > α2 + (3 − α)γ/2} and from the
hypothesis, ψ(QST (z), QCV (z); z) ∈ Ω9 for every z ∈ D. So, the result follows by
Lemma 2.2. Also, the existence of functions satisfying the hypothesis is ensured by
the assumed condition.

Theorem 2.13. Let α ∈ [0, 1) and γ ∈ R. If the function f ∈ A satisfies either

(30)
QCV (z)

QST (z)

(
1 + γ

QCV (z)

QST (z)

)
∈ C\

[
(3− α)(2 + (3− α)γ)

4
,∞
)

for γ ≥ 0

or

(31)
QCV (z)

QST (z)

(
1 + γ

QCV (z)

QST (z)

)
∈ C\

(
−∞, (3− α)(2 + (3− α)γ)

4

]
for γ < 0,

in D, then f ∈ RST (α).

Proof. Let the function ψ : C2 × D→ C be defined by

ψ(r, s; z) :=
s

r
+ γ

(s
r

)2
.

Then for τ ∈ R and ζ + iη ∈ C, with (α + iτ)(ζ + iη) ≥ (3− α)/2 + τ 2/(2(1− α)),

ψ

(
1

α + iτ
, ζ + iη; z

)
= (α + iτ)(ζ + iη) + γ(α + iτ)2(ζ + iη)2.

For γ ≥ 0, it can be observed that

(32) ψ

(
1

α + iτ
, ζ + iη; z

)
≥
(

3− α
2

+
τ 2

2(1− α)

)
+ γ

(
3− α

2
+

τ 2

2(1− α)

)2

.
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It can be easily seen that the function ϕ : [0,∞)→ R defined by

ϕ(t) :=
3− α

2
+

t

2(1− α)

is increasing and non-negative. Thus, for γ ≥ 0, the function ϕ(t) + γ(ϕ(t))2 is
increasing and hence attains its minimum at t = 0 which is given by (3− α)(2 + (3−
α)γ)/4. Therefore, it follows from the inequality (32) that

ψ

(
1

α + iτ
, ζ + iη; z

)
≥ ϕ(τ 2) + γ(ϕ(τ 2))2 ≥ (3− α)(2 + (3− α)γ)

4
,

which implies that ψ ∈ Ψ (C\[(3− α)(2 + (3− α)γ)/4,∞)). Further, from the hy-
pothesis, it can be seen that ψ(QST (z), QCV (z); z) ∈ C\[(3− α)(2 + (3− α)γ)/4,∞).
Thus, it follows that f ∈ RST (α) by Lemma 2.2. Also, since γ ≥ 0 > 2/(α − 5), it
follows that 2(α− 1) < ((3− α)2 − 4)γ which gives

1 + γ <
3− α

2
+

(3− α)2γ

4
.

This shows that the containment (30) holds at z = 0 which ensures the existence of
functions satisfying the hypothesis. Similarly, for γ < 0, it follows that

ψ

(
1

α + iτ
, ζ + iη; z

)
≤ ϕ(τ 2) + γ(ϕ(τ 2))2 ≤ (3− α)(2 + (3− α)γ)

4
,

which shows that ψ ∈ Ψ (C\(−∞, (3− α)(2 + (3− α)γ)/4]). Also, from the hypoth-
esis, it can be seen that ψ(QST (z), QCV (z); z) ∈ C\(−∞, (3 − α)(2 + (3 − α)γ)/4],
from which the result follows by Lemma 2.2. Further, it can be shown that the con-
tainment (31) holds at origin which proves the existence of functions satisfying the
hypothesis.

Theorem 2.14. Let α ∈ [0, 1) and γ ∈ R. If the function f ∈ A satisfies either

(33)
QST (z)

QCV (z)

(
1 + γ

QST (z)

QCV (z)

)
∈ C\

(
−∞, 2

3− α
+

4γ

(3− α)2

]
for γ ≥ 0

or

(34)
QST (z)

QCV (z)

(
1 + γ

QST (z)

QCV (z)

)
∈ C\

[
2

3− α
+

4γ

(3− α)2
,∞
)

for γ < 0

for every z ∈ D, then f ∈ RST (α).

Proof. Define the function ψ : C2 × D→ C by

ψ(r, s; z) :=
r

s
+ γ

(r
s

)2
.

For τ ∈ R and ζ + iη ∈ C with (α+ iτ)(ζ + iη) ≥ (3− α)/2 + τ 2/(2(1− α)), we have

ψ

(
1

α + iτ
, ζ + iη; z

)
=

1

(α + iτ)(ζ + iη)
+

γ

(α + iτ)2(ζ + iη)2
.

For γ ≥ 0, it can be observed that

ψ

(
1

α + iτ
, ζ + iη; z

)
≤ 2(1− α)

(3− α)(1− α) + τ 2
+

4γ(1− α)2

((3− α)(1− α) + τ 2)2
.
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If the function ϕ : [0,∞)→ R is defined by

ϕ(t) :=
2(1− α)

(3− α)(1− α) + t
,

it can be seen that ϕ is non-negative and its derivative is given by

ϕ′(t) =
−2(1− α)

((3− α)(1− α) + t)2
< 0.

Thus, the function ϕ is decreasing and attains its maximum at t = 0 which is given
by 2/(3− α). Therefore, it follows that

ψ

(
1

α + iτ
, ζ + iη; z

)
≤ ϕ(τ 2) + γ

(
ϕ(τ 2)

)2 ≤ 2

3− α
+

4γ

(3− α)2
,

which implies that ψ ∈ Ψ (C\ (−∞, 2/(3− α) + 4γ/(3− α)2]). Further, from the hy-
pothesis, we have ψ(QST (z), QCV (z); z) ∈ C\ (−∞, 2/(3− α) + 4γ/(3− α)2]. Thus,
it follows that f ∈ RST (α) by an application of Lemma 2.2. Similarly, for γ < 0, it
follows that

ψ

(
1

α + iτ
, ζ + iη; z

)
≥ 2(1− α)

(3− α)(1− α) + τ 2
+

4γ(1− α)2

((3− α)(1− α) + τ 2)2

= ϕ(τ 2) + γ
(
ϕ(τ 2)

)2 ≥ 2

3− α
+

4γ

(3− α)2
.

This shows that ψ ∈ Ψ (C\ [2/(3− α) + 4γ/(3− α)2,∞)). It can be seen from the
hypothesis that ψ(QST (z), QCV (z); z) ∈ C\ [2/(3− α) + 4γ/(3− α)2,∞). Thus, the
result follows by Lemma 2.2. Further, it can be shown that the containments (33) and
(34) hold at origin which proves the existence of functions satisfying the hypothesis.

3. Sufficient conditions for functions to be in a subclass of RST (α)

If the function q is defined by w(z) := z, then q ∈ B and E(q) = ∅. For ζ ∈ ∂D, it
can be observed that r = q(ζ) = eiθ and s = mζq′(ζ) = meiθ where θ ∈ R. The class of
admissible functions with respect to q(z) = z is the set of all functions ψ : C2×D→ C
satisfying ψ(eiθ, Keiθ; z) 6∈ Ω for every z ∈ D, where θ ∈ R and K ≥ n. Let this class
be denoted by Bn(Ω) with B(Ω) := B1(Ω). For this choice of q, Theorem 1.2 provides
the sufficient condition for a function to be bounded by unity.

Lemma 3.1. Let ψ ∈ B(Ω). If the function w ∈ H[0, n] satisfies the differential
inclusion

{ψ(w(z), zw′(z); z) : z ∈ D} ⊂ Ω,

then w ∈ B.

Using this lemma, the following results are obtained that give sufficient conditions
for normalized analytic functions to satisfy the condition |f(z)/(zf ′(z))− 1| < 1− α
in unit disk D.

Theorem 3.2. Let f ∈ A and 0 ≤ α < 1. If the function f satisfies the differential
inequality |QCV (z)/QST (z)− 1| < 1−α for all z ∈ D, then |f(z)/(zf ′(z))− 1| < 1−α.
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Proof. For the function f ∈ A, let w : D→ C be defined by

(35) w(z) =
1

1− α

(
f(z)

zf ′(z)
− 1

)
.

Then it can be noted that |f(z)/(zf ′(z))− 1| < 1 − α is equivalent to w ∈ B. A
straightforward computation involving logarithmic derivative gives

(36) 1 +
zf ′′(z)

f ′(z)
=

1− (1− α)zw′(z)

(1− α)w(z) + 1
.

Therefore, from equations (35) and (36), it follows that

(37)
QCV (z)

QST (z)
− 1 = −(1− α)zw′(z).

Let the function ψ : C2 × D→ C be defined by

ψ(r, s; z) := −(1− α)s.

For θ ∈ R and K ≥ 1, we have ψ(eiθ, Keiθ; z) = −(1− α)Keiθ. Thus, it follows that∣∣ψ(eiθ, Keiθ; z)
∣∣ = |1− α|K ≥ 1− α,

and hence ψ ∈ B(D1−α). Further, from (37) and hypothesis of the theorem, it can be
observed that ψ(w(z), zw′(z); z) ∈ D1−α for all z ∈ D. Thus, by Lemma 3.1, it can be
concluded that w ∈ B and accordingly the result follows.

Theorem 3.3. Let 0 ≤ α < 1. If the function f ∈ A satisfies |QCV (z)− 1| <
2(1− α)/(2− α) for all z ∈ D, then |f(z)/(zf ′(z))− 1| < 1− α.

Proof. For f ∈ A, let w : D → C be defined as in equation (35). It can be seen
that

f(z)

zf ′(z)
= (1− α)w(z) + 1.

By simple computations, QCV − 1 can be written in terms of w as

(38) QCV (z)− 1 =
−(1− α)(zw′(z) + w(z))

1 + (1− α)w(z)
.

If the function ψ : C2 × D→ C is defined by

ψ(r, s; z) :=
−(1− α)(r + s)

1 + (1− α)r
,

then from equation (38) and the hypothesis, it follows that ψ(w(z), zw′(z); z) ∈
D2(1−α)/(2−α). For θ ∈ R and K ≥ 1,∣∣ψ(eiθ, Keiθ; z)

∣∣ =

∣∣∣∣−(1− α)(1 +K)eiθ

1 + (1− α)eiθ

∣∣∣∣ =
(1− α)(1 +K)

|1 + (1− α)eiθ|
≥ 2(1− α)

2− α
,

which implies that ψ ∈ B
(
D2(1−α)/(2−α)

)
. Thus, by Lemma 3.1, we have w ∈ B and

as a consequence, it follows that |f(z)/(zf ′(z))− 1| < 1− α.

Theorem 3.4. Let 0 ≤ α < 1 and f ∈ A. If the function f satisfies the inequality
|QCV (z)−QST (z)| < (1− α)/(2− α) for all z ∈ D, then |f(z)/(zf ′(z))− 1| < 1− α.
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Proof. Let f ∈ A and w : D→ C be defined by equation (35), so that |f(z)/zf ′(z)− 1|
< 1− α is equivalent to w ∈ B. The functions QST and QCV are given by

QST (z) =
1

(1− α)w(z) + 1
and QCV (z) =

1− (1− α)zw′(z)

(1− α)w(z) + 1
.

Thus, it can be seen that

(39) QCV (z)−QST (z) =
−(1− α)zw′(z)

(1− α)w(z) + 1
.

If a function ψ : C2 × D→ C is defined by

ψ(r, s; z) =
−(1− α)s

(1− α)r + 1
,

then for θ ∈ R and K ≥ 1,∣∣ψ(eiθ, Keiθ; z)
∣∣ =

∣∣∣∣−(1− α)Keiθ

(1− α)eiθ + 1

∣∣∣∣ =
(1− α)K

|(1− α)eiθ + 1|
≥ 1− α

2− α
.

This implies that ψ ∈ B
(
D(1−α)/(2−α)

)
. Also, from equation (39) and hypothesis, it

can be noted that |ψ(w(z), w′(z); z)| < (1 − α)/(2 − α). Thus, the result follows by
an application of Lemma 3.1.
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