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ON LACUNARY ∆m-STATISTICAL CONVERGENCE IN G-METRIC

SPACES

Asif Hussain Jan∗ and Tanweer Jalal

Abstract. The aim of this research is to describe lacunary ∆m-statistically con-
vergent sequences with respect to metrics on generalised metric spaces (g-metric
spaces) and to look into the fundamental characteristics of this statistical form of
convergence. Also, the relationship between strong summability and lacunary ∆m-
statistical convergence in g-metric space is established at the end.

1. Inroduction and preliminaries

The idea of distance function can be generalised in a number of ways. One of them
is the G-metric space notion, a new generalisation of the ordinary metric that has been
researched by Mustafa et al. [26]. Distances between three points are the metrics in
this space. For more generalization, Choi et al. [6] introduced g-metric with degree n,
that is a distance between n+ 1 points.

In 1935, Zygmund [33] first brought the concept of statistical convergence. The no-
tion of statistical convergence was formally introduced by Steinhaus [32] and Fast [12]
in 1951. Since then, a number of mathematicians have looked into the charac-
teristics of convergence and statistical convergence and applied them to a variety
of fields, including approximation theory [9], finitely additive set functions [8], se-
quence space [14, 16–19], paranormed spaces [3, 4], b-metric spaces [15, 21], p-metric
spaces [7,23,30], probability theory [13], quaternion G-metric [10], probabilistic gener-
alised metric space [1], summability theory [6,31], and recently in g-metric spaces [2].
Recently, a novel research has been conducted on weighted rough statistical conver-
gence [22], weighted means of double sequence [24], dunkl analog of Szasz opera-
tors [25, 29], other approximating and fractional operators [5, 27,28] .

Now, we recall some definitions and preliminaries that are needed in the rest of
this paper.

We will use the standard notation. By the symbol R we will denote the set of real
numbers while N stands for the set of natural numbers.
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Definition 1.1. [26] Let M be a non-empty set and let G : M ×M ×M → R+be
a function satisfying the following axioms:

(i) If G(x, y, z) = G(y, z, x) = G(z, x, y) = 0 if x = y = z
(ii) G(x, x, y) > 0 for all x, y ∈M , where x 6= y,

(iii) G(x, x, z) ≤ G(x, y, z) for all x, y, z ∈M , with z 6= y,
(iv) G(x, y, z) = G(p{x, y, z}), where p is permutation of x, y, z (symmetry),
(v) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈M (rectangle inequality).

Then the function G is called a generalized metric, or more specifically G-metric on
M , and the pair (M,G) is called G-metric space.

The following is an extension of G-metric space with degree l.

Definition 1.2. [6] Let M be a non-empty set. A function g : M l+1 → R+ is
called a g-metric space with order l on M if it satisfies the following conditions:

(i) g (x0, x1, x2, . . . , xl) = 0 if and only if x0 = x1 = . . . = xl,
(ii) g (x0, x1, x2, . . . , xl) = g

(
xσ(0), xσ(1), xσ(2), . . . , xσ(l)

)
for permutation σ on {0, 1, 2, . . . l},

(iii) g (x0, x1, x2, . . . , xl) ≤ g (y0, y1, y2, . . . , yl) for all (x0, x1, x2, . . . , xl) , (y0, y1, y2, . . . , yl) ∈
M l+1 with {xi : i = 0, 1, . . . l} ⊆ {yi : i = 0, 1, . . . l},

(iv) For all x0, x1, . . . , xs, y0, y1, . . . yt, w ∈M with s+ t+ 1 = l,
g (x0, x1, x2, . . . , xs, y0, y1, y2, . . . , yt)
≤ g (x0, x1, x2, . . . , xs, w, w, . . . w) +g (y0, y1, y2, . . . , yt, w, w . . . w).

The pair (M, g) is called g-metric space. For l = 1, 2 respectively, it is respectively
equivalent to metric and G-metric space.

The following theorem is required in the proof of main results.

Theorem 1.3. [6] Let (M, g) be a g-metric with order n on a nonempty set M .
Then following are true:

1. g(x, . . . , x︸ ︷︷ ︸
s times

, y, . . . , y) ≤ g(x, . . . , x︸ ︷︷ ︸
s times

, v, . . . , v) + g(x, . . . , x︸ ︷︷ ︸
s times

, y, . . . , y),

2. g(x, y, . . . , y) ≤ g(x, v, . . . , v) + g(v, y, . . . , y),
3. g(x, . . . , x︸ ︷︷ ︸

s times

, v, . . . , v) ≤ sg(x, v, . . . , v) and g(x, . . . , x︸ ︷︷ ︸
s times

, v, . . . , v)

≤ (n+ 1− s)g(v, x, . . . , x),
4. g (x0, x1, . . . , xn) ≤

∑n
i=0 g (xi, v, . . . , v)

5. |g (y, x1, . . . , xn)− g (v, x1, . . . , xn)| ≤ max{g(y, v, . . . , v), g(v, y, . . . , y)},
6. g(x, . . . , x︸ ︷︷ ︸

s times

, v, . . . , v)− g(x, . . . , x︸ ︷︷ ︸
s′ times

, v, . . . , v) ≤ |s− s′| g(x, v, . . . , v),

7. g(x, v, . . . , v) ≤ (1 + (s− 1)(n+ 1− s))g(x, . . . , x︸ ︷︷ ︸
s times

, v, . . . , v).

A subset E of the set N of natural numbers is said to have a ”natural density”
δ(E) if

δ(E) = lim
n

1

n
|{k ≤ n : k ∈ E}|

where the vertical bars denote the cardinality of the enclosed set.
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The number sequence x = (xk) is said to be statistically convergent to number l if
for each ε > 0,

lim
n

1

n
|{k ≤ n : |xk − l| ≥ ε}| = 0

and x is said to be statistically cauchy sequence if for every ε > 0 there exists a
number N = N(ε) such that

lim
n

1

n
|{k ≤ n : |xk − xN | ≥ ε}| = 0.

The following definition was given by R.Abazari [1].

Definition 1.4. [1] Let p ∈ N and k ∈ NP and K(n) = {(i1, i2, . . . , ip) ≤ n(n ∈ N)
: (i1, i2, . . . , ip) ∈ K}, then

δ(p)(K) = lim
n→∞

p!

np
|K(n)|

is called p-dimensional asymptotic (or natural density) of the set K.

Definition 1.5. [2] Let {xp} be a sequence in a g-metric space (M, g).

(i) {xp} is statistically convergent to x, if for all ε > 0,

δt
(
|
{

(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p, g (x, xj1 , xj2 , . . . , xjt < ε} |
)

= lim
p→∞

t!

pt

∣∣∣∣ {(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p, g (x,∆m (xj1 , xj2 , . . . , xjt) < ε} |

= 1

and is denoted by , gs− limp→∞ xp = x or xp
gs−→ x.

(ii) {xp} is statistically g-Cauchy, if for all ε > 0,∃jε ∈ N such that

lim
p→∞

t!

pt

∣∣∣∣ {(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p, g (xjε , (xj1 , xj2 , . . . , xjt) < ε} |= 1.

Kizmaz [20] introduced the difference sequence space Z(∆) as given below

Z(∆) = {y = (yk) : (∆yk) ∈ Z}

for Z = `∞, c, c0 i.e. spaces of all bounded, convergent and null sequences respectively,
where ∆y = (∆yk) = (yk − yk+1). In particular, `∞(∆), c(∆) and c0(∆) are also
Banach spaces, relative to a norm induced by ‖y‖∆ = |y1|+ supk |∆yk|.

The generalized difference sequence spaces Z (∆m) was introduced by M.Et et.al.
[11] as follows :

Z (∆m) = {y = (yk) : (∆myk) ∈ Z}

for Z = `∞, c, c0 where ∆m(y) = (∆myk) = (∆m−1yk −∆m−1yk+1). So that ∆myk =∑p
r=0(−1)r

(
m
r

)
xk+r.
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2. Lacunary ∆m statistical convergence

This section defines lacunary ∆m-statistically convergent sequences in g-metric
spaces and examines some of its fundamental properties.

By a lacunary sequence, we mean an increasing integer sequence θ = (kr) such that
k0 = 0 and hr = kr − kr−1 →∞ as n→∞.

Let t ∈ N and k ∈ Nt and K(p) = {(i1, i2, . . . , it) ≤ (p ∈ N) : (i1, i2, . . . , it) ∈ K},
then

δθt (K) = lim
p→∞

t!

pt
|K(p)|

is called t-dimensional asymptotic (or natural ) θ-density of the set K.

Definition 2.1. Let {xp} be a sequence in a g-metric space (M, g) and θ be a
lacunary sequence.

(i) {xp} is lacunary ∆m statistically convergent to x, if for all ε > 0,

δθt
(
|
{

(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p, g (l,∆m (xj1 , xj2 , . . . , xjt) < ε} |
)

= lim
p→∞

t!

pt

∣∣∣∣ {(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p, g (l,∆m (xj1 , xj2 , . . . , xjt) < ε} |

= 1

and is denoted by , gt∆ms− limp→∞ xp = x or xp
gt∆ms−−−−→ x.

(ii) {xp} is lacunary ∆m-statistically g-Cauchy, if for all ε > 0,∃jε ∈ N such that

δθt

(
lim
p→∞

t!

pt
∣∣{(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p, g (xjε ,∆

m (xj1 , xj2 , . . . , xjt)) < ε
}∣∣) = 1.

Theorem 2.2.Every convergent sequence is lacunary ∆m-statistically convergent
in g-metric spaces.

Proof. Consider the metric space (M, g) and let {xp} be a sequence in it such
that {xp} converges to x. Now, for ε > 0 there exists p0 ∈ N such that for all
j1, j2, . . . , jt ≥ p0,

g (x, xj1 , xj2 , . . . , xjt) < ε.

Set

Z(p) :=
{

(j1, j2, . . . , jt) ∈∈ Nt : j1, j2, . . . , jt ≤ p, (x,∆m (xj1 , xj2 , . . . , xjt)) < ε
}

then

|Z(p)| ≥
(
p− p0

t

)
and

lim
p→∞

t!|z(p)|
pt

≥ lim
p→∞

t!

pt

(
p− p0

t

)
= 1.

So

gt∆ms− lim
p→∞

xp = x.
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The converse of the above theorem is provably false in the example that follows.

Example 2.3. Let M = R and g be the metric as follows;

g : R3 → R
g(x, y, z) = max{|x− y|, |x− z|, |y − z|}.

Consider the following sequence,

∆mxl =


l, if l is a square

0, otherwise.

It is clear that ∆m {xl} is lacunary ∆m-statistically convergent while it is not conver-
gent normally.

The following theorem establishes the uniqueness of the lacunary ∆m-statistical
limit in g-metric space.

Theorem 2.4. Let {xp} be a sequence in g-metric space (M,g) and θ be the

lacunary sequence such that xp
gt∆ms−−−−→ x and xp

gt∆ms−−−−→ y, then x = y.

Proof. Set,

P (ε) :=
{

(j1, j2, . . . , jt) ∈ Nt : g (x,∆m (xj1 , xj2 , . . . , xjt)) ≥
ε

2t

}
Q(ε) :=

{
(j1, j2, . . . , jt) ∈ Nt : g (y,∆m (xj1 , xj2 , . . . , xjt)) ≥

ε

2t

}
where ε > 0 is arbitrary.

Since, xp
gt∆ms−−−−→ x and xp

gt∆ms−−−−→ y, therefore δθt (P (ε)) = 0 and δθt (Q(ε)) = 0. Let
R(ε) := P (ε) ∪Q(ε), then δθt (R(ε)) = 0, hence δθt (P c(ε)) = 1.

Suppose (j1, j2, . . . , jt) ∈ P c(ε), then by Theorem (1.3) we have

g(x, y, y, . . . , y) ≤ g (x,∆m (xj1 , xj1 , . . . , xj1)) + g (∆m (xj1) , y, y, . . . , y)

≤ g (x,∆m (xj1 , xj1 , . . . , xj1)) + t (g (y,∆m (xj1 , xj1 , . . . , xj1)))

≤ g (x,∆m (xj1 , xj2 , . . . , xjt)) + t (g (y,∆m (xj1 , xj2 , . . . , xjt)))

≤ t (g (x,∆m (xj1 , xj2 , . . . , xjt))) + g (y,∆m (xj1 , xj2 , . . . , xjt))

< t
( ε

2t
+

ε

2t

)
= ε.

Since ε > 0 is arbitrary, we get

g(x, y, y, . . . , y) = 0

therefore x = y.

Definition 2.5. A set P = {pl : l ∈ N} is said to be lacunary statistically dense
in N, if the set

P (p) =
{

(j1, j2, . . . , jt) ∈ Nt : ji ∈ P j1, j2, . . . , jt ≤ p
}

has asymptotic θ-density 1 i.e.,

δθt = lim
p→∞

t!|P (p)|
pt

= 1.
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Definition 2.6. A subsequence {∆mxpl} of a sequence {∆mxp} in a g-metric space
(M, g) is lacunary ∆m statistically dense, if the index set {pl : l ∈ N} is lacunary ∆m

statistically dense subset of N. i.e.,

δθt (pl : k ∈ N) = 1.

We now prove the following Theorem in g-metric spaces.

Theorem 2.7. Let {xp} be a sequence in a lacunary ∆m-statistically convergent g-
metric space (M, g) and θ be a lacunary sequence. Then the following are equivalent.

1. {xp} is lacunary ∆m-statistically convergent in (M, g).
2. There is a convergent sequence {yp} in M such that xp = yp for almost all p ∈ N.
3. There is a lacunary ∆m-statistically dense subsequence {xpl} of {xp} such that
{xpl} is convergent.

4. There is a lacunary ∆m-statistically dense subsequence {xpl} of {xp} such that
{xpl} is lacunary ∆m-statistically convergent.

Proof. (1 =⇒ 2) i.e, if {xp} is lacunary ∆m-statistically convergent in (M, g), then
there is a convergent sequence {yp} in M such that xp = yp for almost all p ∈ N.

Let ε > 0 and {xp} be a sequence such that {xp} lacunary ∆m-statistically converges
to x ∈M . i.e.,

δθt
(
|
{

(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p, g (l,∆m (xj1 , xj2 , . . . , xjt) < ε} |
)

= lim
p→∞

t!

pt

∣∣∣∣ {(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p, g (l,∆m (xj1 , xj2 , . . . , xjt) < ε} |

= 1.

For every l ∈ N, there exists pl ∈ N, such that for every p > pl,

t!

pt

∣∣∣∣ {(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p, g

(
l,∆m (xj1 , xj2 , . . . , xjt) <

1

2l

}∣∣∣∣ > 1− 1

2l
.

We can choose {pl} as an increasing sequence in N. Define {∆myn} as follows

∆myn =


∆mxn, 1 ≤ n ≤ p1,
∆mxn, pk < n ≤ pl+1, j1, j2, . . . , jt−1

≤ p, g
(
l,∆m (xj1 , xj2 , . . . , xjt) <

1
2l

0, otherwise .

Choose l ∈ N such that 1
2l
< ε. It is clear that {∆myn} to x. Fix p ∈ N, for

pl < p ≤ pl+1, we have,

δθt ({(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p; xjt 6= yjt
})

⊆
{

(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p
}

−
{

(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ pl, g

(
l,∆m (xj1 , xj2 , . . . , xjt) <

1

2l

}
.
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So

lim
n→∞

t!

pt
∣∣{(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p; xjt 6= yjt

}∣∣ ≤ lim
n→∞

t!

pt

(
p
t

)
− lim

n→∞

t!

pt

∣∣∣∣ {(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ pl, g

(
l,∆m (xj1 , xj2 , . . . , xjt) <

1

2l

}∣∣∣∣
≤ 1−

(
1− 1

2l

)
=

1

2l

∣∣∣∣ < ε.

Hence

δθt
({

(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p; xjt 6= yjt
})

= 0 (almost all).

Suppose that ∆m {yp} be a convergent sequence inM such that ∆m {xp} = ∆m {yp}
for almost all p ∈ N. Set P = {p ∈ N : ∆mxp = ∆myp . Since ∆m {xp} = ∆m {yp} for
almost all p, hence δθt (p) = 1 and therefore {∆myp; p ∈ P} is convergent and lacunary
∆m-statistically dense subsequence of ∆m {xp}.

It is direct consequence of Theorem (2.5).
(4 =⇒ 1).

Suppose {∆mxpl} be a lacunary ∆m-statistically dense subsequence of the sequence
∆m {xp} such that lacunary ∆m-statistically converges to x ∈ M , i.e., gl∆ms −
liml→∞ xpl = x ∈M and set P = {pl; l ∈ N} then δθt (p) = 1. For ε > 0{

(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p, g (l,∆m (xj1 , xj2 , . . . , xjt) < ε}
)

⊇
{

(j1, j2, . . . , jt) ∈ Nt : jk ∈ P j1, j2, . . . , jt ≤ p, g (l,∆m (xj1 , xj2 , . . . , xjt) < ε} ,

and

lim
n→∞

t!

pt

∣∣∣∣ {(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p, g (l,∆m (xj1 , xj2 , . . . , xjt) < ε} |

≥ lim
n→∞

t!

pt

∣∣∣∣ {(j1, j2, . . . , jt) ∈ Nt : jk ∈ P j1, j2, . . . , jt ≤ p, g (l,∆m (xj1 , xj2 , . . . , xjt) < ε} |

= 1.

Hence gt∆ms− limp→∞ xp = x.

The following corollary is a direct consequence of Theorem 2.7.

Corollory 2.8. Every lacunary ∆m-statistically convergent sequence in g-metric
spaces has a convergent sunsequence.

Theorem 2.9. Every lacunary ∆m-statistically convergent sequence is lacunary
∆m statistically g-Cauchy.

Proof. Let {∆mxp} be a lacunary ∆m-statistically convergent sequence in g-metric
space (M, g) and ε > 0, the,

lim
n→∞

t!

pt

∣∣∣∣ {(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p, g
(
l,∆m (xj1 , xj2 , . . . , xjt) <

ε

t(t+ 1)

}∣∣∣∣ = 1.
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By the monotonicity condition for g-metric space and parts (4) and (7) of Theorem
(1.3), it follows that

g

(
xiε ,∆

m (xj1 , xj2 , . . . , xjt) ≤
t∑
l=0

g (∆mxjl , x, x, . . . , x) ≤
t∑
l=0

g (x,∆m (xjl , xjl , . . . , xjl) .

So{
(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p, g (x,∆m (xj1 , xj2 , . . . , xjt) < ε}
⊆
{

(j1, j2, . . . , jt) ∈ Nt : jk ∈ Pj1, j2, . . . , jt ≤ p, g (xjε ,∆
m (xj1 , xj2 , . . . , xjt) < ε} .

Therefore

lim
n→∞

t!

pt

∣∣∣∣ {(j1, j2, . . . , jt) ∈ Nt : j1, j2, . . . , jt ≤ p, g (l,∆m (xj1 , xj2 , . . . , xjt) < ε} |= 1.

Thus, {∆mxp} is lacunary ∆m-statistically g-Cauchy in (M, g).

Definition 2.10. Let (M, g) be a g-metric space, if every lacunary ∆m-statistically
Cauchy sequence be lacunary ∆m-statistically convergent, then (M, g) is said to be
lacunary ∆m-statistically complete.

Corollary 2.11. Every lacunary ∆m-statistically complete g-metric space is
complete.

Proof. Consider the lacunary ∆m statistically complete g-metric space (M.g). Sup-
pose {∆mxp} be a Cauchy sequence in (M, g), then it is lacunary ∆m statistically
Cauchy sequencwe in (X, g). Since (M, g) is lacunary ∆m statistically complete so
{∆mxp} is lacunary ∆m statistically convergent. By corollary (2.11), there is a subse-
quence {∆mxpl} of {∆mxp} that converges to a point x ∈M . Since {∆mxp} is Cauchy,
hence, for ε > 0, there exists N ∈ N and xjε ∈ {∆mxp} such that for j1, j2, . . . , jt ≥ N ,
we have

g (xjε ,∆
m (xj1 , xj2 , . . . , xjt)) <

ε

2t(t+ 1)
.

On the other hands, {∆mxpl} converges to x. Hence there exists l0 ≥ N such that
for j1, j2, . . . , jt ≥ l0,

g
(
x,∆m

(
xpj1 , xpj2 , . . . , xpjt

))
<
ε

2
.

For j1, j2, . . . , jt ≥ N and applying parts (3) and (4) of Theorem (1.3), it follows
that

g (x,∆m (xj1 , xj2 , . . . , xjt)) ≤ g (x, xjε , xjε , . . . , xjε) +

t∑
i=1

g (∆mxji , xjε , xjε , . . . , xjε)

≤ g
(
x,∆m

(
xpj1 , xpj2 , . . . , xpjt

))
+ lt

(
g
(
xjε ,∆

m
(
xpj1 , xpj2 , . . . , xpjt

)))
+

t∑
i=1

tg (xjε ,∆
m (xj1 , xj2 , . . . , xjt))

<
ε

2
+ t

(
ε

2t(t+ 1)

)
= t2

(
ε

2t(t+ 1)

)
= ε.

This completes the proof.
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3. Strong Summability

The relationship between strong summability and lacunary ∆m-statistical conver-
gence in g-metric space is established in this section.

Definition 3.1. A sequence {∆m (xi1 , xi2 , . . . xit)} is said to be strongly t-cesaro

summable (0 < t <∞) to limit x in (M, g) if limp
1
p

∑n
j=1(g) (∆m (xj1 , xj2 , . . . xjt) , x)t

)
=

0 and we write it as xl → t [c1, g]t. In this case x is the [c1, g]t-limit of {∆m (xj1 , xj2 , . . . xjt)}.

Theorem 3.2. Let (M, g) be a g-metric space and θ be a lacunary sequence.
(a) If 0 < t <∞ and {∆m (xj1 , xj2 , . . . xjt)} → x [c1, g]t, then {∆m (xj1 , xj2 , . . . xjt)}

is lacunary ∆m-statistically g-convergent to x in (M, g).
(b) If {∆m (xj1 , xj2 , . . . xjt)} is bounded and lacunary ∆m-statistically g-convergent

to x in (M, g) then {∆m (xj1 , xj2 , . . . xjt)} → x [c1, g]t.

Proof. (a). Let

Lε(t) =
{

(j1, j2, . . . , jt) ∈ Nt, j1, j2, . . . , it ≤ p(p ∈ N) : |g (∆m (xj1 , xj2 , . . . xjt) , x)|t ≥ ε}.

Now, since ∆m (xj1 , xj2 , . . . xjt)→ x [c1, g]t, then

0← 1

p

∞∑
j=1

|∆m (xj1 , xj2 , . . . xjt) , x|
t

=
1

p


p∑
j=1

j /∈Lε(t)

|∆m (xj1 , xj2 , . . . xjt) , x|
t +

n∑
i=1

j∈Lε(p)

|∆m (xj1 , xj2 , . . . xjt) , l|
p


≥ 1

p
|Kε(t)| εt, as p→∞.

That is, limp→∞
1
p
|Lε(t)| = 0 and δθt (Lε(t)) = 0. Hence {∆m (xj1 , xj2 , . . . xjt)} is

lacunary ∆m-statistically g-convergent to x in (M, g).
(b). Suppose that {∆m (xj1 , xj2 , . . . xjt)} is bounded and statistically g-convergent

to x in (X, g). Then for ε > 0, we have δ (Lε(t)) = 0. Since {∆m (xj1 , xj2 , . . . xjt)} ∈
`∞, there exists T > 0 such that |g (∆m (xj1 , xj2 , . . . xjt) , x)|t ≤ T . We have

1

p

p∑
j=1

|∆m (xj1 , xj2 , . . . xjt) , x|
t

=
1

p

p∑
j=1

j /∈Lε(t)

|g (∆m (xj1 , xj2 , . . . xjt) , x)|t +
1

p

p∑
j=1

j∈Lε(t)

|g (∆m (xj1 , xj2 , . . . xjt) , x)|t

=S1(p) + S2(p),

where

S1(p) =
1

p

p∑
j=1

j /∈Lε(t)

|g (∆m (xj1 , xj2 , . . . xjt) , x)|t
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and

S2(p) =
1

p

p∑
j=1

j∈Lε(t)

|g (∆m (xj1 , xj2 , . . . xjt) , x)|t .

Now if {j1, j2, . . . , jt} /∈ Lε(t) then S1(p) < εt. For {j1, j2, . . . , it} ∈ Lε(t), we

have S2(p) ≤ sup |g (∆m (xj1 , xj2 , . . . xjt) , x)|
(
|Lε(t)|
p

)
≤ T |Lε(t)|

p
→ 0 as p → ∞, since

δθt (L(ε)) = 0. Hence {∆m (xj1 , xj2 , . . . xjt)} → x [c1, g]t.
This completes the proof.

4. Conclusion

The research aimed to provide a comprehensive description of lacunary ∆m-statistically
convergent sequences within the context of generalised metric spaces (g-metric spaces).
The investigation delved into the fundamental characteristics of this statistical form of
convergence, shedding light on its properties and behavior within the broader frame-
work of metric spaces.

Moreover, the research successfully established a noteworthy connection between
strong summability and lacunary ∆m-statistical convergence in g-metric spaces. This
contribution enhances our understanding of the interplay between different modes of
convergence and summability in the context of generalized metric spaces, providing
valuable insights into the relationships and implications of these concepts.

The findings of this research contribute not only to the theoretical aspects of conver-
gence in g-metric spaces but also hold potential applications in various mathematical
and scientific domains. The established relationships and characteristics pave the way
for further exploration and utilization of lacunary ∆m-statistical convergence in the
broader mathematical landscape.
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of King Saud University - Science 35 (10) (2023), 102949.
https://doi.org/10.1016/j.jksus.2023.102949

[29] M. Raiz, A. Kumar, V. N. Mishra and N.Rao, Dunkl Analogue of Szasz Schurer Beta Operators
and their Approximation Behavior, Mathematical Foundation of Computing 5 (4) (2022), 315.
https://doi.org/10.3934/mfc.2022007

[30] D. Rai, N. Subramanian, Vishnu Narayan Mishra, The Generalized difference of
∫
χ2I of fuzzy

real numbers over p− metric spaces defined by Musielak Orlicz function, New Trends in Math.
Sci 4 (3) (2016), 296–306.
https://doi.org/10.20852/ntmsci.2016320385

[31] E.Savas and P.Das, A generalized statistical convergence via ideals, Applied Mathematics Letters
24 (6) (2011), 826–830.
https://doi.org/10.1016/j.aml.2010.12.022

[32] H.Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloquium Mathe-
maticae 2 (1951), 73–74.

[33] A.Zygmund, Trignometric Series, Cambridge University.Press, Cambridge, 1979.
https://doi.org/10.1017/CBO9781316036587

Asif Hussain Jan
Department of Mathematics, National Institute of Technology,
Hazratbal, Srinagar -190006, Jammu and Kashmir, India.
E-mail : asif 06phd20@nitsri.net

Tanweer Jalal
Department of Mathematics, National Institute of Technology,
Hazratbal, Srinagar -190006, Jammu and Kashmir, India.
E-mail : tjalal@nitsri.ac.in

http://dx.doi.org/10.2298/YJOR210915005M
https://doi.org/10.3934/mfc.2022037
https://doi.org/10.1002/mma.9322
https://doi.org/10.1016/j.jksus.2023.102949
https://doi.org/10.3934/mfc.2022007
https://doi.org/10.20852/ntmsci.2016320385
https://doi.org/10.1016/j.aml.2010.12.022
https://doi.org/10.1017/CBO9781316036587

	1.  Inroduction and preliminaries
	2.  Lacunary m statistical convergence
	3.  Strong Summability
	4. Conclusion
	Declarations
	References

