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ROUGH I-CONVERGENCE OF SEQUENCES IN PROBABILISTIC

NORMED SPACES

Nesar Hossain† and Amar Kumar Banerjee∗

Abstract. In this paper, we have studied the idea of rough I-convergence in prob-
abilistic normed spaces which is indeed a generalized version as compared to the
notion of rough I-convergence in normed linear spaces. On the other way, it is
also a generalization of rough statistical convergence in probabilistic normed spaces.
Furthermore, we have defined the notion of rough I-cluster points and have proved
some important results associated with the set of rough I-limits of a sequence in
the same space.

1. Introduction

In 1951, the idea of ordinary convergence of real sequences was extended to sta-
tistical convergence of real sequences based on the natural density of a set inde-
pendently by Fast [9] and Steinhaus [29]. After long years, in 2000, Kostyrko et
al. [13] developed a very useful generalization of statistical convergence which was
named as I-convergence based on the structure of an ideal of subsets of natural num-
bers. Since then this idea is still being carried out in various settings of related
spaces [6, 7, 12,16,18,20,27,32,34,35].

In 2001, Phu [24] initially introduced the concept of rough convergence of sequences
in a finite dimensional normed linear space which is basically a generalization of usual
convergence and in the same paper he showed that r-limit set is bounded, closed,
convex and also established many more interesting results. Later on, this concept
were extended to an infinite dimensional normed linear space [26]. Also, he [25]
studied the notion of rough continuity of linear operators. Later, Ayter [2] extended
this notion to rough statistical convergence based on natural density of a set and,
in 2013, Pal et al. [28] introduced the concept of rough ideal convergence which is
basically a generalization of rough statistical convergence in normed linear spaces. In
this direction, works have been carried out in different spaces [4, 8, 11,17,22,23].
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In 1942, Menger [19] first proposed the concept of statistical metric spaces, now
called probabilistic metric spaces, which is an interesting and important generalization
of the notion of metric spaces. This concept, later on, was studied by Schweizer and
Sklar [31]. Combining the idea of statistical metric spaces and normed linear spaces,
Šerstnev [30] introduced the idea of probabilistic normed spaces. In 1993 Alsina et
al. [1] gave a new definition of probabilistic normed spaces which is basically a special
case of the definition of Šerstnev. In recent times, Antal et al. [5] introduced the notion
of rough statistical convergence of sequences in probabilistic normed spaces. In this
paper, we have generalied this notion in ideal context. We have defined the notion of
rough I-cluster point and then have studied some interesting results associated with
probabilistic normed spaces.

2. Preliminaries

Throughout the paper N and R denote the set of natural numbers and the set of
reals respectively. First we recall some basic definitions and notations.

Definition 2.1. [13] A family I ⊂ 2X of a non empty set X is said to be an ideal
in X if the following conditions hold:

1. ∅ ∈ I;
2. A,B ∈ I =⇒ A ∪B ∈ I;
3. A ∈ I, B ⊂ A =⇒ B ∈ I.

If X ∈ I then I = 2X . Also {∅} is always an ideal. The ideals 2X and ∅ are called
trivial ideals. So I is non trivial if X /∈ I and if I ̸= {∅}. An ideal I in X is said to
be an admissible ideal if {x} ∈ I for each x ∈ X.

If I is a non trivial proper ideal inX then the family of sets F(I) = {X\A : A ∈ I}
is clearly a filter onX which is called the filter associated with the ideal I. Throughout
the paper I will stand for a non trivial admissible ideal of N unless otherwise stated.

Definition 2.2. Let K ⊂ N. Then the natural density δ(K) of K is defined by

δ(K) = lim
n→∞

1

n
|{k ≤ n : k ∈ K}|,

provided the limit exists.

It is clear that if K is finite then δ(K) = 0.
Now we recall some basic definitions and notations which will be useful in the

sequal.

Definition 2.3. [31] A triangular norm, briefly t-norm, is a binary operation
on [0, 1] which is continuous, commutative, associative, non-decreasing and has 1 as
identity element, i.e., it is the continuous mapping ⋆ : [0, 1]× [0, 1] → [0, 1] such that
for all a, b, c, d ∈ [0, 1]:

1. a ⋆ 1 = a;
2. a ⋆ b = b ⋆ a;
3. a ⋆ b ≥ c ⋆ d whenever a ≥ c and b ≥ d;
4. a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c.

Definition 2.4. [31] A binary operation ◦ : [0, 1] × [0, 1] → [0, 1] is said to be a
continuous t-conorm if the following conditions are satisfied.
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1. ◦ is associative and commutative;
2. ◦ is continuous;
3. x ◦ 0 = x for all x ∈ [0, 1];
4. x ◦ y ≤ z ◦ w whenever x ≤ z and y ≤ w for each x, y, z, w ∈ [0, 1].

Example 2.5. [14] The following are the examples of t-norms:

1. x ⋆ y = min{x, y};
2. x ⋆ y = x.y;
3. x ⋆ y = max{x+ y − 1, 0}. This t-norm is known as Lukasiewicz t-norm.

Lemma 2.6. [33] If ⋆ is a continuous t-norm, ◦ is a continuous t-conorm, ri ∈ (0, 1)
and 1 ≤ i ≤ 7, then the following statements hold:

1. If r1 > r2, there are r3, r4 ∈ (0, 1) such that r1 ⋆ r3 ≥ r2 and r1 ≥ r2 ◦ r4
2. If r5 ∈ (0, 1), there are r6, r7 ∈ (0, 1) such that r6 ⋆ r6 ≥ r5 and r5 ≥ r7 ◦ r7.

Definition 2.7. [10] A function f : R → R+
0 is said to be a distribution function

if it is non decreasing and left continuous with inft∈R f(t) = 0 and supt∈R f(t) = 1.
We denote D as the set of all distribution functions.

Definition 2.8. [10] Let X be a real vector space, ν be a mapping from X into D
where x ∈ X, t ∈ R, the value ν(x)(t) of the distribution function ν(x) at t is denoted
by ν(x; t) and ⋆ be a t-norm satisfying the following conditions:

1. ν(x; 0) = 0;
2. ν(x; t) = 1, ∀ t > 0 iff x = θ, θ being the zero element of X;
3. ν(αx; t) = ν(x; t

|α|), ∀ α ∈ R \ {0} and ∀ t > 0;

4. ν(x+ y; s+ t) ≥ ν(x; s) ⋆ ν(y; t), ∀ x, y ∈ X and ∀ s, t ∈ R+
0 .

Then the triplet (X, ν, ⋆) is called a probabilistic normed space (shortly PNS).

Example 2.9. [3] For a real normed space (X, ∥·∥), we define the probabilistic
norm ν for x ∈ X, t ∈ R as ν(x; t) = t

t+∥x∥ . Then (X, ν, ⋆) is a PNS under the t-norm

⋆ defined by x ⋆ y = min{x, y}.

Definition 2.10. [3] Let (X, ν, ⋆) be a PNS. For r > 0, the open ball B(x, λ; r)
with center x ∈ X and radius λ ∈ (0, 1) is defined as

B(x, λ; r) = {y ∈ X : ν(y − x; r) > 1− λ}.
Similarly, the closed ball B(x, λ; r) = {y ∈ X : ν(y − x; r) ≥ 1− λ}

Definition 2.11. [15] Let {xn}n∈N be a sequence in a PNS (X, ν, ⋆). Then {xn}n∈N
is said to be convergent to ξ ∈ X with respect to the probabilistic norm ν if for every
t > 0 and ε ∈ (0, 1), there is a positive integer n0 such that ν(xn − ξ; t) > 1− ε for all

n ≥ n0. In this case we write xn
ν−→ ξ or ν- limn→∞ xn = ξ.

It is easy to check that in the PNS as in Example 2.9, xn
∥·∥−→ ξ if and only if

xn
ν−→ ξ.

Definition 2.12. [21] Let I be a non trivial ideal of N and (X, ν, ⋆) be a proba-
bilistic normed space. A sequence {xn}n∈N of elements of X is said to be I-convergent
to ξ ∈ X with respect to the probabilistic norm ν (or Iν-convergent to ξ) if for each
ε > 0 and t > 0, {n ∈ N : ν(xn − ξ; t) ≤ 1 − ε} ∈ I. In this case we write

Iν- limn→∞ xn = ξ or xn
Iν−→ ξ.
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Definition 2.13. [21] Let {xn}n∈N be a sequence in a PNS (X, ν, ⋆). An element
ξ ∈ X is said to be an I-cluster point of {xn}n∈N with respect to the probabilistic
norm ν (or Iν-cluster point) if for each ε > 0 and t > 0, K = {n ∈ N : ν(xn − ξ; t) >
1− ε} /∈ I.

Definition 2.14. [5] Let {xn}n∈N be a sequence in an PNS (X, ν, ⋆). Then
{xn}n∈N is said to be rough convergent to ξ ∈ X with respect to the probabilistic
norm ν if for every ε > 0, λ ∈ (0, 1) and some non negative number r there exists
n0 ∈ N such that ν(xn − ξ; r + ε) > 1 − λ for all n > n0. In this case we write

rν- limn→∞ xn = ξ or xn
rν−→ ξ and ξ is called rν-limit of {xn}n∈N.

Definition 2.15. [5] Let {xn}n∈N be a sequence in an PNS (X, ν, ⋆). Then
{xn}n∈N is said to be rough statistically convergent to ξ ∈ X with respect to the
probabilistic norm ν if for every ε > 0 and λ ∈ (0, 1) and some non negative number
r, δ({n ∈ N : ν(xn − ξ; r+ ε) ≤ 1−λ}) = 0. In this case we write r-Stν- limn→∞ xn =

ξ or xn
r−Stν−−−→ ξ.

3. Main Results

Throughout the paper I stands for an admissible ideal. First we introduce the
definition of rough I-convergence in a PNS (X, ν, ⋆).

Definition 3.1. Let {xn}n∈N be a sequence in a PNS (X, ν, ⋆) and r be a non
negative real number. Then {xn}n∈N is said to be rough I-convergent to ξ ∈ X
of roughness degree r with respect to the probabilistic norm ν if for every ε > 0
and λ ∈ (0, 1), {n ∈ N : ν(xn − ξ; r + ε) ≤ 1 − λ} ∈ I. In this case we write

r-Iν- limn→∞ xn = ξ or xn
r−Iν−−−→ ξ and ξ is called r-Iν-limit of {xn}n∈N.

Remark 3.2. (a) Suppose If is the class of all finite subsets of N. Then clearly If

is a non trivial admissible ideal. So, rough If -convergence with respect to the prob-
abilistic norm ν agrees with the rough convergence with respect to the probabilistic
norm ν in a PNS (X, ν, ⋆).
(b) If we take Iδ as a class of all subsets of N whose natural densities are zero. Then
clearly Iδ is a non trivial admissible ideal. In this case rough Iδ-convergence with
respect to the probabilistic norm ν coincides with the rough statistical convergence
with respect to the probabilistic norm ν in a PNS (X, ν, ⋆).
(c) If r = 0, then the notion of rough I-convergence with respect to the probabilistic
norm ν coincides with I-convergence with respect to the probabilistic norm ν in a
PNS (X, ν, ⋆). So, our whole discussions is considered on the fact that r > 0 unless
otherwise stated.

From the Definition 3.1, it is clear that r-Iν-limit of a sequence is not unique. So,
throughout we use the notations Iν-LIM

r
xn

and LIM rν
xn

to denote the set of all r-Iν-
limits and rν-limits of the sequence {xn}n∈N. For an unbounded sequence, LIM rν

xn
= ∅

[5]. But, for such a sequence, Iν-LIM
r
xn

̸= ∅ could happen as shown in the following
example.

Example 3.3. Let (X, ∥·∥) be a real normed linear space with the usual norm and
let ν(x; t) = t

t+∥x∥ for all x ∈ X and t > 0. Also, let x ⋆ y = min{x, y}. Then (X, ν, ⋆)

is a probabilistic normed space. Now, let us consider the ideal I consisting of all those
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subsets of N whose natural density are zero. Then I is a non trivial admissible ideal of

N. Let us define a sequence {xn}n∈N in X by xn =

{
(−1)n, if n ̸= i2(i ∈ N)
n, otherwise

. Then

for r ≥ 1, Iν-LIM
r
xn

= [1−r, r−1], since for any ξ ∈ [1−r, r−1], ε > 0 and λ ∈ (0, 1),
we get {n ∈ N : ν(xn − ξ; r + ε) ≤ 1− λ} ⊂ {12, 22, 32, . . . i2, . . .}. Since the later set
of this inclusion has natural density zero, {n ∈ N : ν(xn − ξ; r + ε) ≤ 1 − λ} ∈ I.
Also, we have LIM rν

xn
= ∅ for any r [5].

Remark 3.4. From Example 3.3 we have Iν-LIM
r
xn

̸= ∅ does not imply LIM rν
xn

̸=
∅, but when I is an admissible ideal, LIM rν

xn
̸= ∅ implies Iν-LIM

r
xn

̸= ∅.

We are now giving an example of a sequence which is rough I-convergent in a PNS
but not rough I-convergent in a normed linear space.

Example 3.5. Let (X, ∥·∥) be a real normed space and ν(x; t) = t
t+∥x∥ for all

x ∈ X and t > 0. Also, let x ⋆ y = min{x, y}. Then (X, ν, ⋆) is a probabilistic
normed space. We take I = Iδ where Iδ is a class of all subsets of N whose natural
densities are zero. Then I is a non trivial admissible ideal of N. Define a sequence

{xn}n∈N as xn =

{
0 if n = i2, i ∈ N
n otherwise

. Then the set of all rough Iδ-limits of {xn}n∈N

with regards to ν is [−r, r]. But it is not rough Iδ-convergent to 0 with respect to
the norm ∥·∥. Because for ε > 0 the set {n ∈ N : ∥xn − 0∥ ≥ r + ε} /∈ Iδ. For,
if {n ∈ N : ∥xn − 0∥ ≥ r + ε} ∈ Iδ then, since {n : ∥xn − 0∥ < r + ε} = {n :
n = i2} ∪ A ∈ Iδ where A = {n : n < r + ε, n ̸= i2} is a finite set, the set
N = {n : ∥xn − 0∥ ≥ r + ε} ∪ {n : ∥xn − 0∥ < r + ε} ∈ Iδ which is a contradiction.
So {xn}n∈N is not rough I-convergent to 0 with respect to the norm ∥·∥.

Definition 3.6. (cf. [5]) Let {xn}n∈N be a sequence in a PNS (X, ν, ⋆). Then
{xn}n∈N is said to be I-bounded with respect to the probabilistic norm ν if for every
λ ∈ (0, 1) there exists a positive real number M such that the set {n ∈ N : ν(xn;M) ≤
1− λ} ∈ I.

Theorem 3.7. Let {xn}n∈N be a sequence in a PNS (X, ν, ⋆). If {xn}n∈N is I-
bounded then Iν-LIM

r
xn

̸= ∅ for some r > 0.

Proof. First suppose that {xn}n∈N is an I-bounded sequence. Then, for every
λ ∈ (0, 1) there exists a positive real number G such that {n ∈ N : ν(xn;G) ≤
1 − λ} ∈ I. Now, let A = {n ∈ N : ν(xn;G) ≤ 1 − λ} and θ be the zero element in
X. Then for k ∈ Ac, ν(xk;G) > 1− λ, and so, ν(xk − θ; r +G) = ν(xk + θ; r +G) ≥
ν(xk;G)⋆ν(θ; r) > (1−λ)⋆1 = 1−λ. Therefore {k ∈ N : ν(xk−θ; r+G) ≤ 1−λ} ⊂ A.
Hence θ ∈ Iν-LIM

r
xn
. So, Iν-LIM

r
xn

̸= ∅.

We shall now show that rough I-convergence of sequences in probabilistic normed
spaces satisfies algebra of rough I-limits.

Theorem 3.8. Let {xn}n∈N and {yn}n∈N be two sequences in a PNS (X, ν, ⋆).
Then, the following statements hold:

1. If xn
r−Iν−−−→ ξ and yn

r−Iν−−−→ η then xn + yn
r′−Iν−−−→ ξ + η, where r′ = 2r.

2. If xn
r−Iν−−−→ ξ and α ∈ R then αxn

r1−Iν−−−→ αξ, where r1 = |α|r.
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Proof. 1. Let ε > 0. Now, for given λ ∈ (0, 1), choose s ∈ (0, 1) such that

(1 − s) ⋆ (1 − s) > 1 − λ. Since xn
r−Iν−−−→ ξ and yn

r−Iν−−−→ η, A,B ∈ I, where
A = {n ∈ N : ν(xn − ξ; r + ε

2
) ≤ 1 − s} and B = {n ∈ N : ν(yn − η; r + ε

2
) ≤

1 − s}. Now, for n ∈ Ac ∩ Bc ∈ F(I) we have ν(xn + yn − (ξ + η); 2r + ε) ≥
ν(xn − ξ; r + ε

2
) ⋆ ν(xn − η; r + ε

2
) > (1 − s) ⋆ (1 − s) > 1 − λ. Therefore

{n ∈ N : ν(xn + yn − (ξ + η); r′ + ε) ≤ 1− λ} ⊆ A ∪B ∈ I where r′ = 2r.

2. Since xn
r−Iν−−−→ ξ, then for ε > 0 and λ ∈ (0, 1) the set {n ∈ N : ν(xn−ξ; r+ ε

|α|) ≤
1− λ} ∈ I. So, {n ∈ N : ν(αxn − αξ; r1 + ε) ≤ 1− λ} ∈ I where r1 = |α|r.

We will discuss on some topological and geometrical properties of rough I-limit set
of a sequence in a PNS.

Theorem 3.9. Let {xn}n∈N be a sequence in a PNS (X, ν, ⋆). Then the set
Iν-LIM

r
xn

is a closed set.

Proof. If Iν-LIM
r
xn

= ∅, then we have nothing to prove. So let Iν-LIM
r
xn

̸= ∅.
Suppose that {yn}n∈N is a sequence in Iν-LIM

r
xn

such that ν- limn→∞ yn = ξ. Now,
for given λ ∈ (0, 1), choose s ∈ (0, 1) such that (1− s) ⋆ (1− s) > 1− λ. Let ε > 0 be
given. Then there exists a n0 ∈ N such that ν(yn−ξ; ε

2
) > 1−s for all n ≥ n0. Suppose

yk ∈ Iν-LIM
r
xn

where k > n0. Consequently the set A = {n ∈ N : ν(xn − yk; r+
ε
2
) ≤

1 − s} ∈ I. So, M = N \ A ∈ F(I) and hence M ̸= ∅. Let i ∈ M . Therefore,
ν(xi − yk; r + ε

2
) > 1 − s. Again we get, for k > n0, ν(yk − ξ; ε

2
) > 1 − s. Now

ν(xi − ξ; r+ ε) ≥ ν(xi − yk; r+
ε
2
) ⋆ ν(yk − ξ; ε

2
) > (1− s) ⋆ (1− s) > 1− λ. Therefore

M ⊂ {n ∈ N : ν(xn − ξ; r + ε) > 1 − λ}. Consequently {n ∈ N : ν(xn − ξ; r + ε) ≤
1− λ} ∈ I. Hence ξ ∈ Iν-LIM

r
xn
. Therefore Iν-LIM

r
xn

is closed.

In the following theorem, likely in a normed linear space, it can be shown that
rough I-limit set in a PNS is convex.

Theorem 3.10. Let {xn}n∈N be a sequence in a PNS (X, ν, ⋆). Then the set
Iν-LIM

r
xn

is convex for some r > 0.

Proof. Let y1, y2 ∈ Iν-LIM
r
xn

and β ∈ (0, 1). Suppose λ ∈ (0, 1). Choose s ∈ (0, 1)
such that (1 − s) ⋆ (1 − s) > 1 − λ. Then for every ε > 0, the sets A = {n ∈ N :
ν(xn − y1; r+

ε
2(1−β)

) ≤ 1− s} ∈ I and B = {n ∈ N : ν(xn − y2; r+
ε
2β
) ≤ 1− s} ∈ I.

Then Ac ∩Bc ∈ F(I). Now, for j ∈ Ac ∩Bc, we have

ν(xj − [(1− β)y1 + βy2]; r + ε)

≥ ν((1− β)(xj − y1); (1− β)r +
ε

2
) ⋆ ν(β(xj − y2); βr +

ε

2
)

= ν(xj − y1;
(1− β)r

1− β
+

ε

2(1− β)
) ⋆ ν(xj − y2;

βr

β
+

ε

2β
)

= ν(xj − y1; r +
ε

2(1− β)
) ⋆ ν(xj − y2; r +

ε

2β
)

> (1− s) ⋆ (1− s) > 1− λ.

This gives Ac ∩Bc ⊂ {n ∈ N : ν(xn− [(1−β)y1+βy2]; r+ ε) > 1−λ}. Consequently
{n ∈ N : ν(xn − [(1− β)y1 + βy2]; r + ε) ≤ 1− λ} ∈ I. Therefore (1− β)y1 + βy2 ∈
Iν-LIM

r
xn

i.e. Iν-LIM
r
xn

is a convex set. This completes the proof.
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The following theorem gives a sufficient condition for a sequence {xn}n∈N to be
rough I-convergent in terms of a given I-convergent sequence {yn}n∈N.

Theorem 3.11. A sequence {xn}n∈N in a PNS (X, ν, ⋆) is rough I-convergent to
ξ ∈ X with respect to the probabilistic norm ν for some r > 0 if there exists a sequence
{yn}n∈N inX such that Iν- limn→∞ yn = ξ and for every λ ∈ (0, 1), ν(xn−yn; r) > 1−λ
for all n ∈ N.

Proof. Let ε > 0 be given. For a given λ ∈ (0, 1), choose s ∈ (0, 1) such that
(1 − s) ⋆ (1 − s) > 1 − λ Suppose that Iν- limn→∞ yn = ξ and ν(xn − yn; r) > 1 − s
for all n ∈ N. Then the set A = {n ∈ N : ν(yn − ξ; ε) ≤ 1 − λ} ∈ I. Then
there exists a set M ∈ F(I) such that M = N \ A. Now, for n ∈ M , we have
ν(xn − ξ; r + ε) ≥ ν(xn − yn; r) ⋆ ν(yn − ξ; ε) > (1 − s) ⋆ (1 − s) > 1 − λ. Therefore
M ⊂ {n ∈ N : ν(xn − ξ; r + ε) > 1 − λ}. Consequently {n ∈ N : ν(xn − ξ; r + ε) ≤
1− λ} ∈ I. Therefore r-Iν- limn→∞ xn = ξ. This completes the proof.

If z is any point of the rough I-limit set Iν-LIM
r
xn

of roughness degree r then any
point y ∈ Iν-LIM

r
xn

belongs to an open ball centered at z of radius λ of roughness
degree mr for m > 2. This is shown in the following theorem.

Theorem 3.12. Let {xn}n∈N be a sequence in a PNS (X, ν, ⋆). Then there does not
exist y, z ∈ Iν-LIM

r
xn

for some r > 0 and every λ ∈ (0, 1) such that ν(y−z;mr) ≤ 1−λ
for m(∈ R) > 2.

Proof. If possible, let there exist the elements y, z ∈ Iν-LIM
r
xn

for which

(1) ν(y − z;mr) ≤ 1− λ for m(∈ R) > 2

For a given λ ∈ (0, 1), choose s ∈ (0, 1) such that (1− s) ⋆ (1− s) > 1−λ. Now, since
y, z ∈ Iν-LIM

r
xn
, then for every ε > 0 we have A = {n ∈ N : ν(xn−y; r+ ε

2
) ≤ 1−s} ∈

I and B = {n ∈ N : ν(xn−z; r+ ε
2
) ≤ 1−s} ∈ I. ThenM = Ac∩Bc ∈ F(I). Now, for

n ∈ M we have ν(y−z; 2r+ε) ≥ ν(xn−y; r+ ε
2
)⋆ν(xn−z; r+ ε

2
) > (1−s)⋆(1−s) > 1−λ.

Therefore

(2) ν(y − z; 2r + ε) > 1− λ

Now, if we choose ε = mr− 2r, m(∈ R) > 2, then from 2 we get ν(y− z;mr) > 1−λ
for m(∈ R) > 2. This contradicts 1. This completes the proof.

Definition 3.13. Let {xn}n∈N be a sequence in a PNS (X, ν, ⋆). Then a point
ζ ∈ X is called rough I-cluster point of {xn}n∈N with respect to the probabilistic
norm ν if for every ε > 0, λ ∈ (0, 1) and some non negative number r, {n ∈ N :
ν(xn − ζ; r + ε) > 1 − λ} /∈ I. The set of all rough I-cluster points with respect to
the probabilistic norm ν of {xn}n∈N is denoted as Λr

(xn)
(Iν).

We denote by Λ(xn)(Iν) to mean the set of all ordinary I-cluster points of {xn}n∈N
with respect to the probabilistic norm ν. If r = 0, then we have Λr

(xn)
(Iν) = Λ(xn)(Iν).

Theorem 3.14. Let {xn}n∈N be a sequence in a PNS (X, ν, ⋆). Then the set
Λr

(xn)
(Iν) is closed for some r > 0.

Proof. If Λr
(xn)

(Iν) = ∅, then we have nothing to prove. So, let Λr
(xn)

(Iν) ̸= ∅.
Suppose that {yn}n∈N is a sequence in Λr

(xn)
(Iν) such that ν- limn→∞ yn = η, η ∈ X.

Now for given λ ∈ (0, 1), choose s ∈ (0, 1) such that (1 − s) ⋆ (1 − s) > 1 − λ. Let
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ε > 0 be given. Then there exists a n0 ∈ N such that ν(yn − η; ε
2
) > 1 − s for all

n ≥ n0. Choose m ∈ N such that m > n0. Then ν(ym − η; ε
2
) > 1− s. Consequently

the set {n ∈ N : ν(xn − ym; r +
ε
2
) > 1 − s} /∈ I, since ym is a rough I-cluster point

of {xn}n∈N. Let A = {n ∈ N : ν(xn − ym; r +
ε
2
) > 1 − s} and k ∈ A. Then we have

ν(xk−ym; r+
ε
2
) > 1−s. Now we have ν(xk−η; r+ε) ≥ ν(xk−ym; r+

ε
2
)⋆ν(ym−η; ε

2
) >

(1− s) ⋆ (1− s) > 1− λ. Therefore, A ⊂ {n ∈ N : ν(xn − η; r + ε) > 1− λ}. Clearly
{n ∈ N : ν(xn−η; r+ε) > 1−λ} /∈ I, otherwise A ∈ I, which leads to a contradiction.
Hence η ∈ Λr

(xn)
(Iν). Therefore Λr

(xn)
(Iν) is closed. This completes the proof.

We have found out a condition in the following theorem for a point β to be a rough
I-cluster point in a PNS.

Theorem 3.15. Let {xn}n∈N be a sequence in a PNS (X, ν, ⋆). Then for an arbi-
trary ζ ∈ Λ(xn)(Iν), λ ∈ (0, 1) and for some r > 0 we have ν(ζ − β; r) > 1− λ implies
β ∈ Λr

(xn)
(Iν).

Proof. For λ ∈ (0, 1), choose s ∈ (0, 1) such that (1 − s) ⋆ (1 − s) > 1 − λ. Since
ζ ∈ Λ(xn)(Iν), then for every ε > 0, the set {n ∈ N : ν(xn − ζ; ε) > 1 − s} /∈ I.
Let M = {n ∈ N : ν(xn − ζ; ε) > 1 − s}. Now we prove that if β ∈ X having
the properties ν(ζ − β; r) > 1 − s, then β ∈ Λr

(xn)
(Iν). Clearly for n ∈ M , we have

ν(xn−β; r+ ε) ≥ ν(xn− ζ; ε)⋆ν(ζ−β; r) > (1− s)⋆ (1− s) > 1−λ. This shows that
M ⊂ {n ∈ N : ν(xn − β; r+ ε) > 1− λ}. Clearly {n ∈ N : ν(xn − β; r+ ε) > 1− λ} /∈
I. If not, then M would belong to I, which leads to a contradiction. Therefore
β ∈ Λr

(xn)
(Iν). This completes the proof.

The following theorem shows that Λr
(xn)

(Iν) contains a closed ball whose center is

rough I-cluster point of {xn}n∈N.

Theorem 3.16. Let {xn}n∈N be a sequence in a PNS (X, ν, ⋆). Then for some
r > 0, λ ∈ (0, 1) and fixed c ∈ X we have⋃

c∈Λ(xn)(Iν)

B(c, λ; r) ⊂ Λr
(xn)(Iν),

where bar denotes the closure of the open ball B(c, λ; r).

Proof. Let x∗ ∈
⋃

c∈Λ(xn)(Iν) B(c, λ; r). Then there is c ∈ Λ(xn)(Iν) such that x∗ ∈
B(c, λ; r). So, by definition ν(c−x∗; r) > 1−λ. Let ε > 0 be given. Since c ∈ Λ(xn)(Iν),
then the set B = {n ∈ N : ν(xn − c; ε) > 1 − λ} /∈ I. Now, for i ∈ B, we have
ν(xi−x∗; r+ ε) ≥ ν(xi− c; ε) ⋆ (c−x∗; r) > (1−λ) ⋆ (1−λ) > 1−λ. This shows that
B ⊂ {n ∈ N : ν(xn−x∗; r+ε) > 1−λ}. Clearly {n ∈ N : ν(xn−x∗; r+ε) > 1−λ} /∈ I.
Hence x∗ ∈ Λr

(xn)
(Iν). Therefore

⋃
c∈Λ(xn)(Iν)B(c, λ; r) ⊂ Λr

(xn)
(Iν).

The rough I-limit sets can be characterized in term of closed balls as shown in the
following two theorems.

Theorem 3.17. Let {xn}n∈N be a sequence in a PNS (X, ν, ⋆). Then for any
λ ∈ (0, 1), the following statements hold:

1. If c ∈ Λ(xn)(Iν) then Iν-LIM
r
xn

⊆ B(c, λ; r).

2. Iν-LIM
r
xn

⊆
⋂

c∈Λ(xn)(Iν) B(c, λ; r) ⊆ {y0 ∈ X : Λ(xn)(Iν) ⊆ B(y0, λ; r)}.
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Proof. 1. For given λ ∈ (0, 1), we choose s ∈ (0, 1) such that (1− s) ⋆ (1− s) >
1 − λ. Let η ∈ Iν-LIM

r
xn
. Then for every ε > 0 and s ∈ (0, 1), we have

P = {n ∈ N : ν(xn − η; r + ε) ≤ 1 − s} ∈ I and since c ∈ Λ(xn)(Iν) M = {n ∈
N : ν(xn − c; ε) > 1− s} /∈ I. Let P c = Q. Then clearly Q ∩M ̸= ∅. If not, let
Q ∩M = ∅. So M ⊂ N \Q i.e. M ⊂ P . Since P ∈ I, M ∈ I, a contradiction.
Now, for n ∈ Q∩M we have ν(η−c; r) ≥ ν(xn−η; r+ε)⋆ν(xn−c; ε)⋆ν(θ;−2ε) =
ν(xn−η; r+ε)⋆ν(xn−c; ε)⋆1 = ν(xn−η; r+ε)⋆ν(xn−c; ε) > (1−s)⋆(1−s) > 1−λ.

This shows that η ∈ B(c, λ; r) ⊂ B(c, λ; r). Therefore, Iν-LIM
r
xn

⊆ B(c, λ; r).

2. By (1), we have Iν-LIM
r
xn

⊆
⋂

c∈Λ(xn)(Iν) B(c, λ; r). Let y0 ∈
⋂

c∈Λ(xn)(Iν) B(c, λ; r).

Then we have ν(y0 − c; r) ≥ 1− λ for all c ∈ Λ(xn)(Iν) =⇒ ν(c− y0; r) ≥ 1−
λ ∀c ∈ Λ(xn)(Iν). Hence Λ(xn)(Iν) ⊆ B(y0, λ; r), i.e., we have

⋂
c∈Λ(xn)(Iν)B(c, λ; r) ⊆

{y0 ∈ X : Λ(xn)(Iν) ⊆ B(y0, λ; r)}. Therefore Iν-LIM
r
xn

⊆
⋂

c∈Λ(xn)(Iν) B(c, λ; r) ⊆
{y0 ∈ X : Λ(xn)(Iν) ⊆ B(y0, λ; r)}. This completes the proof.

Theorem 3.18. Let {xn}n∈N be a sequence in a PNS (X, ν, ⋆) and xn
Iν−→ β then

there exists λ ∈ (0, 1) such that Iν-LIM
r
xn

= B(β, λ; r) for some r > 0.

Proof. For given λ ∈ (0, 1) choose s ∈ (0, 1) such that (1−s)⋆(1−s) > 1−λ. Since

xn
Iν−→ β, then for every ε > 0, the set A = {n ∈ N : ν(xn − β; ε) ≤ 1 − s} ∈ I. Let

ζ ∈ B(β, λ; r). So ν(ζ−β; r) ≥ 1−λ and hence ν(β−ζ; r) ≥ 1−λ. Now for n ∈ Ac, we
have ν(xn−ζ; r+ε) ≥ ν(xn−β; ε)⋆ν(β−ζ; r) > (1−s)⋆(1−s) > 1−λ, which shows that
{n ∈ N : ν(xn−ζ; r+ε) ≤ 1−λ} ⊂ A. Therefore {n ∈ N : ν(xn−ζ; r+ε) ≤ 1−λ} ∈ I.
Hence ζ ∈ Iν-LIM

r
xn
. So, B(β, λ; r) ⊆ Iν-LIM

r
xn
. Again, since xn

Iν−→ β, β ∈
Λ(xn)(Iν). Therefore, from Theorem 3.17, we have Iν-LIM

r
xn

⊆ B(β, λ; r). Therefore

Iν-LIM
r
xn

= B(β, λ; r). This completes the proof.
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