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A NON-OVERLAPPING DOMAIN DECOMPOSITION METHOD

FOR A DISCONTINUOUS GALERKIN METHOD: A NUMERICAL

STUDY

Eun-Hee Park

Abstract. In this paper, we propose an iterative method for a symmetric interior
penalty Galerkin method for heterogeneous elliptic problems. The iterative method
consists mainly of two parts based on a non-overlapping domain decomposition ap-
proach. One is an intermediate preconditioner constructed by understanding the
properties of the discontinuous finite element functions and the other is a precondi-
tioning related to the dual-primal finite element tearing and interconnecting (FETI-
DP) methodology. Numerical results for the proposed method are presented, which
demonstrate the performance of the iterative method in terms of various param-
eters associated with the elliptic model problem, the finite element discretization,
and non-overlapping subdomain decomposition.

1. Introduction

Let Ω be a bounded polygonal domain in R2 and f ∈ L2(Ω). We consider the following
model problem: Find u ∈ H1

0 (Ω) such that

(1)

∫
Ω

ρ∇u · ∇v dx =

∫
Ω

fv dx ∀ v ∈ H1
0 (Ω),

where ρ may vary inside the domain Ω. The model problem (1) can be discretized by
symmetric interior penalty (SIPG) methods [3,5,10,22,25]. The SIPG method is one
of the best known discontinuous Galerkin (DG) methods; cf. [2,23] and the references
therein. In this paper we will propose an iterative method for the SIPG method based
on a non-overlapping domain decomposition (DD) approach.

There have been various studies on non-overlapping DD methods for discontinuous
finite element methods; cf. [1, 4, 5, 8, 9, 11, 12, 15–17]. The most advanced iterative
algorithms based on non-overlapping DD are represented by the balancing domain
decomposition by constraints (BDDC) and the FETI-DP methodologies; cf. [7,13,14,
18–21].
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Among the papers referenced above, the works in [5, 12] are the most relevant to
the study in this paper. Below, we will briefly describe the key features of the method
proposed in this paper compared to those previous works.

Differently from continuous finite element methods, DG methods have the bilinear
forms, which include the term that penalizes the jumps of discontinuous finite element
functions across the element boundaries. This difference makes it difficult to develop
non-overlapping DD methods for DG methods.

The work in [5] proposes a BDDC algorithm for the same problem treated in this
paper, which overcomes the difficulty of the DG coupling across the interface by
introducing a subspace decomposition of the discontinuous finite element space. On
the other hand, the work in [12] proposes a FETI-DP algorithm for a DG method. The
difficulty is overcome by introducing the enlarged subdomain problems that include
extra unknowns associated with neighboring subdomains. As a result, the size of the
subdomain problems associated with the subdomain interface is doubled compared to
the similar algorithms developed for continuous finite element methods. Considering
those properties of two methods discussed above, in this paper, we develop an iterative
method based on the FETI-DP methodology by applying a variant of a subspace
decomposition introduced in [5].

The rest of the paper is organized as follows. In Section 2 we introduce the discrete
problem resulting from the SIPG method. We then propose an iterative method for
solving the discrete problem based on a non-overlapping DD approach in Section 3.
In Section 4, we present the numerical study for the proposed methods. Finally, the
conclusion is stated in Section 5.

To avoid the proliferation of constants, throughout the paper we will use A . B
and A & B to represent the statements that A ≤ (constant)B and A ≥ (constant)B,
where the positive constant is independent of the mesh size, the subdomain size, the
number of subdomains, and the constant ρ. The statement A ≈ B is equivalent to
A . B and A & B.

2. A discontinuous Galerkin discrete problem

Let Ω1, · · · ,ΩJ be polygonal subdomains of Ω that form a non-overlapping decompo-
sition of Ω. We assume that the diffusion coefficient ρ equals a positive constant ρj
on the subdomain Ωj for 1 ≤ j ≤ J ; cf. Figure 4 and Figure 5.

Let Th be a simplicial triangulation of Ω aligned with Ω1, · · · ,ΩJ and

(2) Xh = {v ∈ L2(Ω) : v|T ∈ P1(T ) ∀T ∈ Th}

be the discontinuous P1 finite element space associated with Th; cf. Figure 2(a) and
Figure 2(b). The model problem (1) is discretized by the following SIPG method [3,
5, 10,22,25]: Find uh ∈ Xh such that

(3) ah(uh, v) =

∫
Ω

fv dx v ∈ Xh,
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e

e

Figure 1. Left figure: an edge e shared by two triangles; Center figure:
T+ and n+; Right figure: T− and n−.

where

ah(v, w) =
∑
T∈Th

∫
T

ρ∇v · ∇w dx+ η
∑
e∈Eh

ρe
|e|

∫
e

[[v]] · [[w]] ds(4)

−
∑
e∈Eh

∫
e

(
{{ρ∇v}} · [[w]] + {{ρ∇w}} · [[v]]

)
ds.

Here η is a positive penalty parameter, Eh is the set of the edges of Th and |e| is the
length of the edge e. Depending on whether an edge e is interior to Ω or along ∂Ω,
the weight ρe, the jump [[v]], the average {{ρ∇v}} for vector functions and the average
{{v}} for scalar functions are defined differently as described in Table 1. For an edge e
interior to Ω, two triangles that share the edge e are denoted by T+ and T−, where the
unit outer normals along ∂T± on the edge e are in opposite directions; cf. Figure 1.
For the triangles T±, we use the following notations:

ρ± = ρ
∣∣
T±
, v± = v|T± , β+ =

ρ+

ρ− + ρ+

, β− =
ρ−

ρ− + ρ+

.

Table 1. Definitions of the average operator for scalar functions and
the notations that appear in the SIPG bilinear form ah(·, ·), where n±
are the unit outer normals along ∂T± and n is the unit normal pointing
towards the outside of Ω.

ρe [[v]] {{ρ∇v}} {{v}}

e shared by T±
2ρ−ρ+
ρ−+ρ+

v+n+ + v−n− β+(ρ−∇v−) + β−(ρ+∇v+) β−v− + β+v+

e along ∂Ω ρ vn ρ∇v −

To develop an efficient iterative solver for the problem (3), we consider the following
equivalent algebraic form:

(5) Au = f ,

where A is the stiffness matrix, u is the unknowns vector associated with the degrees
of freedom of Xh, and f is the vector corresponding to the right-hand side of (3).

Remark 2.1. Let Vh be the set of vertices of the triangles in Th defined by

Vh = {(p, T ) : p is a vertex of the triangle T in Th} .
We use the values of the discontinuous P1 finite element functions at the vertices in Vh
as the degrees of freedom. Accordingly, the function v in Xh has one degree of freedom
(dof) associated with each vertex in Vh, which is represented by ‘ ◦’ in Figure 2(b).
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(a) (b) (c) (d)

Figure 2. (a) A triangulation Th and a non-overlapping domain par-
tition of Ω with the interface Γ in thick lines. (b) Degrees of freedom
of Xh. (c) Degrees of freedom of Xh,D. (d) Degrees of freedom of Xh,C .

Remark 2.2. Based on the coercivity property of ah(·, ·) for a sufficiently large
penalty parameter η, we have that the stiffness matrix A is symmetric positive-definite
(SPD); cf. [5, 23]. In addition, the following estimate holds:

(6) κ(A) =
λmax(A)

λmin(A)
.
ρmax

ρmin

h−2,

where ρmax = maxx∈Ω ρ(x), ρmin = minx∈Ω ρ(x).

3. A non-overlapping DD method

In this section we suggest an iterative method for solving the linear system (5). The it-
erative method consists mainly of two parts based on a non-overlapping DD approach.
One is an intermediate preconditioner constructed by understanding the properties of
the discontinuous finite element functions. The other is a preconditioning algorithm
related to the FETI-DP methodology.

3.1. An intermediate preconditioner.

Let Γ =
(⋃J

j=1 ∂Ωj

)
\ ∂Ω be the interface of the subdomains; cf. Figure 2(a). Note

that the discontinuous P1 finite element space Xh is decomposed into two subspaces
as follows:

(7) Xh = Xh,D ⊕Xh,C ,

where

Xh,D = {v ∈ Xh : {{v}} = 0 on the edges on Γ and v vanishes at the vertices in VI}

and

Xh,C =

{
v ∈ Xh : [[v]] = 0 on the edges in Eh that are subsets of

J⋃
j=1

∂Ωj

}
.

The set VI of interior vertices (cf. black ◦ in Figure 2(d)) is defined by

VI =
{

(p, T ) ∈ Vh : both edges that share p are disjoint from
J⋃
j=1

∂Ωj

}
.
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Remark 3.3. The decomposition in (7) was considered as part of the subspace
decomposition introduced in [5]. The work in [5] proposes a BDDC preconditioner
based on the subspace decomposition as follows:

Xh = Xh,D ⊕ C1 ⊕ C2,

where C1 and C2 are the orthogonal subspaces of Xh,C associated with ah(·, ·).

Remark 3.4. The degrees of freedom of the functions in Xh,C and Xh,D are de-
scribed in Figure 2(c) and Figure 2(d), respectively. The function in Xh,D has one dof
represented by ‘ ◦−◦’, which is related to a pair of neighboring vertices on Γ, and one
dof represented by ‘ ◦’, which corresponds to each vertex on ∂Ω. On the other hand,
the function in Xh,C has one dof represented by ‘ •−•’, which is related to a pair of
neighboring vertices on Γ, and one dof represented by ‘ ◦’, which corresponds to each
vertex in VI .

Remark 3.5. The localization of the bilinear form ah(·, ·) plays an important role
in developing efficient iterative solvers for (5); cf. Remark 3.7. From this point of
view, the subdomain decomposition (7) was proposed in the author’s work [5].

By understanding the properties of the functions in Xh based on (7), we can con-
struct a preconditioner P 1 for A defined by

(8) P 1 = IDA
−1
D I tD + ICA

−1
C I tC .

Here AD and AC are the matrix representation of the SPD operators

Ah,D : Xh,D −→ X
′

h,D and Ah,C : Xh,C −→ X
′

h,C

defined by

〈Ah,Dv, w〉 = ah(v, w) ∀ v, w ∈ Xh,D,(9)

〈Ah,Cv, w〉 = ah(v, w) ∀ v, w ∈ Xh,C ,(10)

and the matrices ID and IC correspond to the natural injections

(11) Ih,D : Xh,D −→ Xh and Ih,C : Xh,C −→ Xh.

From (7), (9) and (10), it is noted that the following property holds that for any
v ∈ Xh,

(12) ah(v, v) ≈ 〈Ah,DvD, vD〉+ 〈Ah,CvC, vC〉,
where v = Ih,DvD + Ih,CvC is the unique decomposition with respect to the spaces
Xh,D and Xh,C ; cf. Lemma 2.7 in [5]. Therefore by the theory of additive Schwarz
preconditioner [6, 24], we have

(13) κ(P 1A) =
λmax(P 1A)

λmin(P 1A)
≈ 1.

Remark 3.6. Based on (13), the iterative solver accompanied by the preconditioner
P 1 is theoretically optimal since the condition number estimate is independent of the
mesh size h, that is, the problem size.

In addition to the optimality in Remark 3.6, we should look at the practical effi-
ciency of the iterative solver. The solver A−1

D in P 1 can be implemented efficiently
because the system involving AD is reduced to a relatively small system related to
the degrees of freedom at corner vertices; cf. Figure 2(c). On the other hand, the
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solver A−1
C in P 1 is the global solver because of the properties of the functions in

Xh,C ; cf. Figure 2(d). Therefore, we need to replace the solver A−1
C by a better

preconditioner in order to develop efficient iterative solvers in practice.

3.2. An iterative method based on non-overlapping DD.
In order to design an efficient solver for replacing the global solver A−1

C , we consider
the following problem involving A−1

C :
Given g ∈ X ′h,C , find w ∈ Xh,C such that

(14) 〈Ah,Cw, v〉 = 〈g, v〉 ∀ v ∈ Xh,C ,

where 〈g, v〉 =
∫

Ω
gv dx.

The FETI-DP method is one of the most advanced non-overlapping DD algorithms,
which is based on the Lagrangian method; cf. [7, 13, 14, 19, 21] and the references
therein. The method enforces weakly the continuity constraint across the interface
except for corner vertices by introducing Lagrange multipliers, while the constraint
at corner vertices is imposed in a strong manner.

To weaken the properties of the globally coupled AC , we next introduce the sub-
space X̂h of Xh defined by

X̂h = {v ∈ Xh : v is continuous at the corner vertices across Γ(15)

and vanishes on ∂Ω} ;

cf. Figure 3(a).

Noting that Xh,C is a subspace of X̂h, we can define a projection PΓ : X̂h −→ Xh,C

by the average operator presented in Table 1:

(16) PΓv = {{v}} on an edge on Γ.

Remark 3.7. Based on the fact that the functions in Xh,C are continuous across
the edges on Γ and vanish on ∂Ω, it is noted that

(17) 〈Ah,Cv, w〉 =
J∑
j=1

aj(v|Ωj
, w|Ωj

) ∀ v, w ∈ Xh,C .

Here the bilinear form aj(·, ·) is local to the subdomain Ωj, which is defined as follows:
for vj = v|Ωj

and wj = w|Ωj
,

aj(vj, wj) =
∑
T∈Th
T⊂Ωj

∫
T

ρj∇vj · ∇wj dx+ η
∑
e∈Eh
e⊂Ωj

ρj
|e|

∫
e

[[vj]] · [[wj]] ds(18)

−
∑
e∈Eh
e⊂Ωj

∫
e

(
{{ρj∇vj}} · [[wj]] + {{ρj∇wj}} · [[vj]]

)
ds.

Based on the FETI-DP methodology, while paying attention to (17), we construct

the operator Lh : X̂
′

h −→ X̂h defined by

(19) Lh(ĝ) = ŵ ∀ ĝ ∈ X̂ ′h,

where ŵ is characterized by the solution of the following problem:
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(a) (b) (c) (d)

Figure 3. (a) Degrees of freedom of X̂h. (b) Degrees of freedom related
to the coarse problem. (c) Degrees of freedom related to the localized
subdomain problems. (d) Pairs of neighboring vertices on Γ related to
the introduced Lagrange multipliers.

Find (ŵ, λ) ∈ X̂h × RM such that

J∑
j=1

aj(ŵ|Ωj
, v|Ωj

) + 〈BTλ, v〉 =

∫
Ω

ĝv dx ∀ v ∈ X̂h(20)

〈µ,Bŵ〉 = 0 ∀µ ∈ RM ,(21)

where RM is the space of Lagrange multipliers introduced on Γ and 〈·, ·〉 is the Eu-
clidean inner product in RM . Here, M represents the number of constraints used for
imposing the pointwise matching on Γ, and B is a block matrix constructed from
{0, 1,−1} such that for any v in X̂h, Bv = 0 enforces v to be continuous across Γ;
cf. Figure 3(d).

For the relacement of A−1
h,C : X

′

h,C −→ Xh,C , we now define the operator Qh :

X
′

h,C −→ Xh,C as follows:

(22) Qh = PΓLhP
t
Γ,

where Qh is represented in the following matrix form

(23) Q = P ΓLP t
Γ.

Finally, we construct the preconditioner P 2 for A by replacing A−1
C with Q:

(24) P 2 = IDA
−1
D I tD + ICQI tC .

Remark 3.8. The solver L, resulting from the FETI-DP formulation in (20) and
(21), consists of two main problems associated with the degrees of freedom depicted
in Figure 3. One is the coarse solver related to the degrees of freedom at corner
vertices; cf. Figure 3(b). The other is the subdomain solver related to the degrees
of freedom localized to each subdomain; cf. Figure 3(c). Hence, the preconditioner
Q involving L can be implemented efficiently by taking advantages of the structural
properties of L described.
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Figure 4. Left figure: Type A; Center figure: Type B; Right figure:
Type C.

(a) (b)

Figure 5. (a) Piecewise constant coefficients ρ in a checkerboard pat-
tern. (b) Decompositions of Ω into J subdomains for J = 2× 2, 4× 4,
and 8× 8.

4. Numerical results

In this section numerical results are presented, which show the performance of the
proposed iterative method in terms of various parameters associated with the hetero-
geneous elliptic problem, the SIPG finite element discretization, and non-overlapping
subdomain decomposition.

We consider a model problem (1) on the unit square Ω = (0, 1) × (0, 1). Three
different types of distributions of the coefficient ρ are tested throughout numerical
experiments as described in Figure 4. The checkerboard pattern of ρ is characterized
by two different constants ρS and ρL for ρS ≤ ρL; cf. Type B and Type C in Figure 4

The discrete problem resulting the SIPG method is solved by the preconditioned
conjugate gradient (CG) algorithm. For comparison, the CG iteration for solving (5)
is also carried without preconditioning. The iteration is stopped when the relative
residual is less than 10−6. In Table 4 and Table 5, the sign − in the CG Iter column
indicates that the CG iteration fails to stop before the maximum number of iterations
is reached, where the maximum number of iterations is set as the total number of
unknowns of the discrete problem.

Here, discretization parameters h, H, and J are used, which stand for the mesh
size, the subdomain size, and the number of subdomains, respectively. The domain Ω
is divided into non-overlapping subdomains so that ρ is a constant on each subdomain.
Throughout numerical tests, Ω is decomposed into J square subdomains with J =
1/H×1/H where H denotes the length of the horizontal/vertical edges of the squares;
cf. Figure 5(b). We use a uniform triangulation Th of Ω; cf. Figure 2(a).

Remark 4.9. For the stiffness matrix A and the matrices introduced in Section 4
for constructing the preconditioner P 2, we denote the numbers of the degrees of
freedom related to those matrices as follows:

Dof(A), Dof(AD), Dof(AC), Dof(L).



Non-overlapping DDM for DG method 427

For the decomposition into J subdomains with a uniform triangulation Th of Ω de-
picted in Figure 2, Figure 3 and Figure 5(b), we have that

Dof(A) = dim(Xh) = 12

(
1

h

)2

,

Dof(AD) = dim(Xh,D) =
4

h

(
1

H
+ 1

)
,

Dof(AC) = dim(Xh,C) =
4

h

(
3

h
−
(

1

H
+ 1

))
,

Dof(L) = dim(X̂h) = Dof(AC) +M = Dof(AC) + 2

(
H

h
− 1

)(
1

H
− 1

)
1

H
,

where M is the number of Lagrange multipliers introduced for continuity constraints
on Γ.

Remark 4.10. It is noted that AD is a block diagonal matrix with small blocks.
For example, in the case of H

h
> 2, the blocks corresponding to the edges that do not

touch any corners of subdomains are all 2× 2; cf. Figure 2(c). Let NC be the number
of corners of subdomains. Hence the system involving AD can be reduced to a system
with O(NC) degrees of freedom by solving a block diagonal system where each block

is 2× 2 and NC = O
((

1
H

+ 1
)2
)

.

Remark 4.11. Let us look into the problem formulated in (20) and (21). Once the
dual solution λ is provided, the primal solution ŵ can be found by solving the coarse
problem and the subdomain problems; cf. Remark 3.8. Hence the system involving
L can be reduced to a system Λ for the Lagrange multipliers, where Dof(Λ) = M .
We pay attention not only to Dof(L) but also to Dof(Λ) since the matrix L does not
need to be formed explicitly for PCG iterations.

Numerical results for the Type A pattern are presented in Table 2, which show the
performance of P 2 in terms of the number of iterations and the condition number.
In developing iterative methods based on a DD approach, it is important to have
the weak scalability and the strong scalability. First, the weak scalability of P 2 is
observed in Table 2 as the mesh size h decreases where the number of unknowns
in the subdomains is fixed. Next, the strong scalability of P 2 is also confirmed as
the number of subdomains increases where the number of unknowns in the discrete
problem is fixed.

Table 3 demonstrates that the performance of the preconditioner P 2 is independent
of the choice of η. For comparison, Table 3 also shows how the convergence rate
deteriorates in the CG iterations without preconditioning as η increases.

The robustness of the preconditioner P 2 with respect to the jump in ρ is demon-
strated in Table 4, where ρS = 1 and ρL ranges between 1 and 105; cf. Figure 4 and
Figure 5(b). In addition, the ill-conditioned property of A due to the increasing jump
in ρ is observed, which agrees with the analysis presented in (6).

Based on the results confirmed in Table 2 to Table 4, numerical experiments are
conducted for the Type B pattern, where ρmax

ρmin
= 105. Results are presented in Table 5,

which demonstrate that the performance of the preconditioner P 2 for heterogeneous
problems is similar to that of P 2 for the problem of the Type A pattern.
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Table 6 shows how the performance of the preconditioner P 2 is affected by a vari-
ation of the jump ρ in the Type C pattern described in Figure 4, where ρS = 1 and
ρL = 105. For comparison, the condition numbers are also presented for the Type A
pattern.

Table 2. Performance of the preconditioner P 2 in case of ρ = 1 where
η = 5.

J h H/h Dof(A)
P 2A A

PCG Iter κ λmin(P 2A) λmax(P 2A) CG Iter

2× 2
1/6 3 432 16 6.4544 3.0093e-1 1.9423 44
1/12 6 1728 17 6.9447 2.7478e-1 1.9083 79
1/24 12 6912 17 7.1341 2.6738e-1 1.9075 149

4× 4
1/12 3 1728 17 6.5155 3.0111e-1 1.9618 79
1/24 6 6912 18 6.9695 2.7368e-1 1.9074 149

8× 8 1/24 3 6912 22 6.5336 2.9939e-1 1.9561 149

Table 3. Dependence of the preconditioner P 2 on η where ρ = 1,
J = 4× 4, h = 1/16, and Dof(A) = 3072.

η
P 2A A

κ PCG Iter κ CG Iter

5 6.7131 17 7.7883e+2 102
10 6.6701 17 1.5611e+3 137
50 1.2526e+1 23 7.7914e+3 253
100 1.4032e+1 24 1.5578e+4 299

Table 4. Robustness of the preconditioner P 2 with respect to the
jump in the coefficient ρ where ρS = 1, η = 5, J = 4× 4, h = 1/12, and
Dof(A) = 1728.

ρL

P 2A A

κ PCG Iter κ CG Iter

1 6.5155 17 4.2383e+2 79
101 6.6161 17 1.3226e+3 200
102 6.7183 18 1.1169e+4 482
103 6.7301 18 1.1042e+5 −
104 6.7313 18 1.1030e+6 −
105 6.7314 18 1.1029e+7 −
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Table 5. Performance of the preconditioner P 2 in case of discontinu-
ous coefficients ρ where ρS = 1, ρL = 105, and η = 5.

J h H/h Dof(A)
P 2A A

PCG Iter κ λmin(P 2A) λmax(P 2A) CG Iter

2× 2
1/6 3 432 17 6.2808 3.0793e-1 1.9341 −
1/12 6 1728 17 7.0052 2.7453e-1 1.9232 −
1/24 12 6912 17 7.1852 2.6759e-1 1.9227 −

4× 4
1/12 3 1728 18 6.7314 3.0056e-1 2.0232 −
1/24 6 6912 19 7.3233 2.7355e-1 2.0033 −

8× 8 1/24 3 6912 18 6.8009 2.9939e-1 2.0361 −

Table 6. Performance of the preconditioner P 2 for two different types
of coefficient distribution where η = 5 and J = 3× 3.

h Type κ(P 2A) κ(A)

1/18
A 6.9601 9.8213e+2
C 6.9921 1.1314e+7

1/36
A 7.1389 3.9386e+3
C 7.1872 4.4106e+7

5. Concluding remarks

In this paper we proposed an iterative method for the SIPG method, which is one of
the best known DG methods. The proposed method has the unique feature that (i)
an intermediate preconditioner is introduced by using the properties of discontinuous
finite element functions and (ii) a preconditioning algorithm is constructed based on
the FETI-DP methodology. Numerical studies on the proposed iterative method were
presented, which showed that the preconditioner performs well in terms of various
parameters such as the diffusion coefficient, the penalty parameter, the mesh size, the
subdomain size, and the number of subdomains.

Meanwhile, the iterative method developed in this paper can be extended to other
types of DG method treated in [2] and the case of non-conforming meshes; cf. [5]. In
addition, the extension to the three-dimensional problem can be designed based on
the modification of the subspace decomposition and the introduction of a larger coarse
problem than that used for the problem in 2D; cf. [18,23]. Including these extensions,
further studies on theoretical performance analysis will be conducted elsewhere.

Acknowledgments. The author would like to sincerely thank Professor Susanne C.
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