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GENERALIZED FIRST VARIATION AND GENERALIZED

SEQUENTIAL FOURIER-FEYNMAN TRANSFORM

Byoung Soo Kim

Abstract. This paper is a further development of the recent results by the author
and coworker on the generalized sequential Fourier-Feynman transform for func-
tionals in a Banach algebra Ŝ and some related functionals. We establish existence
of the generalized first variation of these functionals. Also we investigate various
relationships between the generalized sequential Fourier-Feynman transform, the
generalized sequential convolution product and the generalized first variation of the
functionals.

1. Introduction

Let C0[0, T ] be the space of continuous functions x(t) on [0, T ] such that x(0) = 0.
Let a subdivision σ of [0, T ] be given:

σ : 0 = τ0 < τ1 < · · · < τm = T,

and let X(t, σ, ~ξ) be a polygonal curve in C0[0, T ] based on a subdivision σ and the

real numbers ~ξ = {ξk}, that is,

X(t, σ, ~ξ) =
ξk−1(τk − t) + ξk(t− τk−1)

τk − τk−1
when τk−1 ≤ t ≤ τk, k = 1, 2, . . . ,m and ξ0 = 0. If there is a sequence of subdivisions
{σn}, then σ,m and τk will be replaced by σn,mn and τn,k.

Let Zh be the Gaussian process

Zh(x, t) =

∫ t

0

h(s) dx(s),

where h( 6= 0) is in L2[0, T ] and the integral
∫ t
0
h(s) dx(s) denotes the Paley-Wiener-

Zygmund (PWZ) integral [7, 11].
Note that Zh is a Gaussian process with mean zero and covariance function∫

C0[0,T ]

Zh(x, s)Zh(x, t) dm(x) =

∫ min{s,t}

0

h2(u) du,
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where the integral on the left-hand side of the last expression denotes the Wiener
integral. Of course if h ≡ 1 on [0, T ], then Zh(x, t) = x(t) is the standard Wiener
process. The standard Wiener process is stationary in time, while the Gaussian
process Zh is non-stationary in time, unless h is equal to the constant function 1.

Let q 6= 0 be a given real number and let F (x) be a functional defined on a subset
of C0[0, T ] containing all the polygonal curves in C0[0, T ]. Let {σn} be a sequence of
subdivisions such that the norm ‖σn‖ → 0 and let {λn} be a sequence of complex
numbers with Reλn > 0 such that λn → −iq. Then if the integral in the right hand
side of (1.1) exists for all n and if the following limit exists and is independent of
the choice of the sequences {σn} and {λn}, we say that the generalized sequential
Feynman integral with parameter q exists and it is denoted by

(1.1)

∫ sfq

F (Zh(x, ·)) dx = lim
n→∞

∫
Rmn

Wλn(σn, ~ξ)F (Zh(X(·, σn, ~ξ), ·)) d~ξ,

where

Wλ(σ, ~ξ) = γσ,λ exp
{
−λ

2

∫ T

0

∣∣∣dX
dt

(t, σn, ~ξ)
∣∣∣2 dt}

= γσ,λ exp
{
−λ

2

m∑
k=1

(ξk − ξk−1)2

τk − τk−1

}
and

γσ,λ =
( λ

2π

)m/2 m∏
k=1

(τk − τk−1)−1/2.

When h ≡ 1 on [0, T ], the generalized sequential Feynman integral is reduced to

the sequential Feynman integral
∫ sfq F (x) dx defined and studied in [3–5,8].

Let D[0, T ] be the class of elements x ∈ C0[0, T ] such that x is absolutely continuous
on [0, T ] and its derivative x′ ∈ L2[0, T ].

Now we introduce the definitions of a generalized sequential Fourier-Feynman trans-
form, a generalized sequential convolution product and a generalized first variation
for functionals defined on C0[0, T ]. In defining all the three concepts and throughout
this paper, we will assume that h, h1 and h2 are non-zero in L2[0, T ].

Definition 1.1. Let q be a nonzero real number. For y ∈ D[0, T ], we define the
generalized sequential Fourier-Feynman transform Γq,h(F ) of F by the formula

(1.2) Γq,h(F )(y) =

∫ sfq

F (Zh(x, ·) + y) dx

if it exists [14,17].

Definition 1.2. Let q be a nonzero real number. For y ∈ D[0, T ], we define the
generalized sequential convolution product (F ∗G)q,h of F and G by the formula

(1.3) (F ∗G)q,h(y) =

∫ sfq

F
(y + Zh(x, ·)√

2

)
G
(y − Zh(x, ·)√

2

)
dx

if it exists [14].
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Definition 1.3. Let x, y ∈ C0[0, T ]. The generalized first variation of F in the
direction y is defined by the formula

(1.4) δh1,h2F (x|y) =
∂

∂r
F (Zh1(x, ·) + rZh2(y, ·))|r=0

if it exists [7].

Remark 1.4. 1. When h1 = h2 ≡ 1 on [0, T ], the generalized first variation is
reduced to the first variation δF (x|y) which was defined and studied on [8,9,15].

2. Hence some of the results in [8] can be obtained as corollaries of the results
in this paper. For example, Theorems 4.1, 4.2, 4,3 and 4.4 in [8] follow from
Theorems 3.1, 3.5, 3.6 and 3.4 below, respectively.

For u, v ∈ L2[0, T ], we let

〈u, v〉 =

∫ T

0

u(t)v(t) dt,

and for a subdivision σ of [0, T ], we let

〈u, v〉k =

∫ τk

τk−1

u(t)v(t) dt

for k = 1, . . . ,m. If there is a sequence of subdivision {σn}, then 〈u, v〉k will be
replaced by 〈u, v〉n,k.

Let M =M(L2[0, T ]) be the class of complex measures of finite variation defined
on B(L2[0, T ]), the Borel measurable subsets of L2[0, T ].

In this paper, we work with three classes of functionals. Now we describe these
classes of functionals, that is, expressions (1.5), (1.9) and (1.10), after which we will
describe more the results of this paper.

A functional F defined on a subset of C0[0, T ] that contains D[0, T ] is said to be an

element of Ŝ = Ŝ(L2[0, T ]) if there exists a measure f ∈M such that for x ∈ D[0, T ],

(1.5) F (x) =

∫
L2[0,T ]

exp{i〈u, x′〉} df(u).

Note that Ŝ with the norm ‖F‖ = ‖f‖ is a Banach algebra [3]. For some Banach
algebras which are useful to study Feynman integral and related topics, see [2, 3].

The second and third classes of functionals are different from but are closely related
with the expression (1.5).

Let T be the set of functions Ψ defined on R by

(1.6) Ψ(r) =

∫
R

exp{irs} dρ(s),

where ρ is a complex Borel measure of bounded variation on R. For s ∈ R, let γ(s)
be the function u ∈ L2[0, T ] such that u(t) = s for 0 ≤ t ≤ T ; thus γ : R → L2[0, T ]
is continuous. For E ∈ B(L2[0, T ]), let

(1.7) ψ(E) = ρ(γ−1(E)).

Thus ψ ∈M. Transforming the right hand member of (1.6), we have for x ∈ D[0, T ],

(1.8) Ψ(x(T )) =

∫
L2[0,T ]

exp{i〈u, x′〉} dψ(u),
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and Ψ(x(T )), considered as a functional of x, is an element of Ŝ.
For x ∈ D[0, T ], let

(1.9) F (x) = G(x)Ψ(x(T )),

where G ∈ Ŝ and Ψ ∈ T are given by (1.5) with corresponding measure g in M and

(1.6), respectively. Since Ŝ is a Banach algebra, we know that the functional F in

(1.9) is an element of Ŝ.
Let f ∈M and Φ be a bounded measurable functional defined on L2[0, T ], and let

(1.10) F (x) =

∫
L2[0,T ]

exp{i〈u, x′〉}Φ(u) df(u),

for x ∈ D[0, T ].
These functionals were studied in [4–6, 8, 14, 17] and are often employed in the

application of the Feynman integral to quantum theory. Especially the function Ψ in
(1.6) corresponds to the initial condition associated with Schrödinger equation.

We are now ready to discuss the results of this paper. In Section 2, we summa-
rize the existences and expressions for the generalized sequential Fourier-Feynman
transform from [17], and for the generalized sequential convolution product [14].

In Section 3, we establish existences and expressions for the generalized first vari-
ation of the functionals that we work with in this paper. Moreover we obtain some
relationships involving the generalized sequential Fourier-Feynman transform and the
generalized first variation. In the last section, using the results in Sections 2 and 3,
we obtain some relationships involving the generalized sequential convolution product
and the generalized first variation.

2. Generalized sequential Fourier-Feynman transform and generalized
sequential convolution product

For the convenience of the readers, we introduce some results from [14, 17] on the
existences and explicit expressions for the generalized sequential Fourier-Feynman
transform and the generalized sequential convolution product of functionals that we
work with in this paper.

In Theorems 2.1, 2.2 and 2.3 below, we summarize some results on the generalized
sequential Fourier-Feynman transform [17], while in Theorems 2.4, 2.5 and 2.6, we
summarize some results on the generalized sequential convolution product [14] with
modified forms which are applicable in this paper.

Theorem 2.1 (Theorem 3.4 in [17]). Let F ∈ Ŝ be given by (1.5) and q be a
nonzero real number. Then the generalized sequential Fourier-Feynman transform
Γq,h(F )(y) exists and is given by the formula

(2.1) Γq,h(F )(y) =

∫
L2[0,T ]

exp
{
i〈u, y′〉 − i

2q
‖uh‖22

}
df(u)

for y ∈ D[0, T ]. Furthermore, as a function of y, Γq,h(F )(y) is an element of Ŝ. In
fact,

(2.2) Γq,h(F )(y) =

∫
L2[0,T ]

exp{i〈u, y′〉} df tq,h(u)
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for y ∈ D[0, T ], where f tq,h is the measure in M defined by

(2.3) f tq,h(E) =

∫
E

exp
{
− i

2q
‖uh‖22

}
df(u)

for E ∈ B(L2[0, T ]).

Theorem 2.2 (Theorem 3.7 in [17]). For x ∈ D[0, T ], let F (x) = G(x)Ψ(x(T ))
be given by (1.9) and q be a nonzero real number. Then the generalized sequential
Fourier-Feynman transform Γq,h(F )(y) exists and is given by the formula

(2.4) Γq,h(F )(y) =

∫
L2[0,T ]

∫
R

exp
{
i〈u+ s, y′〉 − i

2q
‖(u+ s)h‖22

}
dρ(s) dg(u)

for y ∈ D[0, T ]. Furthermore, as a function of y, Γq,h(F )(y) is an element of Ŝ. In
fact,

(2.5) Γq,h(F )(y) =

∫
L2[0,T ]

exp{i〈u, y′〉} dgtψ;q,h(u)

for y ∈ D[0, T ], where gtψ;q,h is the measure inM defined by (2.3) replacing f with gψ,

and gψ is the measure defined by gψ(E) =
∫
L2[0,T ]

g(E − u) dψ(u) for E ∈ B(L2[0, T ]),

and ψ is given by (1.7).

Theorem 2.3 (Theorem 3.8 in [17]). Let F be given by (1.10) and q be a nonzero
real number. Then the generalized sequential Fourier-Feynman transform Γq,h(F )(y)
exists and is given by the formula

(2.6) Γq,h(F )(y) =

∫
L2[0,T ]

exp
{
i〈u, y′〉 − i

2q
‖uh‖22

}
Φ(u) df(u)

for y ∈ D[0, T ]. Furthermore, as a function of y, Γq,h(F )(y) is an element of Ŝ. In
fact,

(2.7) Γq,h(F )(y) =

∫
L2[0,T ]

exp{i〈u, y′〉} df tφ;q,h(u)

for y ∈ D[0, T ], where f tφ;q,h is the measure in M defined by (2.3) replacing f with

fφ, and fφ is the measure defined by fφ(E) =
∫
E

Φ(u) df(u) for E ∈ B(L2[0, T ]).

In [14], the author and coworker investigated the existence of the generalized se-
quential convolution product for functionals that we work with in this paper. Also
they showed that the generalized sequential Fourier-Feynman transform of the gen-
eralized sequential convolution product is a product of the generalized sequential
Fourier-Feynman transforms of these functionals.

Theorem 2.4 (Theorem 3.3 in [14]). Let Fj ∈ Ŝ be given by (1.5) with corre-
sponding measures fj in M for j = 1, 2. Then for each nonzero real number q, the
generalized sequential convolution product (F1 ∗ F2)q,h exists and is given by

(2.8) (F1∗F2)q,h(y) =

∫
L2
2[0,T ]

exp
{ i√

2
〈u1+u2, y

′〉− i

4q
‖(u1−u2)h‖22

}
df1(u1) df2(u2)
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for y ∈ D[0, T ]. Furthermore, as a function of y ∈ D[0, T ], (F1∗F2)q,h(y) is an element

of Ŝ. In fact,

(2.9) (F1 ∗ F2)q,h(y) =

∫
L2[0,T ]

exp{i〈u, y′〉} d(f1 ∗ f2)cq,h(u),

for y ∈ D[0, T ], where

(2.10) (f1 ∗ f2)cq,h = (f1 ∗ f2)q,h ◦ η−1

is the measure in M, and

(2.11) (f1 ∗ f2)q,h(E) =

∫
E

exp
{
− i

4q
‖(u1 − u2)h‖22

}
df1(u1) df2(u2)

for E ∈ B(L2
2[0, T ]) and η : L2

2[0, T ] → L2[0, T ] is a function defined by η(u1, u2) =
u1+u2√

2
.

Theorem 2.5 (Theorem 3.4 in [14]). For x ∈ D[0, T ], let Fj(x) = Gj(x)Ψj(x(T ))

where Gj ∈ Ŝ and Ψj ∈ T are given by (1.5) with corresponding measures gj in
M and (1.6), respectively for j = 1, 2. Then for each nonzero real number q, the
generalized sequential convolution product (F1 ∗ F2)q,h exists and is given by

(F1 ∗ F2)q,h(y) =

∫
L2
2[0,T ]

∫
R2

exp
{ i√

2
〈u1 + u2 + s1 + s2, y

′〉

− i

4q
‖(u1 − u2 + s1 − s2)h‖22

}
dρ1(s1) dρ2(s2) dg1(u1) dg2(u2)

(2.12)

for y ∈ D[0, T ]. Furthermore, as a function of y ∈ D[0, T ], (F1∗F2)q,h(y) is an element

of Ŝ. In fact,

(2.13) (F1 ∗ F2)q,h(y) =

∫
L2[0,T ]

exp{i〈u, y′〉} d(g1,ψ1 ∗ g2,ψ2)
c
q,h(u),

for y ∈ D[0, T ], where (g1,ψ1∗g2,ψ2)
c
q,h is the measure inM defined by (2.10) and (2.11)

replacing fj with gj,ψj
, and gj,ψj

∈M is given by gj,ψj
(E) =

∫
L2[0,T ]

gj(E − u) dψj(u),

E ∈ B(L2[0, T ]) for j = 1, 2.

Theorem 2.6 (Theorem 3.5 in [14]). Let Fj be given by (1.10) with corresponding
bounded measurable functional Φj defined on L2[0, T ] for j = 1, 2. Then for each
nonzero real number q, the generalized sequential convolution product (F1 ∗ F2)q,h
exists and is given by

(F1 ∗ F2)q,h(y) =

∫
L2
2[0,T ]

exp
{ i√

2
〈u1 + u2, y

′〉 − i

4q
‖(u1 − u2)h‖22

}
× Φ1(u1)Φ2(u2) df1(u1) df2(u2)

(2.14)

for y ∈ D[0, T ]. Furthermore, as a function of y ∈ D[0, T ], (F1∗F2)q,h(y) is an element

of Ŝ. In fact,

(2.15) (F1 ∗ F2)q,h(y) =

∫
L2[0,T ]

exp{i〈w, y′〉} d(f1,φ1 ∗ f2,φ2)cq,h(w),
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for y ∈ D[0, T ], where (f1,φ1 ∗f2,φ2)cq,h is the measure inM with (f1,φ1 ∗f2,φ2)q,h defined
by (2.10) and (2.11) replacing fj with fj,φj , and fj,φj ∈ M is given by fj,φj(E) =∫
E

Φj(v) dfj(v), E ∈ B(L2[0, T ]) for j = 1, 2.

Remark 2.7. In Theorems 2.4, 2.5 and 2.6, we considered the generalized sequen-
tial convolution product (F1 ∗ F2)q,h of the same type of functionals F1 and F2. But
F1 and F2 are not necessarily of the same type of functionals. That is, even if F1

and F2 are different type of functionals, (F1 ∗ F2)q,h(y) exists and belongs to Ŝ as a
function of y ∈ D[0, T ]. For the explicit expressions for (F1 ∗ F2)q,h when F1 and F2

are different type of functionals, see Theorem 3.6 in [14].

3. Generalized first variation and generalized sequential Fourier-Feynman
transform

In this section we establish existences and explicit expressions of the generalized
first variation for functionals studied in Section 2. Also we investigate relationships
between the generalized sequential Fourier-Feynman transform and the generalized
first variation of the functionals. To guarantee the existences of the generalized first
variation δh1,h2F (x|y), we need further assumptions on F or hj for j = 1, 2 as we see
in the following theorems.

Theorem 3.1. Let F ∈ Ŝ be given by (1.5) with
∫
L2[0,T ]

‖uh2‖2 d|f |(u) < ∞ and

let y ∈ D[0, T ]. Then the generalized first variation δh1,h2F (x|y) exists and is given
by

(3.1) δh1,h2F (x|y) =

∫
L2[0,T ]

i〈uh2, y′〉 exp{i〈uh1, x′〉} df(u)

for x ∈ D[0, T ]. Furthermore, as a function of x ∈ D[0, T ], δh1,h2F (x|y) is an element

of Ŝ. In fact,

(3.2) δh1,h2F (x|y) =

∫
L2[0,T ]

exp{i〈u, x′〉} df vy,h1,h2(u)

for x ∈ D[0, T ], where

(3.3) f vy,h1,h2 = fy,h2 ◦ µ−1h1
with fy,h2(E) = i

∫
E
〈uh2, y′〉 df(u) for E ∈ B(L2[0, T ]) and µh1 : L2[0, T ]→ L2[0, T ] is

a function defined by µh1(u) = uh1.

Proof. For x, y ∈ D[0, T ], we have

δh1,h2F (x|y) =
∂

∂r

(∫
L2[0,T ]

exp
{
i
〈
u,
d

dt
(Zh1(x, ·) + rZh2(y, ·))

〉}
df(u)

)∣∣∣
r=0

=
∂

∂r

(∫
L2[0,T ]

exp{i〈uh1, x′〉+ ir〈uh2, y′〉} df(u)
)∣∣∣

r=0
.

Since ∫
L2[0,T ]

|〈uh2, y′〉| d|f |(u) ≤ ‖y′‖2
∫
L2[0,T ]

‖uh2‖2 d|f |(u) <∞,
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we can pass the partial derivative under the integral sign to obtain (3.1). It is obvious
that f vy,h1,h2 is a measure in M and so δh1,h2F (x|y) can be rewritten as (3.2) which
completes the proof.

Next, we establish the existence of the generalized first variation of the functionals
we considered in Theorems 2.2 and 2.3.

Theorem 3.2. For x ∈ D[0, T ], let F (x) = G(x)Ψ(x(T )) be given as in Theorem
2.2. Further assume that

∫
L2[0,T ]

∫
R ‖(u + s)h2‖2 d|ρ|(s) d|g|(u) < ∞ and let y ∈

D[0, T ]. Then the generalized first variation δh1,h2F (x|y) exists and is given by

(3.4) δh1,h2F (x|y) =

∫
L2[0,T ]

∫
R
i〈(u+ s)h2, y

′〉 exp{i〈(u+ s)h1, x
′〉} dρ(s) dg(u)

for x ∈ D[0, T ]. Furthermore, as a function of x ∈ D[0, T ], δh1,h2F (x|y) is an element

of Ŝ. In fact,

(3.5) δh1,h2F (x|y) =

∫
L2[0,T ]

exp{i〈u, x′〉} dgvψ;y,h1,h2(u)

for x ∈ D[0, T ], where gvψ;y,h1,h2 is the measure inM defined by (3.3) replacing f with
gψ, and gψ is the measure in Theorem 2.2.

Proof. Since Ŝ is a Banach algebra, F belongs to Ŝ, and using Theorem 6.1 in [2]
and Theorem 2.3 in [8] we know that it can be expressed as

F (x) =

∫
L2[0,T ]

exp{i〈u, x′〉} dgψ(u),

where gψ is defined in Theorem 2.2. Since∫
L2[0,T ]

‖uh2‖2 d|gψ|(u) =

∫
L2
2[0,T ]

‖(u+ w)h2‖2 d|g|(u) d|ψ|(w)

=

∫
L2[0,T ]

∫
R
‖(u+ s)h2‖2 d|ρ|(s) d|g|(u) <∞,

we can apply Theorem 3.1 to obtain

δh1,h2F (x|y) =

∫
L2[0,T ]

i〈wh2, y′〉 exp{i〈wh1, x′〉} dgψ(w)

for x ∈ D[0, T ]. By the unsymmetric Fubini theorem [2] and the transformation
u = w − v, we have

δh1,h2F (x|y) =

∫
L2
2[0,T ]

i〈(u+ v)h2, y
′〉 exp{i〈(u+ v)h1, x

′〉} dg(u) dψ(v)

for x ∈ D[0, T ]. Finally by the definitions (1.6) and (1.7) for Ψ and ψ, and the
Fubini theorem, we obtain (3.4). Moreover by the same method as in Theorems 2.2

and 3.1, we see that δh1,h2F (x|y) is given by (3.5), and belongs to Ŝ as a function of
x ∈ D[0, T ].
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Theorem 3.3. Let F be given as in Theorem 2.3 with
∫
L2[0,T ]

‖uh2‖2|Φ(u)| d|f |(u) <

∞ and let y ∈ D[0, T ]. Then the generalized first variation δh1,h2F (x|y) exists and is
given by

(3.6) δh1,h2F (x|y) =

∫
L2[0,T ]

i〈uh2, y′〉 exp{i〈uh1, x′〉}Φ(u) df(u)

for each x ∈ D[0, T ]. Furthermore, as a function of x ∈ D[0, T ], δh1,h2F (x|y) is an

element of Ŝ. In fact,

(3.7) δh1,h2F (x|y) =

∫
L2[0,T ]

exp{i〈u, x′〉} df vφ;y,h1,h2(u)

for x ∈ D[0, T ], where f vφ;y,h1,h2 is the measure inM defined by (3.3) replacing f with
fφ, and fφ is the measure in Theorem 2.3.

Proof. By Theorem 2.4 in [17], we know that F belongs to Ŝ and is expressed as
F (x) =

∫
L2[0,T ]

exp{i〈u, x′〉} dfφ(u), where fφ is defined as in Theorem 2.3. Since∫
L2[0,T ]

‖uh2‖2 d|fφ|(u) =

∫
L2[0,T ]

‖uh2‖2|Φ(u)| d|f |(u) <∞,

we can apply Theorem 3.1 to obtain

δh1,h2F (x|y) =

∫
L2[0,T ]

i〈uh2, y′〉 exp{i〈uh1, x′〉} dfφ(u)

for x ∈ D[0, T ]. Replacing dfφ(u) by Φ(u) df(u), we obtain (3.6). Moreover by the
same method as in the proof of Theorem 3.2, we see that δh1,h2F (x|y) is given by

(3.7), and belongs to Ŝ as a function of x ∈ D[0, T ].

As commented in Remark 2.5 of [17], at present we do not know whether the
functional

F (x) = G(x)Ψ(x(T )),

where G ∈ Ŝ and Ψ ∈ L1(R), has the generalized sequential Feynman integrable or
the generalized sequential Fourier-Feynman transform. But we can show that F has
the generalized first variation as in the following theorem.

Theorem 3.4. For x ∈ D[0, T ], let F (x) = G(x)Ψ(x(T )), where G ∈ Ŝ is given
by (1.5) and Ψ ∈ L1(R). Further assume that

∫
L2[0,T ]

∫
R ‖uh2‖2 d|g|(u) <∞, Ψ′ exists

and let y ∈ D[0, T ]. Then the generalized first variation δh1,h2F (x|y) exists and is
given by

(3.8) δh1,h2F (x|y) = δh1,h2G(x|y)Ψ(Zh1(x, T )) +G(Zh1(x, ·))Ψ′(Zh1(x, T ))Zh2(y, T )

for x ∈ D[0, T ].

Proof. For x, y ∈ D[0, T ], we have

δh1,h2F (x|y) =
∂

∂r
{G(Zh1(x, ·) + rZh2(y, ·))Ψ(Zh1(x, T ) + rZh2(y, T ))}|r=0

=
∂

∂r
{G(Zh1(x, ·) + rZh2(y, ·))}|r=0Ψ(Zh1(x, T ))

+G(Zh1(x, ·)
∂

∂r
{Ψ(Zh1(x, T ) + rZh2(y, T ))}|r=0

and this is equal to the right hand side of (3.8) as we wished.
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Next we discuss relationships between the generalized sequential Fourier-Feynman
transform and the generalized first variation of functionals we worked with in Theo-
rems 3.1, 3.2 and 3.3. In Theorem 3.5 below, we consider δh1,h2F (x|y) as a function
of x, while in Theorems 3.6 and 3.7, we consider δh1,h2F (x|y) as a function of y.

Theorem 3.5. Let F be given as in Theorems 3.1, 3.2 and 3.3 with corresponding
assumptions in the theorems. Let y ∈ D[0, T ] and let q be a nonzero real number.
Then we have

(3.9) Γq,h(δh1,h2F (·|y))(x) = δh1,h2Γq,hh1(F )(x|y)

for x ∈ D[0, T ].

Proof. Since the generalized first variation δh1,h2F (x|y) belongs to Ŝ as a function
of x ∈ D[0, T ] and has the expressions (3.2), (3.5) or (3.7), we apply Theorem 2.1 to
obtain the left hand side of (3.9). On the other hand, since the generalized sequential

Fourier-Feynman transform Γq,hh1F (x) belongs to Ŝ and has the expressions (2.2),
(2.5) or (2.7), we apply Theorem 3.1 to obtain the right hand side of (3.9). For

example, if F ∈ Ŝ and
∫
L2[0,T ]

‖uh2‖2 d|f |(u) <∞, then

Γq,h(δh1,h2F (·|y))(x) =

∫
L2[0,T ]

exp
{
i〈u, x′〉 − i

2q
‖uh‖22

}
df vy,h1,h2(u)

=

∫
L2[0,T ]

i〈uh2, y′〉 exp
{
i〈uh1, x′〉 −

i

2q
‖uhh1‖22

}
df(u),

and

δh1,h2Γq,hh1F (x|y) =

∫
L2[0,T ]

i〈uh2, y′〉 exp{i〈uh1, x′〉} df tq,hh1(u)

=

∫
L2[0,T ]

i〈uh2, y′〉 exp
{
i〈uh1, x′〉 −

i

2q
‖uhh1‖22

}
df(u),

where the second equality follows from the definition of f tq,hh1 in Theorem 2.1. Hence
we complete the proof of (3.9) for the functionals in Theorem 3.1. By the same method
it is easy to see that the relationship (3.9) holds for the functionals in Theorems 3.2
and 3.3.

Since the first variation δh1,h2F (x|y) does not belong to Ŝ as a function of y ∈
D[0, T ], we can not apply Theorem 2.1 for the expressions δh1,h2F (x|y) obtained in
Theorems 3.1, 3.2 and 3.3. Instead, we use Definition 1.1 to get Γq,h(δh1,h2F (x|·))(y).

Theorem 3.6. Let F be given as in Theorems 3.1, 3.2 and 3.3 with corresponding
assumptions in the theorems. Let x ∈ D[0, T ] and let q be a nonzero real number.
Then we have

(3.10) Γq,h(δh1,h2F (x|·))(y) = δh1,h2F (x|y)

for y ∈ D[0, T ].

Proof. We only prove the case when F is given as in Theorem 3.1, and leave the
proofs for the rest cases to the reader because they are similar. Let σ : 0 = τ0 <
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τ1 < · · · < τm = T be a subdivision of [0, T ]. Then using the expression (3.1) for the
generalized first variation of F we have

δh1,h2F (x|Zh(X(·, σ, ~ξ), ·) + y)

=

∫
L2[0,T ]

{
i
m∑
k=1

ξk − ξk−1
τk − τk−1

〈uh2, h〉k + i〈uh2, y′〉
}

exp{i〈uh1, x′〉} df(u).

Let λ be a complex number with Reλ > 0, and let

Iσ,λ(δh1,h2F (x|·))(y) =

∫
Rm

Wλ(σ, ~ξ)δh1,h2F (x|Zh(X(·, σ, ~ξ), ·) + y) d~ξ.

By the Fubini theorem, we have

Iσ,λ(δh1,h2F (x|·))(y) = γσ,λ

∫
L2[0,T ]

∫
Rm

{
i
m∑
k=1

ξk − ξk−1
τk − τk−1

〈uh2, h〉k + i〈uh2, y′〉
}

× exp
{
−λ

2

m∑
k=1

(ξk − ξk−1)2

τk − τk−1
+ i〈uh1, x′〉

}
d~ξ df(u).

Evaluating the m-dimensional Riemann integral on the right hand side, we have

Iσ,λ(δh1,h2F (x|·))(y) =

∫
L2[0,T ]

i〈uh2, y′〉 exp{i〈uh1, x′〉} df(u).

Now let {σn} be a sequence of subdivisions of [0, T ] such that ‖σn‖ → 0, and let {λn}
be a sequence of complex numbers such that Reλn > 0 and λn → −iq as n → ∞.
Since the expression on the right hand side of the last expression is independent of σ
and λ, we have that

Γq,h(δh1,h2F (x|·))(y) =

∫ sfq

δh1,h2F (x|Zh(x, ·) + y) dx

= lim
n→∞

Iσn,λn(δh1,h2F (x|·))(y)

=

∫
L2[0,T ]

i〈uh2, y′〉 exp{i〈uh1, x′〉} df(u),

which is equal to δh1,h2F (x|y) in (3.1), and this completes the proof.

In this paper, we use the generalized sequential Feynman integral to define the
generalized sequential Fourier-Feynman transform. Similarly (generalized) analytic
Fourier-Feynman transform can be defined using the concept of (generalized) analytic
Feynman integral. Many works on the (generalized) analytic Fourier-Feynman can
be seen in, for example, [1,7,10,12,13,15]. The relationships (3.9) and (3.10) are the
same as the relationships (24) and (26) in [7], respectively, for the generalized analytic
Fourier-Feynman transform and the generalized first variation of functionals in the
Banach algebra S which was introduced in [2].
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4. Generalized first variation and generalized sequential convolution prod-
uct

In this section we establish relationships involving the generalized first variation
and generalized sequential convolution product for functionals that we worked with
in the previous sections.

In Theorems 4.1, 4.2 and 4.3, we take the generalized first variation of the gen-
eralized sequential convolution product, while in Theorems 4.4, 4.5 and 4.6, we take
the generalized sequential convolution product of the generalized first variation with
respect to the first argument of the variation.

Theorem 4.1. Let Fj ∈ Ŝ be given by (1.5) with
∫
L2[0,T ]

‖uh2‖2 d|fj|(u) < ∞ for

j = 1, 2 and let y ∈ D[0, T ]. Then the generalized first variation δh1,h2(F1 ∗F2)q,h(x|y)

exists, belongs to Ŝ as a function of x ∈ D[0, T ], and is given by

(4.1) δh1,h2(F1 ∗ F2)q,h(x|y) =

∫
L2[0,T ]

exp{i〈u, x′〉} d(f1 ∗ f2)c;vq,h;y,h1,h2(u)

for x ∈ D[0, T ], where (f1 ∗f2)c;vq,h;y,h1,h2 is the measure inM defined by (3.3) replacing
f with (f1 ∗ f2)cq,h in Theorem 2.4. In addition, the generalized first variation in (4.1)
can be expressed explicitly as
(4.2)
i√
2

∫
L2
2[0,T ]

〈(u1 +u2)h2, y
′〉 exp

{ i√
2
〈(u1 +u2)h1, x

′〉− i

4q
‖(u1−u2)h‖22

}
df1(u1) df2(u2)

for x ∈ D[0, T ].

Proof. Since (F1 ∗F2)q,h(y) belongs to Ŝ and is expressed as (2.9), in order to apply
Theorem 3.1 it is enough to show that the measure (f1 ∗f2)cq,h satisfies the assumption
in Theorem 3.1. In fact,∫

L2[0,T ]

‖uh2‖2 d|(f1 ∗ f2)cq,h|(u) =
1√
2

∫
L2
2[0,T ]

‖(u1 + u2)h2‖2 d|(f1 ∗ f2)q,h|(u1, u2)

≤ 1√
2

∫
L2
2[0,T ]

(‖u1h2‖2 + ‖u2h2‖2) d|f1|(u1) d|f2|(u2)

which is finite, since fj belongs to M with
∫
L2[0,T ]

‖uh2‖2 d|fj|(u) < ∞ for j = 1, 2.

Now we apply Theorem 3.1 to the expression (2.9) to obtain (4.1). To find an explicit
expression for (4.1), we start with the expression (3.1). Then we have

δh1,h2(F1 ∗ F2)q,h(x|y) =

∫
L2[0,T ]

i〈uh2, y′〉 exp{i〈uh1, x′〉} d(f1 ∗ f2)cq,h(u)

=
i√
2

∫
L2
2[0,T ]

〈(u1 + u2)h2, y
′〉 exp

{ i√
2
〈(u1 + u2)h1, x

′〉
}

× d(f1 ∗ f2)q,h(u1, u2)

where the second equality follows from the definition of the measure (f1 ∗ f2)cq,h in
Theorem 2.4. Finally by the definition (2.11) of (f1 ∗ f2)q,h in Theorem 2.4 we know
that the last expression is equal to the expression (4.2), and this completes the proof.
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Theorem 4.2. For x ∈ D[0, T ], let Fj(x) = Gj(x)Ψh(x(T )) be given as in Theorem
2.5 with

∫
L2[0,T ]

∫
R ‖(u + s)h2‖2 d|ρ|(s) d|gj|(u) < ∞ for j = 1, 2 and let y ∈ D[0, T ].

Then the generalized first variation δh1,h2(F1 ∗ F2)q,h(x|y) exists, belongs to Ŝ as a
function of x ∈ D[0, T ], and is given by

(4.3) δh1,h2(F1 ∗ F2)q,h(x|y) =

∫
L2[0,T ]

exp{i〈u, x′〉} d(g1,ψ1 ∗ g2,ψ2)
c;v
q,h;y,h1,h2

(u)

for x ∈ D[0, T ], where (g1,ψ1 ∗ g2,ψ2)
c;v
q,h;y,h1,h2

is the measure in M defined by (3.3)
replacing f with (g1,ψ1 ∗ g2,ψ2)

c
q,h in Theorem 2.5. In addition, the generalized first

variation in (4.3) can be expressed explicitly as

i√
2

∫
L2
2[0,T ]

∫
R2

〈(u1 + u2 + s1 + s2)h2, y
′〉 exp

{ i√
2
〈(u1 + u2 + s1 + s2)h1, x

′〉

− i

4q
‖(u1 − u2 + s1 − s2)h‖22

}
dρ1(s1) dρ2(s2) dg1(u1) dg2(u2)

(4.4)

for x ∈ D[0, T ].

Proof. Note that∫
L2[0,T ]

‖uh2‖2 d|(g1,ψ1 ∗ g2,ψ2)
c
q,h|(u)

=
1√
2

∫
L2
2[0,T ]

‖(u1 + u2)h2‖2 d|(g1,ψ1 ∗ g2,ψ2)q,h|(u1, u2)

≤ 1√
2

∫
L2
2[0,T ]

∫
R2

(‖(u1 + s1)h2‖2 + ‖(u2 + s2)h2‖2) d|ρ1|(s1) d|ρ2|(s2) d|g1|(u1) d|g2|(u2)

which is finite, since gj belongs to M with
∫
L2[0,T ]

‖(u + s)h2‖2 d|ρ|(s) d|gj|(u) < ∞
for j = 1, 2. Now we apply Theorem 3.1 to the expression (2.13) to obtain (4.3).
Similar method as in the proof of Theorem 4.1 and the definitions of the corresponding
measures in Theorems 2.5 and 3.1 give the expression (4.4).

Theorem 4.3. Let Fj be given as in Theorem 2.6 with
∫
L2[0,T ]

‖uh2‖2|Φj(u)| d|fj|(u)

< ∞ for j = 1, 2 and let y ∈ D[0, T ]. Then the generalized first variation δh1,h2(F1 ∗
F2)q,h(x|y) exists, belongs to Ŝ as a function of x ∈ D[0, T ], and is given by

(4.5) δh1,h2(F1 ∗ F2)q,h(x|y) =

∫
L2[0,T ]

exp{i〈u, x′〉} d(f1,φ1 ∗ f2,φ2)
c;v
q,h;y,h1,h2

(u)

for x ∈ D[0, T ], where (f1,φ1 ∗ f2,φ2)
c;v
q,h;y,h1,h2

is the measure in M defined by (3.3)
replacing f with (f1,φ1 ∗ f2,φ2)cq,h in Theorem 2.6. In addition, the generalized first
variation in (4.5) can be expressed explicitly as

i√
2

∫
L2
2[0,T ]

〈(u1 + u2)h2, y
′〉 exp

{ i√
2
〈(u1 + u2)h1, x

′〉 − i

4q
‖(u1 − u2)h‖22

}
× Φ1(u1)Φ2(u2) df1(u1) df2(u2)

(4.6)

for x ∈ D[0, T ].
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Proof. Note that∫
L2[0,T ]

‖uh2‖2 d|(f1,φ1 ∗ f2,φ2)cq,h|(u)

=
1√
2

∫
L2
2[0,T ]

‖(u1 + u2)h2‖2 d|(f1,φ1 ∗ f2,φ2)q,h|(u1, u2)

≤ 1√
2

∫
L2
2[0,T ]

(‖u1h2‖2 + ‖u2h2‖2)|Φ1(u1)||Φ2(u2)| d|f1|(u1) d|f2|(u2)

which is finite, since fj belongs to M with
∫
L2[0,T ]

‖uh2‖2|Φj(u)| d|fj|(u) < ∞ for

j = 1, 2. Now we apply Theorem 3.1 to the expression (2.15) to obtain (4.5). Sim-
ilar method as in the proof of Theorem 4.1 and the definitions of the corresponding
measures in Theorems 2.6 and 3.1 give the expression (4.6).

Since we know from Theorems 3.1, 3.2 and 3.3 that the generalized first variation of
the functionals we work with in this paper exists and is an element of Ŝ as a function
of x ∈ D[0, T ], we can obtain the generalized sequential convolution product of the
generalized first variation as in the following theorems.

Theorem 4.4. Let Fj be given as in Theorem 4.1 for j = 1, 2 and let y ∈ D[0, T ].
Then the generalized sequential convolution product (δh1,h2F1(·|y)∗δh1,h2F2(·|y))q,h(x)

exists, belongs to Ŝ as a function of x ∈ D[0, T ], and is given by
(4.7)

(δh1,h2F1(·|y) ∗ δh1,h2F2(·|y))q,h(x) =

∫
L2[0,T ]

exp{i〈u, x′〉} d(f v1;y,h1,h2 ∗ f
v
2;y,h1,h2

)cq,h(u)

for x ∈ D[0, T ], where (f v1;y,h1,h2 ∗ f
v
2;y,h1,h2

)cq,h is the measure in M defined as in
Theorem 2.4 replacing fj with f vj;y,h1,h2 in (3.3). In addition, the generalized sequential
convolution product in (4.7) can be expressed explicitly as

−
∫
L2
2[0,T ]

〈u1h2, y′〉〈u2h2, y′〉 exp
{ i√

2
〈(u1 + u2)h1, x

′〉 − i

4q
‖(u1 − u2)hh1‖22

}
df1(u1) df2(u2)

(4.8)

for x ∈ D[0, T ].

Proof. Since δh1,h2Fj(x|y) belongs to Ŝ as a function of x ∈ D[0, T ] for j = 1, 2 and
expressed as (3.2), we apply Theorem 2.4 to obtain (4.7). Moreover, by the definitions
of the corresponding measures in Theorems 2.4 and 3.1, we have the expression (4.8).

Theorem 4.5. Let Fj be given as in Theorem 4.2 for j = 1, 2 and let y ∈ D[0, T ].
Then the generalized sequential convolution product (δh1,h2F1(·|y)∗δh1,h2F2(·|y))q,h(x)

exists, belongs to Ŝ as a function of x ∈ D[0, T ], and is given by
(4.9)

(δh1,h2F1(·|y)∗δh1,h2F2(·|y))q,h(x) =

∫
L2[0,T ]

exp{i〈u, x′〉} d(gv1,ψ1;y,h1,h2
∗gv2,ψ2;y,h1,h2

)cq,h(u)

for x ∈ D[0, T ], where (gv1,ψ1;y,h1,h2
∗ gv2,ψ2;y,h1,h2

)cq,h is the measure in M defined as in
Theorem 2.4 replacing fj with gvj,ψj ;y,h1,h2

in Theorem 3.2. In addition, the generalized



Generalized first variation 535

sequential convolution product in (4.9) can be expressed explicitly as

−
∫
L2
2[0,T ]

∫
R2

〈(u1 + s1)h2, y
′〉〈(u2 + s2)h2, y

′〉 exp
{ i√

2
〈(u1 + u2 + s1 + s2)h1, x

′〉

− i

4q
‖(u1 − u2 + s1 − s2)hh1‖22

}
dρ1(s1) dρ2(s2) df1(u1) df2(u2)

(4.10)

for x ∈ D[0, T ].

Proof. Since δh1,h2Fj(x|y) belongs to Ŝ as a function of x ∈ D[0, T ] for j = 1, 2 and
expressed as (3.5), we apply Theorem 2.4 to obtain (4.9). Moreover, by the definitions
of the corresponding measures in Theorems 2.4 and 3.2, we have the expression (4.10).

Theorem 4.6. Let Fj be given as in Theorem 4.3 for j = 1, 2 and let y ∈ D[0, T ].
Then the generalized sequential convolution product (δh1,h2F1(·|y)∗δh1,h2F2(·|y))q,h(x)

exists, belongs to Ŝ as a function of x ∈ D[0, T ], and is given by
(4.11)

(δh1,h2F1(·|y)∗δh1,h2F2(·|y))q,h(x) =

∫
L2[0,T ]

exp{i〈u, x′〉} d(f v1,φ1;y,h1,h2∗f
v
2,φ2;y,h1,h2

)cq,h(u)

for x ∈ D[0, T ], where (f v1,φ1;y,h1,h2 ∗ f
v
2,φ2;y,h1,h2

)cq,h is the measure in M defined as in
Theorem 2.4 replacing fj with f vj,φj ;y,h1,h2 in Theorem 3.3. In addition, the generalized

sequential convolution product in (4.11) can be expressed explicitly as

−
∫
L2
2[0,T ]

〈u1h2, y′〉〈u2h2, y′〉 exp
{ i√

2
〈(u1 + u2)h1, x

′〉 − i

4q
‖(u1 − u2)hh1‖22

}
× Φ1(u1)Φ2(u2) df1(u1) df2(u2)

(4.12)

for x ∈ D[0, T ].

Proof. Since δh1,h2Fj(x|y) belongs to Ŝ as a function of x ∈ D[0, T ] for j = 1, 2 and
expressed as (3.7), we apply Theorem 2.4 to obtain (4.11). Moreover, by the definitions
of the corresponding measures in Theorems 2.4 and 3.3, we have the expression (4.12).

The expressions (4.2) and (4.8) are the same as the expressions (27) and (28) in [7],
respectively, for the generalized first variation and the generalized analytic convolution
product of functionals in the Banach algebra S.

In Theorems 4.1 through 4.6, we considered relationships between the generalized
first variation and the generalized sequential convolution product of the same type
of functionals. But as we commented in Remark 2.6, the generalized sequential con-
volution product (F1 ∗ F2)q,h exists and belongs to Ŝ even if F1 and F2 are different
type of functionals. Hence all the results in this section can naturally be extended to
different type of functionals F1 and F2.
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