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HERMITE-HADAMARD TYPE INEQUALITIES FOR PREINVEX

FUNCTIONS WITH APPLICATIONS

Shiwani Singh, Shashi Kant Mishra, Vandana Singh, Pankaj Kumar,
and Hüseyin Budak∗

Abstract. In this article, we establish new Hermite-Hadamard Type inequalities
for functions whose first derivative in absolute value are preinvex. Further, we give
some application of our obtained results to some special means of real numbers.
Moreover, we discuss several special cases of the results obtained in this paper.

1. Introduction

It is well known that convexity plays an important role in mathematical program-
ming and optimization theory. An important generalization of convex functions is
that of invex functions, which is introduced by Hanson [1]. The result of Hanson in-
fluenced many subsequent work, which has greatly expanded the role and applications
of invexity in non-linear optimization and other branches of pure and applied science.
The concept of preinvex functions was introduced by Ben-Israel and Mond [2]. It is
well known that invex sets and preinvex functions may not be convex sets and con-
vex functions. Weir and Mond [3] and further, Noor et al. [4] have studied the basic
properties of the preinvex functions and their role in optimization see, [5].

The idea of integral inequality is a fascinating area for research within mathematical
analysis. Hermite-Hadamard inequality [6,7] plays most important role in the subject
of convex analysis. This inequality is one of the most well established inequalities in
the theory of convex function with a geometrical interpretation and many applications.
Noor [9] introduced the Hermite-Hadamard inequalities for preinvex and log-preinvex
function, which are the generalization of the classical Hermite-Hadamard inequality.
Various refinements of the Hermite-Hadamard inequalities for the convex functions
and their variants forms are being obtained in the literature by many researchers
see, [10–17].
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Recent years, several well-known inequalities like the Hermite-Hadamard type in-
equality, the Ostrowski type inequalty and the Minkowski type inequality have been
presented with the help of using interval analysis. Furthermore, mathematicians have
recently begun to establish integral inequalities using interval-valued fractional op-
erators. Srivastava et al. [18] introduced Hermite-Hadamard type inequalities for
interval-Valued preinvex functions via fractional integral operators. Recently, Khan
et al. [19] indroduced some new versions of integral inequalities for left and right
preinvex functions in the interval-valued settings. Further, Lai et al. [20] introduced
the concept of preinvex interval-valued function and obtained the new inclusion of
fractional Hermite-Hadamard type inequalities of these functions. For more details of
the connections between the different form of interval-valued functions and integral
inequlities see, [21–24].

The paper is summarized as follows: In section 2, we recall some basic results
that are necessary for our main results. In section 3, we prove Hermite-Hadamard-
type inequalities for a differentiable preinvex functions. In section 4, we obtain the
applications to some special means. In section 5, we present the conclusion and future
direction of this study.

2. Preliminaries

In this section, we give some necessary definitions which are used throughout this
paper. Let Ω : S → R and η : S × S → R, where S in non-empty set in Rn, be
continuous functions.

Definition 2.1. [3] A set S ⊆ Rn is said to be invex with respect to the mapping
η : S × S → Rn, if

τ + tη(ν, τ) ∈ S

for every ν, τ ∈ S and t ∈ [0, 1].

Notice that every convex set is invex with respect to the mapping η(ν, τ) = ν − τ ,
but the converse is not necessarily true see [28] and references therein.

Definition 2.2. [3] The function Ω defined on the invex set S ⊆ Rn is said to be
preinvex with respect to η, if

Ω(τ + tη(ν, τ)) ≤ (1− t)Ω(τ) + tΩ(ν),∀ν, τ ∈ S, t ∈ [0, 1].

The concept of preinvexity is more general then convexity since every convex func-
tion is preinvex with respect to the mapping η(ν, τ) = ν − τ , but the converse is not
true.
Mohan and Neogy [8] introduced the following well-known condition C:

Condition C: Let S ⊆ Rn be an open invex subset with respect to η : S ×S → Rn.
The function η satisfies the condition C if for any ν, τ ∈ S and any t ∈ [0, 1],

η(τ, τ + tη(ν, τ)) = −tη(ν, τ),

η(ν, τ + tη(ν, τ)) = (1− t)η(ν, τ).

Note that for all ν, τ ∈ S and t ∈ [0, 1], then from condition C, we have

η(τ + t2η(ν, τ), τ + t1η(ν, τ)) = (t2 − t1)η(ν, τ).
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In [9], Noor provided the following proof of the Hermite-Hadamard inequality for
the preinvex functions:

Theorem 2.3. Let Ω : S = [τ, τ + η(ν, τ)] → (0,∞) be a preinvex function on the
interval of real numbers S0 (the interior of S) and τ, ν ∈ S0 with τ < τ + η(ν, τ).
Then the following inequality holds:-

Ω

(
2τ + η(ν, τ)

2

)
≤ 1

η(ν, τ)

∫ τ+η(ν,τ)

τ

Ω(x)dx ≤ Ω(τ) + Ω(ν)

2
.(1)

Barani et al. [25], proved the following theorem:-

Theorem 2.4. Let S ⊆ R be an open invex subset with respect to η : S×S → R.
Suppose that Ω : S → R is a differential function. If |Ω′| is preinvex on S then, for
every τ, ν ∈ S with η(ν, τ) ̸= 0 the following inequality holds:-

∣∣∣∣∣Ω(τ) + Ω(τ + η(ν, τ))

2
− 1

η(ν, τ)

∫ τ+η(ν,τ)

τ

Ω(x) dx

∣∣∣∣∣ ≤ |η(ν, τ)|
8

(|Ω′(τ)|+ |Ω′(ν)|) .

(2)

Theorem 2.5. [26] Under the assumptions of the above theorem, the following
inequality holds:∣∣∣∣∣Ω

(
2τ + η(ν, τ)

2

)
− 1

η(ν, τ)

∫ τ+η(ν,τ)

τ

Ω(x) dx

∣∣∣∣∣ ≤ |η(ν, τ)|
8

(|Ω′(τ)|+ |Ω′(ν)|) .(3)

3. Main Result

In this section, we introduce some generalizations of Hermite-Hadamard-type in-
equality for functions whose first derivatives absolute values are preinvex.

Lemma 3.1. Let Ω be an absolutely continuous function on an interval [τ, τ+η(ν, τ)]
and let Ω′ ∈ L1[τ, τ + η(ν, τ)] be its derivative. Then the following result holds true:-

1

3

[
Ω(τ) + Ω(τ + η(ν, τ)) + Ω

[
(2τ + η(ν, τ))

2

]]
− 1

η(ν, η)

∫ τ+η(ν,τ)

τ

Ω(x)dx

= η(ν, τ)

[∫ 1/2

0

(
x− 1

3

)
Ω′(τ + xη(ν, τ))dx+

∫ 1

1/2

(
x− 2

3

)
Ω′(τ + xη(ν, τ))dx

]
.

(4)

Proof. Let us solve the subsequent integral by integrating by parts,

I1 =

∫ 1
2

0

(
x− 1

3

)
Ω′(τ + xη(ν, τ))dx

=

[(
x− 1

3

)[
Ω(τ + x(η(ν, τ)))

η(ν, τ)

]] 1
2

0

−
∫ 1

2

0

Ω(τ + x(η(ν, τ)))

η(ν, τ)
dx

=
1

6

1

η(ν, τ)
Ω

(
2τ + η(ν, τ)

2

)
+

1

3

Ω(τ)

η(ν, τ)
−
∫ 1

2

0

Ω(τ + x(η(ν, τ)))

η(ν, τ)
dx.
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Similarly,

I2 =

∫ 1

1
2

(
x− 2

3

)
Ω′(τ + x(η(ν, τ)))dx

=
1

3

Ω(τ + η(ν, τ))

η(ν, τ)
+

1

6η(ν, τ)
Ω

(
2τ + η(ν, τ)

2

)
−
∫ 1

1
2

Ω(τ + x(η(ν, τ)))

η(ν, τ)
dx.

By adding both equalities I1 and I2, then multiplying by η(ν, τ), we obtain

η(ν, τ)[I1 + I2]

=
1

3

[
Ω(τ) + Ω(τ + η(ν, τ)) + Ω

[
(2τ + η(ν, τ))

2

]]
− 1

η(ν, τ)

∫ τ+η(ν,τ)

τ

Ω(x)dx.

This completes the proof.

Theorem 3.2. Let Ω be an absolutely continuous function on an interval [τ, τ +
η(ν, τ)] and Ω′ ∈ L1[τ, τ + η(ν, τ)] be its derivative . Suppose also that |Ω′|q is preinvex
on [τ, τ + η(ν, τ)] for some q ≥ 1. Then the following result holds true:

∣∣∣∣∣13
[
Ω(τ) + Ω(τ + η(ν, τ)) + Ω

(
2τ + η(ν, τ)

2

)]
− 1

η(ν, τ)

∫ τ+η(ν,τ)

τ

Ω(x) dx

∣∣∣∣∣
≤ |η(ν, τ)|

(
5

72

)(1− 1
q
)
{(

111 |Ω′(τ)|q

1944
+

|Ω′(ν)|q

81

) 1
q

(5)

+

(
|Ω′(τ)|q

81
+

111 |Ω′(ν)|q

1944

) 1
q

}
.(6)

Proof. From Lemma 3.1, we have

∣∣∣∣∣13
[
Ω(τ) + Ω(τ + η(ν, τ)) + Ω

(
2τ + η(ν, τ)

2

)]
− 1

η(ν, τ)

∫ τ+η(ν,τ)

τ

Ω(x) dx

∣∣∣∣∣
= |η(ν, τ)|

∣∣∣∣∣
∫ 1/2

0

(
x− 1

3

)
Ω′(τ + xη(ν, τ)) dx+

∫ 1

1/2

(
x− 2

3

)
Ω′(τ + xη(ν, τ)) dx

∣∣∣∣∣
≤ |η(ν, τ)|

{∫ 1
2

0

∣∣∣∣x− 1

3

∣∣∣∣ |Ω′(τ + xη(ν, τ))| dx+

∫ 1

1
2

∣∣∣∣x− 2

3

∣∣∣∣ |Ω′(τ + xη(ν, τ))| dx

}
.

(7)
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Firstly, we assume that q=1, and by using the fact that the function |Ω′|q is preinvex
on [τ, τ + η(ν, τ)], we derive the following inequality:-∫ 1

2

0

∣∣∣∣x− 1

3

∣∣∣∣ |Ω′(τ + xη(ν, τ))| dx+

∫ 1

1
2

∣∣∣∣x− 2

3

∣∣∣∣ |Ω′(τ + xη(ν, τ))| dx

≤
∫ 1

2

0

∣∣∣∣x− 1

3

∣∣∣∣ [(1− x) |Ω′(τ)|+ x |Ω′(ν)|] dx

+

∫ 1

1
2

∣∣∣∣x− 2

3

∣∣∣∣ [(1− x) |Ω′(τ)|+ x |Ω′(ν)|] dx

≤ |Ω′(τ)|

(∫ 1
2

0

(1− x)

∣∣∣∣x− 1

3

∣∣∣∣ dx+

∫ 1

1
2

(1− x)

∣∣∣∣x− 2

3

∣∣∣∣ dx
)

+ |Ω′(ν)|

(∫ 1
2

0

x

∣∣∣∣x− 1

3

∣∣∣∣ dx+

∫ 1

1
2

x

∣∣∣∣x− 2

3

∣∣∣∣ dx
)

=
5 (|Ω′(τ)|+ |Ω′(ν)|)

72
.(8)

As a result, the desired inequality asserted by Theorem 3.2 holds true when q = 1.
Let us we assume that q > 1. In addition, we will use the Hölder integral inequality
in the classical settings for Lp − Lq functions; About this inequality, see, e.g.,the
monograph [27]. Thus, from the Hölder integral inequality with p= q

q−1
, we obtain-∫ 1

2

0

∣∣∣∣x− 1

3

∣∣∣∣ |Ω′(τ + xη(ν, τ))| dx

=

∫ 1
2

0

∣∣∣∣x− 1

3

∣∣∣∣(1− 1
q
)
(∣∣∣∣x− 1

3

∣∣∣∣ 1q Ω′(τ + xη(ν, τ))

)
dx

≤

(∫ 1
2

0

∣∣∣∣x− 1

3

∣∣∣∣
)(1− 1

q
)(∫ 1

2

0

∣∣∣∣x− 1

3

∣∣∣∣Ω′(τ + xη(ν, τ)) dx

) 1
q

≤
(

5

72

)(1− 1
q
)
(
|Ω′(τ)|q

∫ 1
2

0

(1− x)

∣∣∣∣x− 1

3

∣∣∣∣ dx+ |Ω′(ν)|q
∫ 1

2

0

x

∣∣∣∣x− 1

3

∣∣∣∣ dx
) 1

q

≤
(

5

72

)(1− 1
q
)(

111 |Ω′(τ)|q

1944
+

|Ω′(ν)|q

81

) 1
q

.(9)

similarly, we find that∫ 1

1
2

∣∣∣∣x− 2

3

∣∣∣∣ |Ω′(τ + xη(ν, τ))| dx ≤
(

5

72

)(1− 1
q )( |Ω′(τ)|q

81
+

111 |Ω′(ν)|q

1944

) 1
q

.(10)

From (7), (9) and (10), we obtain the result (5) asserted by Theorem 3.2.

Remark 3.3. If we choose η(ν, τ) = ν−τ , Theorem 3.2 reduces to [ [12]: Theorem
3].
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Theorem 3.4. Let Ω be an absolutely continuous function on an interval [τ, τ +
η(ν, τ)] and let its derivative Ω′ ∈ L1[τ, τ + η(ν, τ)]. Suppose also that |Ω′|q is preinvex
on [τ, τ + η(ν, τ)] for some q > 1. Then the following result holds true:∣∣∣∣∣13

[
Ω(τ) + Ω(τ + η(ν, τ)) + Ω

(
2τ + η(ν, τ)

2

)]
− 1

η(ν, τ)

∫ τ+η(ν,τ)

τ

Ω(x) dx

∣∣∣∣∣
≤ |η(ν, τ)|

12

(
1 + 2(p+1)

3(p+ 1)

) 1
q [

|Ω′(τ)|q + |Ω′(ν)|q
] 1

q .(11)

with 1
p
+ 1

q
= 1.

Proof. As the function |Ω′|q is convex on [τ, τ + η(ν, τ)], we have-∫ 1
2

0

|Ω′(τ + xη(ν, τ))|q dx ≤ 3 |Ω′(τ)|q + |Ω′(ν)|q

8
,

and ∫ 1

1
2

|Ω′(τ + xη(ν, τ))|q dx ≤ |Ω′(τ)|q + 3 |Ω′(ν)|q

8
.

straightforward calculation yields∫ 1
2

0

∣∣∣∣x− 1

3

∣∣∣∣p dx =

∫ 1

1
2

∣∣∣∣x− 2

3

∣∣∣∣p dx =
1 + 2(p+1)

6(p+1)(p+ 1)
.(12)

Thus, by applying the Hölder integral inequality, we obtain∫ 1
2

0

∣∣∣∣x− 1

3

∣∣∣∣ |Ω′(τ + xη(ν, τ))| dx

≤

(∫ 1
2

0

∣∣∣∣x− 1

3

∣∣∣∣p dx

) 1
p
(∫ 1

1
2

|Ω′(τ + xη(ν, τ))|q dx

) 1
q

(13)

≤
(

1 + 2(p+1)

6(p+1)(p+ 1)

) 1
p
(
3 |Ω′(τ)|q + |Ω′(ν)|q

8

) 1
q

,(14)

and ∫ 1

1
2

∣∣∣∣x− 2

3

∣∣∣∣ |Ω′(τ + xη(ν, τ))| dx

≤

(∫ 1

1
2

∣∣∣∣x− 2

3

∣∣∣∣p dx

) 1
p
(∫ 1

2

1

|Ω′(τ + xη(ν, τ))|q dx

) 1
q

(15)

≤
(

1 + 2(p+1)

6(p+1)(p+ 1)

) 1
p
(
|Ω′(τ)|q + 3 |Ω′(ν)|q

8

) 1
q

.(16)

Finally, by combining (7), (13), and (15) and making some basic simplifications,
the asserted result (11) is obtained.

Remark 3.5. If we choose η(ν, τ) = ν−τ , Theorem 3.4 reduces to [ [12]: Theorem
4 ].
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4. Applications to Special Means

Our aim in this section is to derive some new inequalities involving combinations
of special means and its powers. In fact, the logarithmic mean and a generalized
logarithmic mean are special cases of the means introduced by Tibor Radó and also
establish several important inequalities for them see, for details, [27]. The study of
different types of means is fulfilled see, [30–33].

We consider some means for arbitrary positive real numbers s, t with s < t.

1. The arithmetic mean:

M(s, t) = s+t
2
.

2. The logarithmic mean:

L(s, t) = t−s
log(t)−log(s)

, s ̸= t.

3. The generalized logarithmic mean:

Lr(s, t) =

(
(t)r+1−(s)r+1

(r+1)(t−s)

) 1
r

, r ∈ R\{−1, 0}; s ̸= t.

Proposition 4.1. Let τ, τ + η(ν, τ) ∈ R, 0 < τ < τ + η(ν, τ). Then the following
inequality holds true:∣∣∣∣23M ((τ)r, (τ + η(ν, τ))r) +

1

3
M r(τ, τ + η(ν, τ))− Lr

r(τ, τ + η(ν, τ))

∣∣∣∣
≤ r |η(ν, τ)|

(
5

72

)1− 1
q

{(
111τ q(r−1)

1944
+

νq(r−1)

81

) 1
q

(17)

+

(
τ q(r−1)

81
+

111νq(r−1)

1944

) 1
q

}
for all q ≥ 1.

Proof. Proposition 4.1 follows from Theorem 3.2 upon setting q = 1, Ω(x) = xr.

Proposition 4.2. Under the assumption of Proposition 1, the following inequali-
ties hold true:∣∣∣∣23M ((τ)r, (τ + η(ν, τ))r) +

1

3
M r(τ, τ + η(ν, τ))− Lr

r(τ, τ + η(ν, τ))

∣∣∣∣
≤ r |η(ν, τ)|

6

(
1 + 2p+1

6(p+ 1)

) 1
p

M
1
q (τ q(r−1), νq(r−1)),(18)

where
1

p
+

1

q
= 1, p > 1.

Proof. Proposition 4.2 follows from Theorem 3.4 by putting Ω(x) = xr, r ∈ (0, 1].
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5. Conclusion and Future Directions

In this paper, we have established new Hermite-Hadamard-type inequalities of
function for differentiable preinvex functions. As Consequences of some of our main
results, we have obtained some applications to special means of real numbers. These
results can be viewed as refinement and significant improvements of the previously
known results. The results obtained in this paper can be extended to interval-valued
functions and the corresponding differential equations and optimization problems. It
is expected that the ideas and techniques of this paper may motivate further research
in field of inequality.
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Hüseyin Budak
Department of Mathematics, Faculty of Science and Arts,
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