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APPLICATIONS OF FIXED POINT THEORY IN HILBERT

SPACES

Kiran Dewangan

Abstract. In the presented paper, the first section contains strong convergence
and demiclosedness property of a sequence generated by Karakaya et al. iteration
scheme in a Hilbert space for quasi-nonexpansive mappings and also the comparison
between the iteration scheme given by Karakaya et al. with well-known iteration
schemes for the convergence rate. The second section contains some applications of
the fixed point theory in solution of different mathematical problems.

1. Introduction

Fixed point theory plays an important role not only in the field of analysis, but
also used to find out solutions of different problems like integral equations, differen-
tial equations, convex minimization problems, image recovery, signal processing (refer
to [7, 8, 23]) etc.

There are lots of fixed point results in different spaces. One of the most important
and fruitful result in a metric space was given by Banach [5] called ”Banach Contrac-
tion Principle”. This principle was further generalized and its several variants were
studied by mathematicians over different spaces.

Let X be a Hilbert space and K be a non-empty subset of X. A point x ∈ X is
called a fixed point of a mapping T : X → X if T (x) = x. Through-out the literature,
F (T ) denotes the set of fixed points of T , that is, F (T ) = {x ∈ X : Tx = x}. Note
that a mapping T : K → K is called

(i) Lipschitz if ||Tx− Ty|| ≤ L||x− y||, for all x, y ∈ K, where L > 0.
(ii) contraction if ||Tx− Ty|| ≤ L||x− y||, for all x, y ∈ K, where 0 < L < 1.
(iii) nonexpansive if ||Tx− Ty|| ≤ ||x− y||, for all x, y ∈ K and L = 1.

Note that the Banach contraction principle is no longer true for nonexpansive
mappings. The study of fixed points of mappings with certain contraction condition
attract many researcher, but nonexpansive mapping has also an important role in
fixed point theory. The study of nonexpansive mappings were basically motivated
by Browder’s [6] work on relationship between monotone operators and nonexpansive
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mappings and the significance of the geometric properties of the norm for the exis-
tence of fixed point for nonexpansive mapping given by Kirk [19].

In 1967, Diaz and Metcalf [9] introduced the concept of quasi-nonexpansive map-
ping along with some related ideas. According to [9], a mapping T : K → K is
called quasi-nonexpansive, provided that T has at least one fixed point in X, that is,
F (T ) 6= ∅ and if z ∈ F (T ), then ||Tx− z|| ≤ ||x− z|| for all x ∈ X. It is well known
that the fixed point set of a quasi-nonexpansive mapping is closed and convex (refer
to [13,22]).

Example 1.1. Let T : R→ R defined by Tx =

{
x
2

sin(x
2
), x 6= 0,

0, x = 0.

Clearly T is quasi-nonexpansive mapping.

Iterative techniques for approximating fixed points of quasi-nonexpansive map-
pings were studied by various authors. In 1974, Dotson [10] proved that ” If X is
uniformly convex Banach space, K is non-empty closed convex subset of X and T
is quasi-nonexpansive mapping of K into itself, which satisfy condition (I), then the
sequence {xk} ⊂ K generated by Mann iteration [20] converges to a point of T ”. In
1978, Itoh and Takahashi [13] established the existence of common fixed points of a
quasi-nonexpansive mapping by an elementary constructive method in a Hilbert space.

In 1992, Ghosh and Debnath [11] established convergence of Ishikawa iteration [12]
to a unique fixed point of quasi-nonexpansive mapping in uniformly convex Banach
space. They proved that ” Let K be a closed convex subset of uniformly convex
Banach space X and S, T be two quasi-nonexpansive mapping of K into itself. If
T, S satisfy condition (C), then the sequence {xk} ⊂ K generated by Ishikawa itera-
tion [12] converges to a common fixed point of S and T ”.

In 2011, Tian and Jin [14] proved some fixed point results for quasi-non
expansive mapping in a Hilbert space by using an iterative process involving Lips-
chitizian mapping. In 2013, Suantai [25] established fixed points of a finite family
of multi-valued quasi-nonexpansive mappings in a uniformly convex Banach space.
Several fixed point results have been established through different iterative scheme by
mathematicians (refer to [2, 4, 15]).

In 2017, the following iteration scheme was introduced by Karakaya et al. [16] to
approximate fixed point of nonlinear mappings in a Banach space. This iteration
scheme is:
Let K be a non-empty subset of a normed space X and T : K → K be a nonlinear
mapping. Then for each x1 ∈ K, the sequence {xk} is defined by

(1)


zk = Txk,

yk = (1− αk)zk + αkTzk,

xk+1 = Tyk, k ≥ 1,

where {αk} is a sequence in (0, 1).
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Karakaya et al. [16] proved stability and some convergence results of the iteration
scheme (1) for contractive like operator in a Banach space and proved that their iter-
ative scheme is faster than some well-known iterative schemes.

In this paper, the aim is to establish strong convergence of the iteration scheme
defined by (1) for quasi-nonexpansive mappings in a Hilbert space, and comparison be-
tween Karakaya et al. iteration scheme (1) with some well-known iteration schemes.
Some applications of the fixed point theory in solutions of different mathematical
problems are discussed here.

2. Preliminaries

This section proceeds with some necessary concepts and includes some useful re-
sults.

Definition 2.1. [18] Let X be a uniformly convex Banach space. A sequence
{xk} in X is said to be Fejer monotone with respect to subset K of X, if

||xk+1 − z|| ≤ ||xk − z||,

for all z ∈ K, k ≥ 1.

Proposition 2.2. [18] Let K be a non-empty subset of a uniformly convex Banach
space X. Suppose that {xk} is a Fejer monotone sequence with respect to K. Then
the following holds:

(I) Sequence {xk} is bounded.
(II) For every x ∈ K, {||xk − x||} converges.

Definition 2.3. [10] Let X be a uniformly convex Banach space with the norm
||.|| and K a convex subset of X. A mapping T : K → K with non-empty fixed
point set F (T ) in K is said to satisfy Condition (I), if there is a non-decreasing
function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for r ∈ (0,∞) such that
||x−Tx|| ≥ f(d(x, F (T )) for all x ∈ K, where d(x, F (T )) = inf{||x− z|| : z ∈ F (T )}.

Lemma 2.4. [24] Let X be a uniformly convex Banach space, and {αk} be a
sequence in [δ, 1−δ] for some δ ∈ (0, 1). Suppose that {xk} and {yk} are in X such that
lim supk→∞ ||xk|| ≤ c, lim supk→∞ ||yk|| ≤ c, and lim supk→∞ ||αkxk + (1− αk)yk|| = c
for some c ≥ 0. Then limk→∞ ||xk − yk|| = 0.

Theorem 2.5. [26] Let X be a Hilbert space. Let {xk} be a sequence of X with
xk ⇀ x. If x 6= y, hen

lim inf
k→∞

||xk − x|| < lim inf
k→∞

||xk − y||.

Definition 2.6. [27] Let K be a non-empty closed convex subset of a Hilbert
space X. For every point x ∈ X, there is a unique nearest point in K denoted by
PK(x) such that

||x− PK(x)|| ≤ ||x− y||, for all y ∈ K.
PK is called a metric projection of X onto K.
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Lemma 2.7. [26] Let K be a non-empty convex subset of a Hilbert space X and
let x ∈ H and y ∈ K. Then the following are equivalent:

(i) ||x− y|| = d(x,K),
(ii) < x− y, z − y >≥ 0, for all z ∈ K.

3. Main results

Lemma 3.1. Let X be a Hilbert space and K be a non-empty closed convex subset
of X. Let T : K → K be a quasi-nonexpansive mapping with F (T ) 6= ∅. Let {xk} be
a sequence in K defined by (1). Then limk→∞ ||xk − z|| exists.

Proof. Let z ∈ F (T ). By quasi-nonexpansiveness of T , we have

||zk − z|| = ||Txk − z||
≤ ||xk − z||,

||yk − z|| = ||(1− αk)zk + αkTzk − z||
≤ (1− αk)||zk − z||+ αk||Tzk − z||
≤ (1− αk)||xk − z||+ αk||zk − z||
≤ (1− αk)||xk − z||+ αk||xk − z||
≤ ||xk − z||

and

||xk+1 − z|| = ||Tyk − z||
≤ ||yk − z||
≤ ||xk − z||.

It follows that the sequence {xk} is Fejer momotone with respect to F (T ). Hence
by the Proposition 2.2, sequence {xk} is bounded and {||xk − z||} converges, that is,
limk→∞ ||xk − z|| exists.

Lemma 3.2. Let X be a Hilbert space and K be a non-empty closed convex subset
of X. Let T : K → K be a quasi-nonexpansive mapping with F (T ) 6= ∅. Let {xk} be
a sequence in K defined by (1) and {γk} is sequence in [δ, 1 − δ] for some δ ∈ (0, 1).
Then limk→∞ ||Txk − xk|| = 0.

Proof. From Lemma 3.1, we have limk→∞ ||xk−z|| exists, so suppose that limk→∞ ||xk−
z|| = w.
If w = 0, then by using quasi-nonexpansiveness of T , we have

||Txk − xk|| ≤ ||Txk − z||+ ||z − xk||
≤ ||xk − z||+ ||z − xk||.

Therefore, the result follows.
Suppose that w > 0. As limk→∞ ||xk− z|| = w, it follows that lim supk→∞ ||xk− z|| ≤



Applications of fixed point theory in Hilbert spaces 63

w. Also ||Txk − z|| ≤ ||xk − z||, this implies that lim supk→∞ ||Txk − z|| ≤ w. Note
that

lim sup
k→∞

||γk(xk − z) + (1− γk)(Txk − z)|| ≤ γk lim sup
k→∞

||xk − z||

+ (1− γk) lim sup
k→∞

||xk − z||.

Which gives us

lim sup
k→∞

||γk(xk − z) + (1− γk)(Txk − z)|| ≤ w.

Hence by Lemma 2.4, we have limk→∞ ||(xk − z) − (Txk − z)|| = 0. Therefore
limk→∞ ||Txk − xk|| = 0.

Following theorem shows the strong convergence of the iteration scheme defined by
(1).

Theorem 3.3. Let X be a Hilbert space and K be a non-empty closed convex
subset of X. Let T : K → K be a quasi-nonexpansive mapping with F (T ) 6= ∅ and
it satisfy Condition (I). Then the sequence {xk} defined by (1) converges strongly to
a fixed point of T .

Proof. Let z ∈ F (T ). From Lemma 3.1, we have

||xk+1 − z|| ≤ ||xk − z||,

it gives that

d(xk+1, F (T )) ≤ d(xk, F (T )).

Thus limk→∞ d(xk, F (T )) exists. Since T satisfy Condition (I) and from Lemma 3.2,
we have limk→∞ ||Txk − xk|| = 0, it follows that limk→∞ f(d(xk, F (T ))) = 0 and thus
limk→∞ d(xk, F (T )) = 0.

Next, we prove that {xk} is a Cauchy sequence inK. Since limk→∞ d(xk, F (T )) = 0,
for ε

′
> 0, there exists a constant k0 such that for all k ≥ k0, we have

d(xk, F (T )) <
ε
′

4
.

Hence there must exists a point p ∈ F (T ) such that

||xk0 − p|| <
ε
′

2
.

Now for m,n ≥ k0, we have

||xn+m − xn|| ≤ ||xn+m − p||+ ||p− xn||
≤ 2||xk0 − p||
< ε

′
.

It follows that {xk} is a Cauchy sequence in K. Since K is closed subset of Hilbert
space X, so there exists a point say x ∈ K such that ||xk − x|| → 0 as k →∞. Next
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we prove that x is fixed point of T . For this,

0 ≤ ||Tx− x|| ≤ ||Tx− xk+1||+ ||xk+1 − x||
≤ ||Tx− Tyk||+ ||xk+1 − x||
≤ ||Tx− Tz||+ ||Tz − Tyk||+ ||xk+1 − x||
≤ ||x− z||+ ||z − yk||||xk+1 − x||
≤ ||x− z||+ ||xk − z||||xk+1 − x||
= ||x− xk||+ ||xk+1 − x|| → 0 as k →∞.

This shows that x is a fixed point of T .

Theorem 3.4. Let X be a Hilbert space and K be a non-empty closed convex
subset of X. Let T : K → K be a quasi-nonexpansive mapping with F (T ) 6= ∅. Then
the sequence {xk} defined by (1) converges strongly to a fixed point of T if and only
if limk→∞ d(xk, F (T )) = 0, where d(xk, F (T )) = inf{||xk − z|| : z ∈ F (T )}.

Proof. If the sequence {xk} converges strongly to a fixed point of T , then it is
obvious that limk→∞ d(xk, F (T )) = 0.
Conversely, suppose that limk→∞ d(xk, F (T )) = 0. For ε

′
> 0, there exists k0 ∈ N,

such that for all k ≥ k0,

d(xk, F (T )) <
ε
′

4
.

In particular, there exists a point z
′ ∈ F (T ) such that

||xk0 − z
′|| < ε

′

2
.

For k,m ≥ k0, we have

||xk+m − xk|| ≤ ||xk+m − z
′||+ ||z′ − xk||

= 2||xk0 − z
′|| < ε

′
.

It follows that {xk} is a Cauchy sequence in K. Since K is closed subset of Hilbert
space X, so there exists a point x ∈ K such that ||xk − x|| → 0 as k → ∞. By our
assumption limk→∞ d(xk, F (T )) = 0, it gives that

d(x, F (T )) = 0⇒ x ∈ F (T ).

Theorem 3.5. Let X be a Hilbert space and K be a non-empty compact convex
subset of X. Let T : K → K be a quasi-nonexpansive mapping with F (T ) 6= ∅. Then
the sequence {xk} defined by (1) converges strongly to a fixed point of T .

Proof. From Lemma 3.2, we have limk→∞ ||Txk − xk|| = 0, and K is compact,
there exists a subsequence {xkp} of {xk} such that xkp → z for some z ∈ K. By
qusi-nonexpansiveness of T , we have

||xkp − Tz|| ≤ ||xkp − Txkp||+ ||Txkp − Tz||
≤ ||xkp − Txkp||+ ||xkp − z||.

This shows that xkp → Tz as k →∞. By uniqueness of limits, we have, z = Tz. Also
by Lemma 3.1, limk→∞ ||xk−z|| exists, thus z is the strong limit of the sequence {xk}
itself .
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To prove demiclosedness property for quasi-nonexpansive mapping in a Hilbert
space, note that a mapping T : K → K is demiclosed, if xk ⇀ x ∈ K and Txk → y,
then y = Tx.

Theorem 3.6. Let K be a non-empty closed convex subset of a Hilbert space X.
Let {xk} be a sequence of X with xk ⇀ x and T : K → K be a quasi-nonexpansive
mapping with F (T ) 6= ∅. Then I − T is demiclosed at zero.

Proof. Let z ∈ F (T ) and {xk} be a sequence in K such that xk ⇀ x. From Lemma
3.2, we have limk→∞ ||Txk − xk|| = 0. Let {xkp} be a subsequence of {xk}. We claim
that x = Tx.
Suppose not. By quasi-nonexpansiveness of T and from Theorem 2.5, we have

lim inf
k→∞

||xkp − x|| < lim inf
k→∞

||xkp − Tx||

≤ lim inf
k→∞

||xkp − Txkp||+ lim inf
k→∞

||Txkp − Tx||

= lim inf
k→∞

||Txkp − Tx||

≤ lim inf
k→∞

||Txkp − z||+ lim inf
k→∞

||z − Tx||

≤ lim inf
k→∞

||xkp − z||+ lim inf
k→∞

||z − x||

= lim inf
k→∞

||xkp − x||.

Hence, we conclude that lim infk→∞ ||xkp − x|| < lim infk→∞ ||xkp − x||, which is a
contradiction. Therefore x = Tx.

4. Numerical Examples

We illustrate our main results with the help of following example.

Example 4.1. Let X = R be a Hilbert space, K be a closed subset of R, and
T : R→ R is defined by

(2) Tx =

{
0, if x = 0,

x sin( 1
x
), if x 6= 0.

Then T is a quasi-nonexpansive mapping, as 0 is a fixed point of T , we have

||Tx− 0|| = ||x sin(
1

x
)− 0||

≤ ||x||
= ||x− 0||.

Also, T is not a nonexpansive mapping for x = 2
π
, y = 2

3π
, as we have ||Tx−Ty|| = 8

3π
,

while ||x− y|| = 4
3π

.

Now, let {xk} be a sequence in K defined by (1). Since

lim
k→∞

d(xk, F (T )) = lim
k→∞

inf{||xk − z|| : z ∈ F (T )}

= lim
k→∞

inf{||xk − 0|| : 0 ∈ F (T )}.
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Also from Lemma 3.1, limk→∞ ||xk − 0|| exists for 0 ∈ F (T ) and from Theorem
3.5, {xk} converges strongly to 0 ∈ F (T ). Therefore from Theorem 3.4, we have
limk→∞ d(xk, F (T )) = 0.

Now with the help of Matlab software program, we compare the iteration scheme
(1) with the iteration schemes given by Abbas [1], MP (modified Picard Mann) [17],
Agrawal [3], and Noor [21].

Iteration Karakaya (1) Abbas (2) MP (3) Agrawal (4) Noor (5)
0 0.50000000 0.50000000 0.50000000 0.50000000 0.50000000
1 -0.11446261 -0.12232388 0.53999888 0.07169060 -0.35915422
2 0.01725645 0.35804406 0.12780578 0.06755385 0.13118460
3 0.01171189 -0.07507173 0.12756071 0.04424888 0.12357188
4 -0.00081247 0.02744380 0.12748508 -0.04658929 -0.11580347
5 -0.00002573 -0.00834802 0.12744714 0.04023444 0.15443382
6 0.00001101 -0.00690044 0.12742407 0.01723836 -0.02521319
7 0.00000018 -0.00181367 0.12740848 0.01630729 0.02798271
8 0.00000001 -0.00142105 0.12739720 -0.01861953 0.00000529
9 0.00000000 0.00011591 0.12738864 0.00425234 0.00000279
10 0.00000000 -0.00001552 0.12738191 -0.00187809 0.00000003
11 0.00000000 -0.00000550 0.12737647 -0.00158199 -0.00000002
12 0.00000000 0.00000075 0.12737199 -0.00058866 0.00000001
13 0.00000000 0.00000016 0.12736822 0.00049998 0.00000000
14 0.00000000 0.00000006 0.12736501 0.00043898 0.00000000
15 0.00000000 0.00000000 0.12736224 0.00015496 0.00000000
Table 1. Strong convergence of Karakaya, Abbas, MP, Agrawal, Noor
iterations to the fixed point x = 0 of T in Example 4.1

From the Table 1, it is clear that the iteration scheme (1) is faster than the Abbas
[1], MP [17], Agrawal [3] and Noor [21] iteration schemes for quasi-nonexpansive
mappings.

5. Applications of Fixed Point Theory

5.1. Application in Integral Equation. Consider the following nonlinear integral
equation-

(3) x(t) = λ

∫
Ω

f(t, s, x(s))ds+ y(t),

where y : [a, b]→ R and f(s, t, x(s)) : [a, b]× [a, b]× [a, b]→ R are continuous.

Consider the Hilbert spaceX = R andK = [a, b] is subset ofX. Define ||.|| : R→ R
by

||x− y|| = sup{|x(s)− y(s)| : s ∈ [a, b]},
for all x ∈ R.
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Figure 1. Behaviors of Karakaya iteration (cyan), Abbas iteration
(carrot orange), Mp iteration (yellow), Agrawal iteration (purple) and
Noor iteration (green) to the fixed point x = 0 of the mapping T in
Example 4.1

Theorem 5.1. Let X = R and K = [a, b] is subset of X and T : K → K is defined
by

(4) Tx(t) = λ

∫ b

a

f(t, s, x(s))ds+ y(t),

where y : [a, b] → R and f(s, t, x(s)) : [a, b] × [a, b] × [a, b] → R are continuous and
λ ∈ R. suppose that the following conditions are satisfied-

(i) There exists a continuous mapping F : X ×X → [0,∞) such that

|f(t, s, x(s))− f(t, s, y(s))| ≤ F (x, y)|x(s)− y(s)|,

for all s ∈ [a, b], x, y ∈ X.

(ii) There exists ζ ∈ (0, 1] such that
∫ b
a
F (x, y) ≤ ζ.

(iii) λζ ≤ 1.

Let {xk} be a sequence in K defined by (1). Then the integral equation (4) has a
solution.
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Proof. Let x ∈ [a, b] and F (T ) 6= ∅ with z ∈ F (T ). Then

|Tx(s)− z(s)| = |Tx(s)− Tz(s)|

= |λ
∫ b

a

f(t, s, x(s))dt− λ
∫ b

a

f(t, s, z(s))dt|

= |λ
∫ b

a

(f(t, s, x(s))− f(t, s, z(s)))dt|

≤ λ|
∫ b

a

F (x, z)(x(s)− z(s))dt|

sup |Tx(s)− z(s)| ≤ sup |x(s)− z(s)|λ
∫ b

a

F (x, z)dt

≤ ||x− z||λζ
≤ ||x− z||.

Hence, we conclude that T is a quasi-nonexpansive mapping. Now define

B = {x ∈ X : ||x|| ≤ r},

where r is sufficiently large. Clearly T (B) ⊂ B. Also B is compact subset of X, hence
from the Theorem 3.5, T has a fixed point in B and this fixed point is solution of the
integral equation (4).

5.2. Application in Variational Inequality Problem.

Theorem 5.2. Let K be a non-empty compact convex subset of a Hilbert space X.
Let T : K → K be a quasi-nonexpansive mapping and ψ : K → K be a contraction
mapping with a contraction coefficient in [0, 1). Let {αk} be a sequences in (0, 1).
Then the sequence {xk} defined by (1) converges strongly to a fixed point q ∈ F (T ),
which is also a unique solution of the following variational inequality

< (I − ψ)q, x− q >≥ 0.

Proof. From Lemma 3.1, sequence {xk} is bounded and from Lemma 3.2, we have
limk→∞ ||Txk − xk|| = 0. We claim that

lim sup
k→∞

< (I − ψ)q, x− q >≥ 0,

where q ∈ F (T ) is unique fixed point of ψ.
Since K is compact, there exists a subsequence {xkp} of {xk} such that xkp → p for
some p ∈ K. By using Lemma 2.7, we have

lim sup
k→∞

< ψ(q)− q, xk − q > = lim sup
k→∞

< ψ(q)− q, xkp − q >

=< (ψ(q)− q, p− q >≥ 0.

Now we claim that xk → q ∈ F (T ). By doing similar procedure as in the proof of the
Theorem 3.5, xk → q ∈ F (T ).
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5.3. Application in Boundary Value Problem. Consider the following boundary
value problem:

(5) x
′′
(t) + γ(t, h(t)), x

′
(0) = 0 = x(1),

where t ∈ [0, 1] and γ : [0, 1] × R → R is continous mapping. Let K be a compact
subset of X. Then the solutions of (5) are the fixed points of the operator T defined
on K by

F (t, h(t)) =

∫ 1

0

G(t, s)γ(t, h(t))dt, t, s ∈ [0, 1],

where G is green function of (5) defined by

G(t, s) =

{
−s(log s), 0 ≤ t ≤ s ≤ 1,

−s(log t), 0 ≤ s ≤ t ≤ 1.

Theorem 5.3. Let K be a non-empty compact convex subset of a Hilbert space
X = R. Define T : K → K by

T (h(t)) =

∫ 1

0

G(a, t)γ(t, h(t))dt,

for each h(t) ∈ F (T ). Now, choose K = [0, e
−1
2 ]. For fixed s, let

∫ 1

0

G(t, s)ds ≤
∫ 1

0

G(0, s)ds =
1

4
, 0 ≤ t ≤ 1

and

|γ(t, h1(t))− γ(t, h2(t))| ≤ ζ((h1(t), h2(t))|h1(t)− h2(t)|,

where
∫ 1

0
ζ((h1(t), h2(t))dt ≤ 1.

Let {xk} be a sequence in K defined by (1). Then it converges to some solution of
(5).

Proof. It is known that an element h of F (T ) is a solution of (5) if and only if it is
a solution to the following integral equation:

h(a) =

∫ 1

0

G(a, t)f(t, h(t))dt.
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Now, for h1, h2 ∈ T , a ∈ [0, 1], we have

||T (h1(t))− T (h2(t))|| = ||
∫ 1

0

G(a, t)γ(t, h1(t))dt−
∫ 1

0

G(a, t)γ(t, h2(t))dt||

= ||
∫ 1

0

G(a, t)[γ(t, h1(t))− γ(t, h2(t))]dt||

≤ ||
∫ 1

0

(γ(t, h1(t))− γ(t, h2)(t))dt|||
∫ 1

0

G(a, t)dt|

≤ 1

4
||
∫ 1

0

(γ(t, h1(t))− γ(t, h2(t)))||

≤ 1

4
|
∫ 1

0

ζ((h1(t), h2(t))||h1(t)− h2(t)||dt|

≤ 1

4
||h1(t)− h2(t)||

≤ ||h1(t)− h2(t)||.

It conclude that T is a nonexpansive mapping with F (T ) 6= ∅. Hence T is a quasi-
nonexpansive mapping. Hence, From Theorem 3.5, a sequence {xk} in K defined by
(1) converges strongly to a fixed point of T which is a solution of (5).
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