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APPROXIMATION OF SOLUTIONS THROUGH THE FIBONACCI
WAVELETS AND MEASURE OF NONCOMPACTNESS TO
NONLINEAR VOLTERRA-FREDHOLM FRACTIONAL INTEGRAL
EQUATIONS

SUPRIYA KUMAR PAUL AND LAKSHMI NARAYAN MISHRA*

ABSTRACT. This paper consists of two significant aims. The first aim of this paper is
to establish the criteria for the existence of solutions to nonlinear Volterra-Fredholm
(V-F) fractional integral equations on [0, L], where 0 < L < oo. The fractional
integral is described here in the sense of the Katugampola fractional integral of
order A > 0 and with the parameter 5 > 0. The concepts of the fixed point theorem
and the measure of noncompactness are used as the main tools to prove the existence
of solutions. The second aim of this paper is to introduce a computational method
to obtain approximate numerical solutions to the considered problem. This method
is based on the Fibonacci wavelets with collocation technique. Besides, the results of
the error analysis and discussions of the accuracy of the solutions are also presented.
To the best knowledge of the authors, this is the first computational method for this
generalized problem to obtain approximate solutions. Finally, two examples are
discussed with the computational tables and convergence graphs to interpret the
efficiency and applicability of the presented method.

1. Introduction

Integral equations are among the most significant tools in the fields of scientific
inquiry and applied mathematics. Recent years have seen a major increase in inter-
est in the theory of fractional integral equations, which is now a significant field
of nonlinear analysis. In several references, the authors have discussed the exis-
tence, stability, or other qualitative characteristics of solutions to different kinds of
problems via the application of fixed point theorems and measure of noncompact-
ness [8,17,20,24,25,28,34,35,38,39]. The papers [6,7,12,16,22,27,29-33| describe
the advancement of fractional calculus and provide explanations of some of its wide
applications in engineering and science. Basically, there are three types of integral
equations in the literature. These are Fredholm, Volterra, and Volterra-Fredholm
integral equations. A variety of physical phenomena in the fields of airfoil theory,
elasticity, molecular conduction, elastic constant problems, and contact problems can
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be described by the Volterra-Fredholm (V-F) integral equations [1,2,9,26]. These inte-
gral equations are a combination of Volterra and Fredholm integral equations. To solve
such type of integral equation, several analytical and numerical techniques have been
established by various researchers. Here’s a few observations of numerical techniques:
Micula [21] presented a method for the Fredholm-Volterra integral equations of second
kind. Maleknejad et al. [18] introduced a method to solve the nonlinear V-F integral
equations by using Legendre polynomials. Mirzaee et al. [23] presented a technique
for numerical solution of nonlinear and linear V-F integral equations. Maleknejad et
al. [19] presented the Adomian decomposition method for the system of V-F integral
equations. Yusufoglu et al. [42] suggested a technique based on interpolation to solve
linear V-F integral equations. Didgar et al. [13] studied on Taylor expansion for the
solution of V-F integral equations and systems of V-F integral equations.

Recently, in 2021, Ge¢men et al. [14] introduced a method by using Hosoya poly-
nomials for the following V-F integral equation,

1) b(u) = Q) + / " K, O)(0)d0 + / Ko (1, 9)i(9) 9.

In 2022, Amin et al. [3,4] studied on the solvability and presented a computational
technique for the solution of V-F fractional integral equations as follows:

@) e = Q) + % / "= 9 ()9 + % | @-or v,

and

3)

() = @<u>+% / "= R, w(@»m% [ -0 Fw.vwnan

In this paper, we consider a generalized nonlinear V-F fractional integral equation in
the sense of Katugampola fractional integral, i.e.,

(4)

B S, p(u)) [ 5y (1P =99\
500 = QU () + D [ (T) Ko (1 0) 1 (9, 0(6)) 0

L I/B _195 A—1
SRt [P (B25) Kal o, w(0)ad, e 0.2,
N Jo 8
where >0, A > 0,0 < L < oo, and K1,y : [0,L] x[0,L] = R, @Q,0,§:[0,L] xR —
R, Fi, F2 : [0, L] x R — R are all continuous functions.

REMARK 1.1. In particular, when 8 = 1, &(u, ¥ (p)) = &(n), 0(p, () = d(w),
Q) = Q(u), Ki(p,9) = Ko(p,9) =1, then Eq. (4) reduces to the form of Eq.
(3). Together with, when Fi (9, (1)) = Fa(9,1(9)) = (), then Eq. (4) reduces to
Eq. (2). Also, when 8 =1, A =1, {(p,¥(1)) = 0(p,b(p)) = 1, Q(p, ¥(n)) = Q(p),
and Fi (¥, ¥(9)) = Fo(9,¢(9)) = (9), then Eq. (4) reduces to the form of Eq. (1).

+

Analysis of the existence criteria for the solutions of various types of integral equa-
tions is an essential part of the study. One can use these requirements to identify
the situation under which the problem’s solution exists. Thus, the first aim of this
paper is to establish the requirements for the existence of solutions to Eq. (4). The
concepts of measure of noncompactness and fixed-point approaches are significant in
this sense.
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Even though it is known that Eq. (4) has a solution, due to its complicated form,
it is not always possible to discover the analytical solution. Therefore, the second
aim of this paper is to present a computational technique to obtain the approximate
numerical solutions of Eq. (4). Fibonacci wavelets, introduced by Sabermahani et
al. [36] in 2019, are used in this study to formulate the computational technique for
Eq. (4). These wavelets are a novel class because they are not based on orthogonal
functions. As far as we know, this study presents the first reference based on the
numerical approach for Eq. (4).

This paper is arranged as follows: Notations and supporting information are in-
cluded in Section 2. The requirements for the existence of solutions are discussed in 3.
In Section 4, a method for finding approximate solutions is discussed. Error analysis
is included in Section 5. Section 6 provides two examples to interpret the efficiency
and applicability of the presented method and Section 7 provides conclusions and
suggestions for further research.

2. Notations and auxiliary facts

Let R be the set of real numbers and R, = [0,00). Assume that (D, ||.||) is a real
Banach space with zero element 6. Denote by B(1), ») the closed ball in D with radius
» and centered at ¢. We will write B,, to denote the ball B(0, s). Let Conv) and
V denote the convex hull and closure of V, respectively. Denote by Mp the family of
all nonempty and bounded subsets of D. and by Np its subfamily consisting of all
relatively compact subsets.

DEFINITION 2.1. [15,41] The Katugampola fractional integral of ¢ : [a,b] — R is
defined as:

ﬁIAw(M) (ﬁ ;:()\)) /M 19/3(“5-%1 o 19/3+1))\—1w(19)d19

where A > 0 and g # —1 are real numbers.

DEFINITION 2.2. [5] A mapping 7 : Mp — R, is said to be a measure of
noncompactness in D if it satisfies the following conditions:

(Cy) The family ker T ={V € Mp : T(V) = 0} is nonempty and ker T C Np.

(C) VCVi=TOV) <TW).

(Cs) T(V) =T (ConvV) =T(V).

(Co) TV +A=)V) <ATV)+(1=7)TMV),VO<y <1

(Cs) If (V,) is a sequence of closed sets from M p such that V13 C V, forn=1,2,...,
and if lim,_,, 7(V,) = 0 then Voo = (), V» is nonempty.

THEOREM 2.3. [10] Let A be a nonempty, bounded, closed and convex subset of
D and let S : A — A be a continuous mapping such that 3 a constant r € [0,1) and
for any nonempty subset W of A satisfying T(SW) < kT (W). Then S has a fixed
point in A.

In this paper, we will work in the Banach space C([0, L], R), which consists of all
continuous functions ¢ : [0, L] — R with the norm ||¢|| = sup{|¢(p)| : p € [0, L]}.
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DEFINITION 2.4. [5] Let X be a nonempty and bounded subset of C([0, L], R).
For e > 0 and ¢ € X, we denote by w(1, €) the modulus of continuity of the function

Y, i.e.,
w(t, €) =sup {|v(s) —¥(t)|: s,t €10, L], |s —t| <€}

Furthermore, let w(X, €) and wy(X') be defined by

w(X,e) =sup{w(,e) :p € X},
and
wo(X) = limw(X,¢).
e—0

Then the function wy(X') is a measure of noncompactness in C([0, L], R).

2.1. Fibonacci polynomials. In general, Fibonacci polynomials are defined as fol-
lows [36]:

1, o=0,
(5) Po(p) = w, o=1,
uPs1 (1) + Pya(p), o> 1.

Moreover, these polynomials can also be expressed in the power form:

L3

2{: <O’;’j>/$02j’ o EzO.

7=0

(6) Py (1)

LEMMA 2.5. ([36]). If P,(p) ,..., M) are Fibonacci polynomials, then
L

(o
211

S R 93 (”jﬂ( s

J

M)
P

2.2. Fibonacci wavelets. Fibonacci wavelets are defined as follows [36]:

k—1 =~
22 P (2 tyu—0o+1)
8 D, = K ’
(8) ) {0, otherwise,

g
2k—1>

with

and .
QUW ::u/p jis(ﬁo dﬁ%
0

where w,, n = 0,1,...,M — 1, can be computed by Eq. (7), n is the order of the
Fibonacci polynomials and o = 1,2, ...,2%"!, where k is a positive integer.
Now for M =3, k = 2, we get

V2, 0<u<?i 26, 0<pu<1i
<1>1,o<u>:{ SR () = o Tl

0, otherwise 0, otherwise ’

B 44p?), 0<pu< i
@172(M):{ 14( :U') S H 2

0, otherwise

I
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Do o(p) = {\/5’ p<p<l Dy (1) = {\/E(QM —-1), <p<1

. ) . Y
0, otherwise 0, otherwise

00u?-2u+1), t<u<i
Do a(p) = P22t D) 2 =10
0, otherwise

Additionally, Fibonacci wavelets graphs for M = 3, k = 2 are shown in Figure 1.

2.5 T T T T 25 T
‘I’l,u(lt) 4’2,&:(11)
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FiGure 1. Graphical representation of Fibonacci wavelets for M = 3,
k=2.

LEMMA 2.6. [11] Let ¢ : Ry — Ry be a concave function with ¢(0) = 0.
Then ¢(s+t) < (s) +¥(t), for any s,t € R;.

LEMMA 2.7. Let ¢ : Ry — R, be the function defined by 1 (u) = p”.
(i) If 8> 1 and piz, i1 € [0, L] with p11 < pra, then pif — i < BLP (11 — ).
(i) If0 < B < 1 and p, iy € [0, L] with iy < g, then pi — pf < (2 — )",

Proof. (i) For = 1 the result is clear. Let 8 > 1. By applying the Mean Value
Theorem to the function ¢ on the interval [py, o], we get

ph—pi =B (=), 0<m<(<p <L

This gives us

ph —py < BLP My — ), gy pp € 10,L), g < po.

(41) For 0 < 8 < 1, since v () = B(8 — 1)uP~2 < 0 for u € Ry, 1 is concave, and
as ¥(0) = 0, by Lemma 2.6, ¥(s +t) < 9(s) + (), for any s,t € R,.
Therefore, for s, py € [0, L] with py > pq, we get
Y(p2) = (e — pa + p1) < Y(p2 — pa) + ¥ (),
this implies that

po = pi < (pa — m)"”. O
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3. Qualitative analysis

In this section, we will discuss the existence of solutions for Eq. (4) with the
concept of measure of noncompactness.

THEOREM 3.1. We assume the following conditions for Eq. (4):

(A1) @ : [0, L] xR — R is a continuous function. Also, there exist constants My, Q* >
0 such that
1Q(k, 1) — Q1 v2)| < Mi|tn — 4|, and |Q(p,0)] < @, for all p € [0, L],
1,19 € R.

(Ag) 6,€:]0, L] xR — R are continuous functions and there exist constants dy, dy > 0
such that

’5(H7 ¢1) - 5(M,¢2)| S d1|¢1 - ¢2’, and

(1, 1) — E(p, 1ha) | < da|thy — by, for all p € [0, L], and 1,1, € R.
Moreover, there exist constants My, M3 > 0 such that |0(u,0)| < M,, and
(1, 0)| < Ms, for all i € [0, L).

(As) Ky, Ky 2 [0, L] x [0, L] — R are continuous functions and there exist constants
l1,ly > 0 such that |ICi(p,9)| < Iy, and |KCo(p, V)| < Iy, for all u, 9 € [0, L].

(Ay) F1,F2:[0,L] x R — R are continuous functions and there exist non-decreasing
functions 21, : R, — R, such that
7100, 9)] < Qulu), and

| Fo(9,9)| < Qa(|¥]), for all ¥ € [0, L], and ¢ € R.
(As) There exists a number s > 0 satisfies the inequality
(MI% + Q*) + b (d1se+Mo) (308~ LA 4+ 1o (dg se+M3) Q2 () B~ 1A < .

T(AF1) L(A+1)
Moreover, <M1 + %ﬁ—/\[ﬂ/\ 4 %B_/\Lﬂv < 1 also holds.

Then under the conditions (A;)—(As), Eq. (4) has at least one solution in C([0, L], R).

Proof. Let us define an operator U on the space C([0, L], R) as

O(p, () [ g1 (B — 07
o ( 7

I 8 B A—1
o +w / 91 (%) o (12, 9) Fa (8, 06 (8)) .

W) (1) = Qs () + ) K, 0)F2 (9, ()0

Rewriting Eq. (9) as follows:

(10)  Up) () = Qu, (1)) 4 (W (p)) - (T) (1) 4 €, () - (Gap) (1),

where
I B _ 98 A—1
(T@b)(u):ﬁ / 951 (“ ﬂﬁ) K1 (1, 8)F3 (9, (0))d0,
L B _ 98 A—1
<G¢><u>=ﬁ / 251 (L 519) Ko (11, 0) Fa (0, () ).
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Step 1. We have to show that the operator ¢« maps C([0, L],R) into itself. To
establish this, it is enough to show that if ¢» € C([0, L], R), then T, G¢» € C([0, L], R).
To do this, let € > 0 be fixed and g, 1 € [0, L] with ps > pq such that |us — 1| <,

then we get

’(Tﬂ))(lh) - (T¢)(M1)’
1

— mﬁﬁ‘l <M>“K( D) F1 (9, (0))dd
=~ F()\) . 5 1{H2, 1\,

H2 :U’B o 19,8 A=l
_/ 981 <2T> Icl(ul,ﬁ)fl(ﬁ,w(ﬁ))dﬁ‘
0

K2 B B Al
/ 951 (M) K1 (11, 9)F1 (9, 0(9))dV
; 3 1\M1, 1Y,

/M1 B—1 Mg—ﬁﬁ !
- [ (s /clml,ﬁ)ﬂ(&w(ﬁ))dﬁ\

" 5 g8 A1
/ 9h-1 <L> K1 (01, 0) F1 (9, (9))dd
o ﬁ 11, 1\Y,

A—1

B B _ 9B
—/0 U (%) Kl(ul,ﬁ)]i(ﬁﬂ/}(ﬁ))dﬁ‘,

1
T

1
T

ie.,
|[(T%) (n2) = (T9) ()]

Lo
< / WP |’C1 pi2,9) — K1 (p1, 9)|| F1 (9, () |dod

'\ Jo
A-1
/ 9= 1( ) | K1 (1, 9) F1 (9, 4(9))|d0)

>/o o

—~

+ (15 19/3) - = (] —195 '\/clm, 9)F1 (9, % (9))|dv

I'(
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WKL OB [ ar (5
: o) Lo (= 07)

1-2Q) 2 A-1
D [ oo (1 g0) 0
m

T(\)
() 0

< w(/Clae)ﬂAQl(HwH)LerWh(HW( B _ B)’\

= T'(A+1) '(A+1) 2 M

LBl [ sea] (8 g8\ ! B _ o8\ !

[l - o)

I'(A)
where w(ICq,€) = sup{‘lCl(,ug,ﬁ) - ICl(,ul,ﬁ)‘ Do, 1,9 € [0, L], [po — pu| < €}
It can be observed that

(12)

1

dy

(11) + ),

N
A A
o (ug —u’f)—(ug—u?) , A>1,

A=1,

_ . i
A A
o (ug—uf) —(#5 —u‘f) , A<

Following are the ten cases that we need to observe now:

Case 1: When 0 < f <1, A > 1, and 0 < S\ < 1, then by using Eq. (12) and Lemma

2.7 we get
(13)
() (us) — (r)(a)| < DD o WO ¢,y
-A
—llﬁr(f_ﬁqqf”) [(#2 - H1)ﬁA — (2 — H1)ﬁA :

Case 2: When 0 < 5 <1, A > 1, and A > 1, then by using Eq. (12) and Lemma 2.7

we get

(1
(o)) — () (u)| < LD o B2 D,

LA ([|lv]])
IOt

)7

[BALBA_l (2 — 1) — (pz — )™
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Case 3: When 0 < § < 1, and A = 1, then by using Eq. (12) and Lemma 2.7 we get

(15)
_ (K B ()

|(T9) (2) — (T) ()| < s U

Case 4: When 0 < <1, A < 1,and 0 < SX < 1, then by using Eq. (12) and Lemma
2.7 we get
(16)

|(T) (p2) = (T) (1) | <

w(Ky, &) B0 (vl LB ()
oty Ut Ty kem

W (2 = 1) = (2 = )™

)

Case 5: When 0 < f <1, A < 1, and S\ > 1, then by using Eq. (12) and Lemma 2.7

we get
(17) . .
()is) = ()| < SE D o BEID (o
Y
+ —l1ﬁr<§2—11_(|1|1)/)“) [(Mz - NI)BA — BALPA! (2 — 1) | -

Case 6: When § > 1, A > 1, and 0 < S\ < 1, then by using Eq. (12) and Lemma 2.7

we get

(18)
< WK1, BN ([[2]]) ; sa

[(T9) (12) — (T) ()| < L B f sy

T(A+1) T(A+1) (2 = )"

L8720
+ 1ﬂf(/\—jrﬂl'l)bn) [(Mz — )" = BALAE) (py — WA] '

Case 7: When > 1, A > 1, and S\ > 1, then by using Eq. (12) and Lemma 2.7 we
get

(19)
Tt = o] < St ey

LA (|lv]])
T(A+1)

(2 — Nl)/\

+ BALPAY (g — i) — B (py — Ml)A ‘

Case 8: When 8 > 1, and A = 1, then by using Eq. (12) and Lemma 2.7 we get
(20)

[(TY) (p2) — (T) ()] < wml’e)ﬁ_lQl(HMDLﬁ n LU ([ ]])

I o
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Case 9: When > 1, A < 1, and 0 < S\ < 1, then by using Eq. (12) and Lemma 2.7

we get
(21)
w(K1, €) 87 1341 -1 A
()is) - ()| < 2B D o, BB s,
N l1ﬁr(§2jr(|1|l)/)||) [ﬁALA(gq) (2 — )™ — (2 — M)m] _

Case 10: When 8 > 1, A < 1, and S\ > 1, then by using Eq. (12) and Lemma 2.7 we

get
@)

w(Kq,€ —A 1 A
()is) — (| < 2B D pon BB s,

W0 D [0 (s — ) = AL (s = )]
In all cases, by utilizing the uniform continuity of the function /C; on [0, L] x [0, L],
we obtain w(Ky,€) — 0 as e — 0. As g — i, it follows from all the above cases that
‘(Tl/’)(lh) - (T@Z))(Ml)‘ — 0.

Hence, we can say T € C([0, L], R).

Also,
(G (112) — (G) (1)
I 5 9B\ A1
_ ﬁ / pra (L 519 ) Ko (12, 9) F (9, $(9))d9
L B _ 98\ M
—ﬁ / o1 (L 50) K (p1, 8) Fo (9, (0)) 9
L 5 qpN\ A1
Sﬁ/o ?9’8_1<L 519) | Ka(pt2, 9) — Ka(pr, 0) || F2(0, 0 (0)) |
W(Ka,6) [E L (LP— P A1
g% / 2 (%) Qu([(9)]) 9
. (2, O DIYN) ;o

F'(A+1) ’

where w(K, €) = sup {|Ka(pa, V) — Ko(p1,9)| 1 2, 1,9 € [0, L], |t — pa| < €}

By utilizing the uniform continuity of the function ICy on [0, L] x [0, L], we obtain
w(ka,€) — 0 as € — 0. Thus, it follows that Gy € C([0, L],R), and consequently,
U € C([0, L], R).
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Step 2. We will show that & maps B,, into itself.
Let ¢ € C([0, L], R) be such that [|1|| < ». Then, for all u € [0, L], we get

|(U) ()]

=1Q(u, ¥(p)) +

S, () [* 5y (1P 0P
i o (5

() 7 oy (LP =0\
o) /0“9 ( 3 ) Ko (11, 0) Fo (9, 9(9))d)|

< (|Q(u (1) — Q(, 0)| + |Q(1, 0)])

A—1
N (|5(M,¢<M>>—1§< 7)0)’+}5(:“=0)‘)/0u196—1 (Mﬂfﬁ) K (1, 0) F1 (9, (9)) | )

L B _ 9B\ ML
€, (1) i( )] + 1€, 0)]) / 195—1<L f) [1Ca (1, 0)Fo(9,:(9)) | 49

A—1
) K1 (11, 9) 1 (9, (9))

L

(A

(A)

L (di|y(p)| + M) [* B—1 M
fi

< ()] + @) + LR ;

A—1
) 0 (|(0) )9

A—1
Iy (dalth ()] + Ms) /OL i1 (LB - ﬁﬂ) s ([1(9) ) dd

oY) 5
b (o] + M) 2 ([0l) [* 5o (17 — 99\
< (Mg +Q) + o [ o (ﬁ) a0
b (dal|] + M) Qa([]) [T 51 (LF — 0P\ "
i oo I < 5 ) &
< (Myse+ Q") + h (d1”+]‘1{?;)91(%)51” /O“ 981 (MB _ W)*‘l 29
lo (d2%+M3)QQ<%)517A L 51 3 5 A—1
(V) /019 (22 —07)" " ao

ll (dl}f -+ MQ) Ql(%)ﬁ_A LB)\ + l2 (dQ% + M3) QQ(%)/B_A Lﬁ)\

< (M + Q) + T+ 1) T(A+ 1)

Thus, by the assumption (As), we get ||[U1)|| < 3¢, which implies that ¢4 maps B,, into
itself.

Step 3. We prove that U is continuous on B,,.

To do this, let {¢,,} be a sequence in B,, and ¢ € B,, such that ¢,, — 1 as n — co.
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Then, for u € [0, L], we get

|Uen) (1) = UP) ()]

= Q. (1)) + 011, n (1)) - (T (1) + €, n () - (Gion) (1)

= QU (1) = S, () - (TP) () — &, () - (Go) ()]

< QU () = QU b ()| + [0(t, (1)) - (T80 (1) = (11, (1)) - (T4 ()]
+ 160, (1)) - (T) (1) = (11, 90 (1)) - (T4) (1)

1€ () (Gon) (1) = € (1)) - (G0) ()]

+ (€ () - (G ><>—5<u,w<u>>-<Gw><u>}

< My [ () — (e

|5 ¢n#‘ B-1 — !
/19 ( - ) 1K1 (1 0)| |29, 60 (9)) — T (9, ()|

A—
+|5<M’ e l/ v (“B;ﬂ—ﬂ) |C1 (11, 0) Fo (9,4 (9)) |49
0
B8 _
l/ v I(L 3 ) |’C2 (1, 0) || F2 (0, 9 (9)) = Fa (0, () |d
—1
+ |€( (1)) )\ (i) ‘/ e (4) ‘ICQ 1, 9) Fo (9, (0 |d19

< Mifihn () = o(p)]
l1 (‘5 Un(p)) — u, |+ ‘5 i, 0 Dwﬂ( )/uﬁﬁ_l (MB _ﬂﬂ>>\—1d§

0

zdlwn — p()| /w(—) (| ()

’5“’ W)~ “OHK“? |)w}'2()/Lﬁﬁ—l(LB—ﬁﬁ)A_ldﬁ
) 0

lada|thn (1) — (1) B—
B [T (25

) Qu([(9)])d0
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< Ml — ¥l +

A1
Li(di[vnll + Ma)wz, (€) /“ 9h-1 <,u5 — 195) 9
0

T(\) B

e SIS (@) a0
lg(d2||77/}n||r‘é'):;\43)wf2(€) /O - 961 (LB g ’9[3)“ v

AT TN / o (%) a0,

ie.,

| @) (1) — (U) (1)

< M|ty — ]
L(dy||Ynl] + Ma)wz, (€) 5L
T\ + 1)

Lida [l = PlU(l0)
T\ + 1)

b dall il + Mooz, ()51
C(A+1)
b1, — (1)
F'(A+1)
where wx, (€) = sup {|f1(19,¢n) - ]:1(19,7/))‘ 20 € [0, L] and by, 1 € (=22, 32]; [9hn — ] < €},
and
CU]:Q(E) = Sup{‘fé(ﬁawn) - -7:2(79»7@} RS [OaL] andwmw S [_%7 %]; |wn - TN < E}-
Now, ¢, — 1 as n — oo, this implies that |1, — UY|| — 0 as n — oco. Hence the

ﬁ—)\LBA

BALA,

operator U is continuous on B,,.
Step 4. Let X be a non-empty subset of B, and let ¢ > 0 be fixed. Further, we
choose ¥ € X and py, o € [0, L] with gy > py such that |ps — pq| < e. Then, we



150 S. K. Paul and L. N. Mishra

obtain

| (U) (p2) — UP) ()]

= | Q(2, ¥ (p12)) + (2, ¥ (p12)) - (T) (o) + &2, ¥ (pia)) - (G)(122)
— Qu1, (1)) — 0(pr, () - (T9)(p1) — E(pr, V(1)) - (GY) (1)
+ 0(p2, ¥(p2)) - (T) (1) — 6(p2, ¥(p2)) - (T)(111)
+ &2, ¥ (p12)) - (G) (1) — &2, Y (paa)) - (G) (1)

< |Q(p2, ¥ (p2)) — Qua, (1))

+ (62, ¥ (p2))| - [(T9) (p2) — (T) (1)
+ [ (2, ¥ (p2)) = 6(par, ()| - |(T) (1)
+ €, ¥ (p2)) | - \(G@/))(m) (GY) ()]
+ |E(ua, ¥ (p2)) — E(ur, ¥ ()| - [(G) (1)

ie.,

| (UP) (p2) — UY) (111)]

< IQ (p2, ¥ (p2)) = Qp2, ¥ ()| + Q2. ¥ (p11)) — Qi b (p11))]

) 0)] + |0(p2. 0)]) - [(T) (12) — (T) (1)

) = 6(p2, ¥ (pa))| + 02, (1)) — 6(pr, 0 (p2))]) - [(T) (1) ]

) = &(12,0)] + €(p2,0) ) - \(G¢)( 2) — (G) ()]

) (w ) - {(GY) ()]
(

T9) ()|

— & (2, ¥ (p1) |+‘f pha, (1)) — ))|
< My|p(pz) — ()] +w(@Q, €) + (difib(p2)| + M) - |(T¢)(M2)
+ (di|(p2) — V()| + w(0,€)) - | (T9) ()]

+ (da|o(u2)| + Mz) - [(GU) (p2) — (G) (1) |

=
l\‘)
~ ~~ ~ ~
=
[\
~ ~— ~— ~— ~—

(24)
+ (da|v (1) — ()| + w(&, €) - [(G) (1),
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where
w(€,€) = sup {|&(pa, ) — E(pa, )|+, po € [0, L], 0 € [—3¢, 2], |po — pua| < €},
w(Q,e):sup{’Q(ug, V) — Q(p1, ¢ ‘ p1s pi2 € [0, L], 4 € [— %7%]7‘M2—M1|§6}>
w(8,€) = sup {|0(p2, ) — 6(pa, )| : pua, o € [0, L], 0 € [—3¢, 5], |p — pa| < €}
Now,
R T AN
|(T¢)(PJ1)‘—)F(A)/O 0 ( 3 ) K (p1, 9) F1 (0, p(9) ) dod
_ hu(lwl) / i1 (Mf ﬁﬁ)“ »
I OV B
L (50) (" sy (1] —0° !
<), ( 5 ) w
- M)
and
1 (b (L =98\
\(Gw(m)\:‘m [ (555) Ktz v
s (]|]]) Lf — 9P\
STy / o (F) W
(26) < 1292( )B_ALBA.

=T(A+1)

By using (25) and (26), we get from (24) as follows:

‘(ul/))(l@) - (u¢)(ﬂl)’ < Myw(y,€) +w(Q, €) + (dize + My) - |(T¢)(M2) - (T¢)(M1)|

+ (dyw(, €) + w(d, €)) - ll(g)\l—_f_l))ﬁ A BA

+ (dose + Ms) - [(GY) (p2) — (G¥) (1)

(27) (a1, 0) + (6, )) - 2B
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ie.,

WUy, €) < Myw (1, €) +w(Q, €) + (dize + M) - [(T)(p2) — (T4) ()|
llgl(}f)
F(A+1)
+ (dyse + M) - |(G¢)(/~L2) - (Gqﬁ)(/h){

19925 ( )
F(A+1)

+ (dw(¥, €) +w(de)) - BAL

(28) + (daw(9h, €) + w(&,€)) - AL

Thus, if |po—p1| < €, and € — 0. Then as ps — 1 and by following the inequality (13)
to (22), and (23), we obtain [(T%)(p2) — (T¥)(1u1)| — 0, and [(G) (p2) — (G¥) (111)| —
0.

Again, by the uniform continuity of the functions @, §, £ on [0, L] X [— ¢, 5|, we obtain
w(@,€) = 0, w(d, e) = 0, and w(&,e) — 0 as e — 0.

Then we get

dlllgl(%)
T\ +1)

dngQQ(%)

~A 7 BA
P T oT D

(29) woUX) < (M1 + B‘AL“) wo(X).

From the condition (As), we observe that (M1 + %5—/\[,6/\ + %ﬂ;‘)ﬁ—/\b&) <

1.

Thus the Theorem 2.3 allows us to deduce that Eq. (4) has a solution in C([0, L], R).
[

4. Method for approximate solutions

In this section, we will introduce a method that is based on Fibonacci wavelets and
collocation technique to obtain the approximate solutions of Eq. (4).

4.1. Approximation of function. An arbitrary function ¢ (u) € C([0,1),R) can
be approximately expanded in terms of the Fibonacci wavelets as follows:

2k=1 pr—1

(30) V(p) = Z Z Yo Pon(p) = GTo(p),

o=1 n=0

where G and ®(u) are given by

(31) G =191,0,911- -+ 1L, M=1,92,0, 92,1 - - G2, M—1» - - - Jok—10, - - - 792’6—1,M71]T>

(32)
P(p) = [‘I)l,o(ﬂ)a cee (I)l,Mfl(ﬂ)a q’z,o(ﬂ)a . 7@2,1\471(#)» cee @2'@*1,0(/0, . 7@2’671,M—1<M)]T'
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4.2. Computational steps. To establish the method, we rewriting the considered
equation Eq. (4) as follows:

(33)
Y B8 _ 98 A—1
W”):Q(“’M“)HW/O o <—” 5”0 ) K (1, 9) F (0, () did
E () [* s (L—=0° A
* I'(\) /079 ( E ) ICo (g, 0) Fo (0, 1 (09))d.

Therefore, the method is as follows:
Step 1. Choose the values of k and M for the approximate function

2k=1 pr—q

(34) V) =) Y GonPoy(p) = GTO(1),

o=1 n=0

where G and ®(u) are kx1 (% = 2F"1M) vectors given in Eq (31) and Eq. (32),
respectively and then obtain the corresponding Fibonacci wavelets @, ,(4), which is
defined in Eq. (8).

Step 2. Remember that, we have to find the solution of Eq. (33), that is the unknown
function ¥ (u) appears in Eq. (33). Thus, in this step, substitute Eq. (34) into Eq.
(33) and we get

GO ()

= Q6o + ERD [T (I i 0.6 a() a

(35)
A1
L GTow) /1 9o-1 (1 - 796) Ko (41, 9) Fy (9, GT (1)) .
I'(A) 0 s

Step 3. Now to obtain the unknown coefficients vector G = [g10, 911, - - -, 91.M~1, 92,0,
G215+ G2 M1y Goh-10, - - ,ggk717M_1]T, we consider the collocation points as jp; =
%, i=1,2,...,28"1M. Then by substituting these collocation points in Eq. (35),
we get a system of 2F"1 M algebraic equations. That is, we get

T (us)

CGTH()) [ B_ 98\
— QU G + O “f(;f(“ 2) /0 951 ("ﬁﬂ) Kr (i, 0)F1 (8, GTO(0)) dv

(36)
§ (i, GTO(w)) [* 50 (1= 0P M T
+ e /O 9 5 Ko (i, 0)Fs (9, GTR(9)) dv.

Step 4. Therefore by solving these algebraic equations by any classical method or
the fsolve command in the MATLAB program, we can obtain the unknown coefficients
G.

Step 5. Now, plug the obtained values of G in Eq.(34) to get the approximate solution
of Eq. (33).

REMARK 4.1. It follows from Remark 1.1 that, our presented computational method
is also applicable for Egs. (1), (2) and (3) to get the approximate numerical solutions.
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5. Error analysis

It is important to establish the accuracy of the obtained solutions. In this section
we will study on the convergence results and error bounds for the presented Fibonacci
wavelets method.

THEOREM 5.1. Let ¢ (1) = GT®(u) be the Fibonacci wavelet expansion of any suf-
ficiently smooth function ¥ (u) € CM([0,1),R). Then, we have ||1) — 1|2 < M!\/#T’

where R = max,co,1) W(M) (1) |
Proof. See [37]. =

~ THEOREM 5.2. Let ¢(u) € L?[0,1) be a continuous bounded function with bound
M. Then, the Fibonacci wavelets expansion given by Eq. (30) converges uniformly
to 1 (u), where the coefficients g,, can be obtained by ¢y, = (¢, ®s.,)-

Proof. See [40]. O

5.1. Accuracy of solutions. Since Eq. (35) has the following form given by Eq.
(37), i.e.,

T m Y A—1
6000 = Q6T a() + T [ o (5 )7 (0.6 ao

(37)
T A—1
+W/l 91 <16W> Ko (1, 9)Fo (9, GT®(0)) d.
0
Also, from Eq. (34), we have

2k=1 pr—1

(38) V) =) Y GonPoylp) = G O(p),

oc=1 n=0

and the unknown coefficients G were obtained from Eq. (36). Thus, Eq. (38) is the
approximate solution of Eq. (33), and is substituted into Eq. (33).

Now, assume that = p, € [0,1), r = 1,2,3,..., then 3 a positive integer IV, such
that

g(l‘r) = GT(I)(MT) - Q(:ura GT(I)(MT))

B 8 (b, GT®(p1)) [ 1 b — 9P A-1 i
L'(\) /0 v ( 3 ) K (e, 9)F2 (19,G @(19)) dv
T 1 98\ M1
_ g(MT7I€;()\T(MT)) /0 91 <1 619 ) Ko 11y, 9) F (19’ GT<I)(19)) 49| =0,

and £(y,) < 107Ne. If max 10~ = 10 is prescribed, then k = 2¥-1M is increased
until the difference £(u,) at each of the points becomes smaller than the prescribed
10~", where N is a positive integer. For max 10« £ 10~V the error can be estimated
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by the following function:

Ex(p) = |GT (1) — Q(u, G (1))
_M gy M ! T
ey /019 ( 7 ) Ky (1, 9)F1 (9, GTO(9)) d
T 1 98\ M1
—w /0 1951(1 619 ) Ko, 0)Fs (9, GT0(0)) ).

If & (1) — 0, for sufficiently large %, then the error decreases.

6. Applications and discussions

Two examples have been given to demonstrate the efficiency and applicability of the
presented method. The convergence of solutions and the convergence of absolute errors
have been shown in the graphs. Here, absolute errors are the values of |1 () — ¥3(1)|
at selected points, where ¢z(u) is the approximate solution and the exact solution is

().
ExAMPLE 6.1. Consider the following example:

3

() = Qu, (1)) + % / "3 (d) (1 + ) p(9)do

N[V

(39) +% / 19%(1“92) (4 9) (0 + ().

3
2

11 15 19

where Q(u, () = (u—u3> _ sin(y(w)) [Lf 4 l2pz M} 0] [_&7349 + %],

o 90 90 55 36855 1309 90 4455 6545

and the exact solution is ¥ (u) = “;(’]‘3.

Now, comparing Eq. (39) with the Eq. (4), we get
o(p, o (p)) = sin(ip(p)), &, (p)) = (), Ki(p,0) =1+ pd, Ko(p,9) = p+ 9,
3

It can be observed that the function @) satisfies the condition (A;) with M; = 0.0274,
and @Q* = 0.0043. Condition (As) is satisfied by the functions § and & with d; = 1,
dy =1, My =0 and M3 = 0. Condition (Aj) is satisfied by the functions IC; and Ko
with [ = 2 and [y = 2, respectively. Condition (Ay) is satisfied by the functions F;
and F> with Q;(]¢]) = || and Qa(|¢)]) = 1+ |¢|. Then, the inequalities appearing in
condition (As) becomes as

ll (dl% —+ Mg) Q1<%)6_>\ 8 lg (dg% + Mg) QQ(%)ﬂ_A
T\ +1) T(A+1) T

(Myx+ Q%) +

ie.,

W52 (14 )8
40 0.0274 0.0043 + &1 27 <
(40) 7+ +F(4)+ o) < 7,
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and
d111Q1<%) Y d2l292<%) _

My 4 TR goap sy D22 g AT o

( T Torn ” T+’ =
ie.,

16 1+ )8

41 o4+ 2% 7
(41) 0.027 +F(4)+ ) <

Thus, it is clear that the condition (As) is satisfied for s = 1. So, by Theorem 3.1,
Eq. (39) has at least one solution in C([0, 1], R).

To obtain the approximate solutions to this problem, we are going to apply the pre-
sented computational method, i.e., discussed in Section 4. For this purpose, choosing
different values of k and M, so that K is increasing, where k = 25-101. All calculations
have been carried out using the MATLAB program on a Computer For this compu-
tational purpose we are using the collocation points as u; = ék - M The variations of
absolute errors and maximum absolute errors for some values of k£ and M are shown
in Table 1 and Table 2, respectively. Figure 2 shows the solution convergence graph

for k =2, M = 4, and Figure 3 shows the absolute error convergence graph.

5 x10°8

4 L
— 3 [
=
= ol

1 L

Exact solution
%  Approximate solution
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

L

FIGURE 2. Solution convergence graph for Example 6.1.

Absolute error

12

FI1GURE 3. Absolute error convergence graph for Example 6.1.
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TABLE 1. Absolute errors variation for Example 6.1.

0 k=2M=2 k=2 M=3 k=2 M=4

0 2.3476e-02 8.7202e-03 3.3152e-08
0.1  4.1823e-03 8.7153e-04 2.1469e-08
0.2  9.1113e-03 1.5330e-03 6.1319e-08
0.3  1.0405e-02 7.3586¢-04 3.1205e-08
0.4  6.3015e-03 6.5064e-05 4.2004e-07
0.5  9.4377e-02 7.6896e-03 1.0012e-08
0.6 1.5469e-02 1.8435¢-03 4.1239e-08
0.7  2.7439e-02 2.2381e-03 1.3135e-09
0.8  2.8348e-02 5.0588e-04 2.1254e-08
0.9 1.8744e-02 3.8843e-04 1.1239¢-08

TABLE 2. Comparison of maximum absolute errors for Example 6.1.

E M k=2F1'M Maximum absolute error
2 2 4 9.4377e-02
2 3 6 8.7202e-03
2 4 8 4.2004e-07

ExAMPLE 6.2. Consider the following example:
(42)

_ Gl [P (=072 sin(u) [1/1—9%)>
o) = Q) + 3 ["0 (555 ) wanan + T [ (S5 ) v,

2 9 7 sin 2. .
where Q(p,¥(p)) = 55 — ggo\o/g;f((g)) — 2048(6‘%\(/5, and 9 (p) = 45 is the exact solution.
Now, comparing Eq. (39) with the Eq. (4), we get
3 (1)) = (), E(u () = sin(u), Ki(p,9) =1, Ko(p,9) =9, Fi(9,9(9)) = 4*(0),
)

It can be observed that the function @ satisfies the condition (A;) with M; =
0.000017, and @* = 0.0505. Condition (As) is satisfied by the functions § and ¢
with d; = 1, dy = 0, My = 0 and M3 = 1. Condition (Asj) is satisfied by the functions
K1 and Ky with [; = 1 and Iy = 1, respectively. Condition (A4) is satisfied by the
functions F; and F, with Q;(|¢|) = |¢|* and Qa(|2)|) = |¢|. Then, the inequalities
appearing in condition (As) becomes as

" lq (dl% + Mg) Ql(%)ﬁiA 8 Iy (dg% + Mg) QQ(%)ﬁiA 8
<
(Myze+Q7) + T(A+1) L T(A+1) s
ie.,
2
" 00000175+ 0.0505 4. 2T O0ATOS2 | (0-+ 1017685 _

) N

2 2
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and
d1l191<%) A dngQQ(%) _
My + L pTALPA 2 BTALAY ) <
( oy Pt Toan =5
ie.,
0.1768°
(44) 0.000017 + — 2 40 < 1.
I'(3)

Thus, it is clear that the condition (As) is satisfied for s = 1. So, by Theorem 3.1,
Eq. (42) has at least one solution in C([0, 1], R).

To obtain the approximate solutions to this problem, we are going to apply the pro-
posed computational method, i.e., discussed in Section 4. For this purpose, choosing
different values of k and M, so that k is increasing, where k = 2¥='M. All calculations
have been carried out using the MATLAB program on a computer. For this compu-
tational purpose we are using the collocation points as u; = g,;?;} The variations of
absolute errors and maximum absolute errors for some values of k£ and M are shown
in Table 3 and Table 4, respectively. Figure 4 shows the solution convergence graph
for k =2, M = 4, and Figure 5 shows the absolute error convergence graph.

0.045

Exact solution
0.04 | % Approximate solution

0.035 r

m

FI1GURE 4. Solution convergence graph for Example 6.2.

Absolute error

Ok k H* K* K Kk Kk A K* K

0 0.2 0.4 0.6 0.8 1
1

FIGURE 5. Absolute error convergence graph for Example 6.2.
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TABLE 3. Absolute errors variation for Example 6.2

W k=2M=2 k=2 M=3 k=2 M=4

0 4.6810e-02 2.6709e-05 1.1310e-09
0.1 6.8409e-03 2.7659e-05 3.7818e-09
0.2 1.3129e-02 6.0509e-05 2.5614e-09
0.3 1.3098e-02 6.5259¢e-05 3.4309e-09
0.4 6.9321e-03 7.1910e-05 4.1517e-09
0.5  4.6919e-02 2.3751e-05 1.0816e-10
0.6 6.8632¢-03 3.6530e-05 2.1817e-09
0.7 1.3193e-02 5.1209e-05 2.5109e-09
0.8  1.3248e-02 6.7788e-05 4.0891e-09
0.9 6.6960e-03 8.6267e-05 6.1253e-08

TABLE 4. Comparison of maximum absolute errors for Example 6.2.

E M k=2F1M Maximum absolute error
2 2 4 4.6919e-02
2 3 6 8.6267e-05
2 4 8 6.1253e-08

7. Conclusions and future work

In this study, we considered Eq. (4), involving the Katugampola fractional integral
of order A > 0 and with the parameter 5 > 0. We have stated some requirements for
the existence of solutions. The concepts of the fixed point theorem and the measure
of noncompactness have been used to prove the existence result. Furthermore, a
computational method based on the Fibonacci wavelets and collocation technique has
been presented to obtain the approximate solutions of Eq. (4). By this method,
Eq. (4) has been reduced to a system of algebraic equations with unknown Fibonacci
coefficients, and then solved by the MATLAB program. To evaluate the efficiency and
applicability of the method, we provided two examples along with error estimates.
Absolute error convergence and solution convergence graphs for Examples 6.1 and
6.2 have been given in computational tables and figures. It can be observed from
Remark 1.1 that our suggested method is also applicable for Egs. (1), (2) and (3).
By observation of computational results and relevant figures, we have seen that the
approximate solutions are in strong agreement with those of the exact solutions, and
as a result, we draw the conclusion that the presented method is efficient, accurate,
and effective.

In the future, one can extend the concepts presented here for the existence of
solutions and approximate solutions to nonlinear V-F fractional integro-differential
equations and also for stochastic integral equations, or by considering some generalized
fractional integral equations, satisfy criteria different from those executed in this work.
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