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A STUDY OF NEGATIVE ARITHMETIC MATRIX WITH

FIBONACCI NUMBERS

Jiin Jo

Abstract. In this work the Pascal matrix P and the negative Pascal matrix Q are
studied by means of certain polynomials. We investigate an LU-factorization of Q
by P , and express the powers Qm by Fibonacci numbers.

1. Introduction

The arithmetic tables of (x + 1)k and (x + 1)−k for k > 0 are the Pascal matrix
P = [pi,j] and the negative Pascal matrix Q = [qi,j] (i, j ≥ 1), respectively. Clearly

pi,j =
(
i−1
j−1

)
and qi,j =

( −i
j−1

)
= (−1)j−1

(
i+j−2
j−1

)
= (−1)j−1pi+j−1,j. Let P̃ =

[
111 1 . . .
123 4 . . .
13610 . . .

. . .

]
be the symmetric matrix form of P ( [9]). Many research articles including [1], [2]
and [5] have been devoted to investigating properties of the matrices P , P̃ and Q, and
their interrelationships. The inverse and power matrices, as well as decompositions
of these matrices into lower and upper triangular matrices were studied in [7]. Most
of these were proved by means of binomial coefficients or certain recurrence relations
over the arithmetic matrices ( [6]). In particular, we remark that in [4], the Pascal
matrix P was studied by Fibonacci numbers.

Just as the matrices P , P̃ and Q were made from (x+1)±k, we let P (m), P̃ (m) and
Q(m) be the arithmetic matrices of the binomial polynomial (mx+ 1)±k respectively,
for any m > 0. A purpose of the work is to investigate powers and inverse of the

matrices P (m), P̃ (m) and Q(m). We explore interrelationships of the matrices by
means of polynomials and Fibonacci numbers. Indeed, LU-factorizations of Q(m) by
P are obtained in Theorem 4, and powers Qm in terms of Fibonacci numbers are
discussed in Theorem 7 and Theorem 9.

Our notations in this work are as follows. Given a matrix A, AT is the transpose
matrix, AB = B−1AB is a conjugate of A by a matrix B, and An indicates the n
square matrix. Let ri(A) and cj(A) be the ithrow and jthcolumn of A, respectively.

And [{0}t; ri(A)] denotes a row matrix of t zeros followed by ri(A), while

[
{0}t
cj(A)

]
is a column matrix of t zeros followed by cj(A). Let di(b1, b2, b3, . . . ) be a diagonal
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matrix having diagonal entries b1, b2, b3, . . . , in particular di[ai] is a diagonal matrix
di(1, a, a2, . . . ). We define a multiplication · of two row matrices by (a1, a2, a3, . . . ) ·
(b1, b2, b3, . . . ) = (a1, a2, a3, . . . )di(b1, b2, b3, . . . ) = (a1b1, a2b2, a3b3, . . . ).

2. Negative Pascal Matrix via polynomial

The arithmetic matrix P (m) of (mx+ 1)k depends on whether the expansions are

in ascending or descending order in x, so we write P (m)↑ =

[
1
1 m
12mm2

. . .

]
and P (m)↓ =[

1
m 1
m22m1

. . .

]
according to ascending or descending order expansion in x, respectively.

We study the arithmetic matrices P (m) and Q(m) by means of polynomials.

Theorem 1. Pm = P (m)↓ and ri(P
m) = ri(P ) · (mi−1, . . . ,m, 1). Moreover

P̃ (m)↓ = P (m)↓ P (m)↑
T

.

Proof. Let v = [1, x, x2, . . . ]T be a column matrix with an indeterminate variable
x. Then

Pv =

[
1 . . .
11 . . .
121. . .

. . .

][
1
x
x2
. . .

]
=

[
1

1 + x
(1 + x)2
. . .

]
and P 2v = P

[
1

1 + x
(1 + x)2
. . .

]
=

[
1

2 + x
(2 + x)2
. . .

]
,

so

Pmv =

[
1

m+ x
(m+ x)2

. . .

]
=

[
1 0 0 . . .
m 1 0 . . .
m22m1 . . .

. . .

][
1
x
x2
. . .

]
=

[
1 0 0 . . .
m 1 0 . . .
m22m1 . . .

. . .

]
v for any m.

Thus Pm =

[
1 0 0 . . .
m 1 0 . . .
m22m1 . . .

. . .

]
= P (m)↓. Moreover P (m)↓ =

r1(P ) · (1)
r2(P ) · (m, 1)
r3(P ) · (m2,m, 1)

. . .

 shows

ri(P
m) = ri(P ) · (mi−1,mi−2, . . . , 1) for all i ≥ 1.

Now P (m)↓v =

[
1 0 0 . . .
m 1 0 . . .
m22m1 . . .

. . .

]
v =

[ 1
(m+ x)
(m+ x)2

. . .

]
and

P̃ (m)↓v =

[
1 1 1 1. . .
m 2m 3m 4m. . .
m23m26m210m2. . .

. . .

][
1
x
x2
. . .

]
=

 1 + x+ x2 + x3 + . . .
m(1 + 2x+ 3x2 + 4x3 + . . . )
m2(1 + 3x+ 6x2 + 10x3 + . . . )

. . .


=


1

1−x
m

(1−x)2
m2

(1−x)3
. . .

 =

[ α
mα2

m2α3

. . .

]

where α = 1
1−x . On the other hand, P (m)↑ =

1
1 m
12m m2

13m3m2m3

. . .

 shows

P (m)↑
T
v =

1 1 1 1
m2m 3m
m23m2

m3

. . .

v =

 1 + x+ x2 + x3 + . . .
mx(1 + 2x+ 3x2 + . . . )
m2x2(1 + 3x+ . . . )
m3x3(1 + . . . )

. . .


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=


1

1−x
mx

(1−x)2
(mx)2

(1−x)3
. . .

 = 1
1−x

 1
mx
1−x

( mx
1−x)2

. . .

 = α

[
1
β
β2
. . .

]

where β = mx
1−x . But since α(m+ β)i = miαi+1 for all i, we have

P (m)↓P (m)↑
T
v = P (m)↓α

[
1
β
β2
. . .

]
= α

[ 1
(m+ β)
(m+ β)2

. . .

]
=

[ α
α(m+ β)
α(m+ β)2

. . .

]

=

[ α
mα2

m2α3

. . .

]
= P̃ (m)↓v.

Thus P̃ (m)↓ = P (m)↓P (m)↑
T

.

In particular Theorem 1 shows P̃ = PP T if m = 1 (refer to [3]). Moreover
P (ms)↓ = P (m)↓

s
= P (s)↓

m
for any m, s > 0. And the next corollary follows

immediately from Theorem 1.

Corollary 2. Let D = di[(−1)i] be a diagonal matrix. Then P−m = (Pm)D, in
particular P−1 = P (−1)↓ = PD.

Now for the negative Pascal matrix Q = [qi,j] =

1−1 1 −1 . . .
1−2 3 −4 . . .
1−3 6−10 . . .
1−410−20 . . .

. . .

 of (x+ 1)−k, let Q̂

be a matrix such that each jthcolumn cj(Q̂) equals

[
{0}j−1
cj(Q

T )

]
for all j ≥ 1. Then the

inverse of Pascal matrix P = [pi,j] is P−1 = [(−1)(i+j)pi,j] = Q̂ (see [7]). As an analog

of Q̂ with respect to Q, let us consider Q̂(m) with respect to Q(m) for any m > 0.

Note that cj(Q̂(m)) =

[
{0}j−1

cj(Q(m)T )

]
for all j ≥ 1. The next theorem shows a relation

of P−m and Q̂(m).

Theorem 3. Q(m) = Qdi[mi] and P−m = Q̂(m) for all m > 0.

Proof. Consider a column matrix v = [1, x, x2, . . . ]T . Then
(mx+ 1)−1 = ((1,−1, 1,−1, . . . ) · (1,m,m2,m3, . . . ))v

= (r1(Q) · (1,m,m2,m3, . . . ))v
and (mx+ 1)−i = (ri(Q) · (1,m,m2, . . . ))v for all i ≥ 1. Thus

Q(m) =

r1(Q) · (1,m,m2, . . . )
r2(Q) · (1,m,m2, . . . )

. . .
ri(Q) · (1,m,m2, . . . )

. . .

 = Q di[mi].

Therefore in Q(m), each jthcolumn cj(Q̂(m)) =

[
{0}j−1

cj(Q(m)T )

]
with cj(Q(m)T ) =

(ri(Q) · (1,m,m2, . . . ))T yields

Q̂(m) =


1 0 0 0 . . .

−m 1 0 0 . . .
m2 −2m 1 0 . . .
−m3 3m2−3m 1 . . .
m4−4m3 6m2−4m. . .

.
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On the other hand, owing to Corollary 2 we have

P−m = (Pm)D = P (m)↓
D

= D

 r1(P ) · (1)
r2(P ) · (m, 1)

. . .
ri(P ) · (mi−1, . . . ,m, 1)

. . .

D =


1 0 0 0 . . .

−m 1 0 0 . . .
m2 −2m 1 0 . . .
−m3 3m2−3m 1 . . .
m4−4m3 6m2−4m. . .

.

Hence it proves P−m = Q̂(m).

In fact Q(3) = Q di[3i] =

[
1−1 1 −1 . . .
1−2 3 −4 . . .
1−3 6−10 . . .
1−4 10−20 . . .. . .

]1
3
32

33. . .

 =

[
1 −3 9 −27 . . .
1 −6 27−108 . . .
1 −9 54−270 . . .
1−12 90−540 . . .. . .

]
and

Q̂(3)4 =

[
1
−3 1

9−6 1
−27 27−91

]
=

[
1
−1 1

1−2 1
−1 3−31

]3
=

[
1
3 1
9 61

272791

]−1
= P−34 = P (3)↓4

−1
.

Let G = [gi,j] be a matrix with g1,1 = gi,i−1 = 1, gi,i = −1 (i > 1), and H = [hi,j]
be with hi,i = hi,i+1 = 1 (i ≥ 1) and the other entries in G and H are zeros. An
LU-factorization of Q is investigated in the next theorem.

Theorem 4. With the above matrices G and H, let L [resp. U ] be a lower [resp.

upper] triangular matrix satisfying GL =

[
1 0
0Ln−1

]
, UH =

[
1 0
0Un−1

]
for all n > 1,

and L1 = U1 = [1]. Then Q = LU = PY where Y = [(−1)j−1pj,i].

Proof. With v = [1, x, x2, . . . ]T , we have

Y v =

[
1−1 1 −1 . . .
−1 2 −3 . . .

1 −3 . . .
. . .

][
1
x
x2
. . .

]
=

[
1− x+ x2 − x3 + . . .
−x+ 2x2 − 3x3 + . . .

x2 − 3x3 + . . .
. . .

]
=


1

1+x
−x

(1+x)2

x2

(1+x)3
. . .

,

so Y v = γ

[
1
δ
δ2
. . .

]
with γ = 1

1+x
, δ = −x

1+x
. Since Pv =

[ 1
(1 + x)
(1 + x)2
. . .

]
, we have

PY v = Pγ

[
1
δ
δ2
. . .

]
= γ

[ 1
(1 + δ)
(1 + δ)2
. . .

]
= γ

[
1
γ
γ2
. . .

]
=


1

1+x
1

(1+x)2
1

(1+x)3
. . .


because 1 + δ = γ. On the other hand, since

Qv =

[
1−1 1 −1. . .
1−2 3 −4. . .
1−3 6−10. . .

. . .

][
1
x
x2
. . .

]
=

[
1− x+ x2 − x3 + . . .

1− 2x+ 3x2 − 4x3 + . . .
1− 3x+ 6x2 − 10x3 + . . .

. . .

]
=


1

1+x
1

(1+x)2
1

(1+x)3
. . .

, (1)

it follows that Qv = PY v, i.e., Q = PY .

The constructions of G and H show, for instance G4 =

[
1 0 0 0
1−1 0 0
0 1−1 0
0 0 1−1

]
=

[
G3 0
001−1

]
,

H4 =

[
1100
0110
0011
0001

]
=

[
H3

0
0
1

000 1

]
, and G =

[
Gn−1 0

0 . . . 01−1

]
and H =

Hn−1

0
. . .
0
1

0 . . . 0 1

 for all n > 1.
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Moreover GL =

[
1 0
0Ln−1

]
and UH =

[
1 0
0Un−1

]
yield L4 =

[1
1−1
1−21
1−33−1

]
and U4 =[1−1 1−1

1−2 3
1−3

1

]
, so L =

[
Ln−1 0

pn,1, . . . (−1)i−1pn,i, . . . (−1)npn,n−1 (−1)n−1pn,n

]
and

U =

Un−1

(−1)n−1pn,1
. . .

(−1)n−ipn,i
. . .

−pn,n−1
0 pn,n

 for n > 1. Therefore we have

Lv =

[
1

1− x
(1− x)2
. . .

]
and Uv =

[
1− x+ x2 − x3 − . . .
x− 2x2 + 3x3 + . . .
x2 − 3x3 + 6x4 − . . .

. . .

]
=


1

1+x
x

(1+x)2

x2

(1+x)3

. . .

,

thus due to (1) it follows that

LUv = L 1
1+x

 1
x

1+x
( x
1+x)2
. . .

 = 1
1+x

 1
1− x

1+x
(1− x

1+x)2
. . .

 =


1

1+x
1

(1+x)2
1

(1+x)3
. . .

 = Qv.

It proves Q = LU .

Clearly L4U4 =

[
1−1 1 −1
1−2 3 −4
1−3 6−10
1−410−20

]
= Q4. We also notice L = di[(−1)i]P−1, U = (P−1)T

and Y = P Tdi[(−1)i], so Theorem 4 shows
Q = di[(−1)i]P−1(P−1)T = di[(−1)i](P TP )−1

and, Theorem 1 yields Q = PP Tdi[(−1)i] = P̃ di[(−1)i].

Theorem 5. For any m > 0, the power Qm of negative Pascal matrix satisfies
Qmv = z1 . . . zm[1, zm, z

2
m, . . . ]

T where z1 = 1
1+x

and zm+1 = 1
1+zm

.

Proof. Clearly Qv =


1

1+x
1

(1+x)2
1

(1+x)3
. . .

 = z1

[
1
z1
z21. . .

]
by (1). And Q2v = z1Q

[
1
z1
z21. . .

]
= z1z2

[
1
z2
z22. . .

]

and Q3v = z1z2z3

[
1
z3
z23. . .

]
with z2 = 1

1+z1
, z3 = 1

1+z2
. Hence for some m > 0, if we assume

Qmv = z1 . . . zm[1, zm, z
2
m, . . . ]

T with zm = 1
1+zm−1

then

Qm+1v = Q(Qmv) = z1 . . . zmQ

[
1
zm
z2m. . .

]
= z1 . . . zm


1

1+zm
1

(1+zm)2
1

(1+zm)3
. . .


= z1 . . . zm

[zm+1
z2m+1
z3m+1. . .

]
= z1 . . . zm+1[1, zm+1, z

2
m+1, z

3
m+1, . . . ]

T .

3. Negative Pascal matrix via Fibonacci numbers

Let {fi|i ≥ 1} = {1, 1, 2, 3, 5, . . . } be the set of Fibonacci numbers.
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Theorem 6. Qmv =
[

1
fm+1+fmx

, fm+fm−1x
(fm+1+fmx)2

, . . . , (fm+fm−1x)i−1

(fm+1+fmx)i
, . . .

]T
for m > 0.

Proof. With z1 = 1
1+x

and zi1 = 1
(1+x)i

in Theorem 5, we have

z2 = 1
1+z1

= 1+x
2+x

, z1z2 = 1
2+x

and z1z
i
2 = (1+x)i−1

(2+x)i
,

z3 = 1
1+z2

= 2+x
3+2x

, z1z2z3 = 1
3+2x

and z1z2z
i
3 = (2+x)i−1

(3+2x)i
,

and z4 = 1
1+z3

= 3+2x
5+3x

, z1z2z3z4 = 1
5+3x

and z1z2z3z
i
4 = (3+2x)i−1

(5+3x)i
.

Then by means of Fibonacci numbers fi, it shows

z4 = f4+f3x
f5+f4x

, z1z2z3z4 = 1
f5+f4x

and z1z2z3z
i
4 = (f4+f3x)i−1

(f5+f4x)i
.

Now for some j > 0, we assume the identities zj =
fj+fj−1x

fj+1+fjx
, z1 . . . zj = 1

fj+1+fjx
and

z1 . . . zj−1z
i
j =

(fj+fj−1x)
i−1

(fj+1+fjx)i
as inductive hypothesis. Then

zj+1 = 1
1+zj

= 1
fj+1+fjx+fj+fj−1x

fj+1+fjx

=
fj+1+fjx

fj+2+fj+1x
,

z1 . . . zj+1 = z1 . . . zjzj+1 = 1
fj+1+fjx

fj+1+fjx

fj+2+fj+1x
= 1

fj+2+fj+1x
,

and
z1 . . . zjz

i
j+1 = 1

fj+1+fjx

(fj+1+fjx)
i

(fj+2+fj+1x)i
=

(fj+1+fjx)
i

(fj+2+fj+1x)i+1 ,

hence due to Theorem 5 we have

Qmv = z1 . . . zm


1
zm
z2m
z3m
. . .

 =
[

1
(fm+1+fmx)

, (fm+fm−1x)
(fm+1+fmx)2

, . . . , (fm+fm−1x)i−1

(fm+1+fmx)i
, . . .

]T
.

Hence due to Theorem 5 and Theorem 6, we are able to express the power Qm by
Fibonacci numbers explicitly.

Theorem 7. Let Qm = [q
(m)
i,j ]. Then the i, jthelement q

(m)
i,j in Qm is equal to

j−1∑
h=0

(−i
l

)(
i−1

j−1−h

)
f j−1−h
m−1 f i−j+2h

m f−i−hm+1 . In particular Q2 =

[
j−1∑
h=0

(−i
h

)(
i−1

j−1−h

)
2−i−h

]
and

Q3 =

[
j−1∑
h=0

(−i
h

)(
i−1

j−1−h

)
2−i−j+2h3−i−h

]
for i, j ≥ 1.

Proof. The Q2v =
[

1
f3+f2x

, f2+f1x
(f3+f2x)2

, (f2+f1x)2

(f3+f2x)3
, . . .

]T
in Theorem 6 shows that the

ithrow ri(Q
2v) is composed of the coefficients of expansion of (f2+f1x)i−1

(f3+f2x)i
= (1+x)i−1(2+

x)−i. Hence the i, jth component q
(2)
i,j in Q2 is the coefficient of xj−1 in the expansion

of (1 + x)i−1(2 + x)−i. But since
(1 + x)i−1(2 + x)−i

=
((

i−1
0

)
+
(
i−1
1

)
x+

(
i−1
2

)
x2 + . . .

) ((−i
0

)
2−i +

(−i
1

)
2−i−1x+

(−i
2

)
2−i−2x2 + . . .

)
=
(
i−1
0

)(−i
0

)
2−i +

((
i−1
0

)(−i
1

)
2−i−1 +

(
i−1
1

)(−i
0

)
2−i
)
x

+
((

i−1
0

)(−i
2

)
2−i−2 +

(
i−1
1

)(−i
1

)
2−i−1 +

(
i−1
2

)(−i
0

)
2−i
)
x2

+
((

i−1
0

)(−i
3

)
2−i−3 +

(
i−1
1

)(−i
2

)
2−i−2 +

(
i−1
2

)(−i
1

)
2−i−1 +

(
i−1
3

)(−i
0

)
2−i
)
x3

+ . . . ,

the coefficient of xj−1 equals
j−1∑
t=0

(−i
t

)(
i−1

j−1−t

)
2−i−t. So Q2 =

[
j−1∑
h=0

(−i
h

)(
i−1

j−1−h

)
2−i−h

]
.

Similarly the ithrow ri(Q
3v) is generated by the expansion of
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(f3+f2x)i−1

(f4+f3x)i

= (2 + x)i−1(3 + 2x)−i

=
(−i

0

)(
i−1
0

)
2i−13−i +

((−i
0

)(
i−1
1

)
2i−23−i +

(−i
1

)(
i−1
0

)
2i3−i−1

)
x

+
((−i

0

)(
i−1
2

)
2i−33−i +

(−i
1

)(
i−1
1

)
2i−13−i−1 +

(−i
2

)(
i−1
0

)
2i+13−i−2

)
x2

+
((−i

0

)(
i−1
3

)
2i−43−i +

(−i
1

)(
i−1
2

)
2i−23−i−1 +

(−i
3

)(
i−1
0

)
2i+23−i−3

)
x3

+ . . . .

Thus the coefficient of xj−1 equals
j−1∑
h=0

(−i
h

)(
i−1

j−1−h

)
2−i−j+2h3−i−h, so it follows that

Q3 =

[
j−1∑
h=0

(−i
h

)(
i−1

j−1−h

)
2−i−j+2h3−i−h

]
.

Now let us look at Qmv =
[

1
(fm+1+fmx)

, (fm+fm−1x)
(fm+1+fmx)2

, (fm+fm−1x)2

(fm+1+fmx)3
, . . .

]T
with Qm =

[q
(m)
i,j ]. From the expansions

(fm + fm−1x)i−1 =
(
i−1
0

)
fm

i−1 +
(
i−1
1

)
fm

i−2fm−1x+
(
i−1
2

)
fm

i−3f 2
m−1x

2 + . . .
and

(fm+1 + fmx)i =
(−i

0

)
f−im+1 +

(−i
1

)
f−i−1m+1 fmx+

(−i
2

)
f−i−2m+1 f

2
mx

2 + . . . ,

the coefficient q
(m)
i,j of xj−1 in the expansion of (fm + fm−1x)i−1(fm+1 + fmx)i is

equal to q
(m)
i,j =

j−1∑
h=0

(−i
h

)(
i−1

j−1−h

)
f j−1−h
m−1 f i−j+2h

m f−i−hm+1 . Thus we conclude that Qm =[
j−1∑
h=0

(−i
h

)(
i−1

j−1−h

)
f j−1−h
m−1 f i−j+2h

m f−i−hm+1

]
.

In fact Q3v =


1

3+2x
(2+x)

(3+2x)2

(2+x)2

(3+2x)3
. . .

 =


1
3 −

2
9

4
27 −

8
81 . . .

2
9 −

5
27

4
27 −

28
243 . . .

4
27 −

4
27

11
81 −

86
729 . . .

8
81−

28
243

86
729−

245
2187 . . .

v, and for instance we observe

q
(3)
5,5 =

4∑
h=0

(−5
h

)(
4

4−h

)
22h3−5−h = 1921

19683
. Moreover the ithrow ri(Q

4v) comes from (3 +

2x)i−1(5 + 3x)−i. But since

(3 + 2x)i−1(5 + 3x)−i

=
(−i

0

)(
i−1
0

)
3i−15−i +

((−i
0

)(
i−1
1

)
213i−25−i +

(−i
1

)(
i−1
0

)
3i5−i−1

)
x

+
((−i

0

)(
i−1
2

)
223i−35−i +

(−i
1

)(
i−1
1

)
213i−15−i−1 +

(−i
2

)(
i−1
0

)
3i+15−i−2

)
x2

+
((−i

0

)(
i−1
3

)
233i−45−i +

(−i
1

)(
i−1
2

)
223i−25−i−1 + · · ·+

(−i
3

)(
i−1
0

)
3i+25−i−3

)
x3 + . . . ,

the coefficient of xj−1 in (3 + 2x)i−1(5 + 3x)−i is
j−1∑
h=0

(−i
h

)(
i−1

j−1−h

)
2j−1−h3i−j+2h5−i−h.

Therefore Q4v =


1

5+3x
(3+2x)
(5+3x)2

(3+2x)2

(5+3x)3
. . .

 =


1
5 −

3
25

9
125 −

27
625

3
25 −

8
125

21
625 −

54
3125

9
125 −

21
625

46
3125−

90
51625

27
625−

54
3125

90
51625−

450
78125. . .

v and

Q4 =

[
j−1∑
h=0

(−i
h

)(
i−1

j−1−h

)
2j−1−h3i−j+2h5−i−h

]
.
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On the other hand from P = [pi,j] =
[(

i−1
j−1

)]
and Q = [qi,j] = [

( −i
j−1

)
] for i, j ≥ 1,

it follows Qm =

[
j−1∑
h=0

qi,h+1pi,j−hf
j−1−h
m−1 f i−j+2h

m f−i−hm+1

]
. The next theorem gives an

expression of Qm by Fibonacci numbers fi together with Q and P .

Theorem 8. Let Qm = [q
(m)
i,j ]. Then for all i, j ≥ 1, we have

q
(m)
i,j = (f j−1

m−1, f
j−2
m−1, . . . , f

0
m−1) · f−im+1(qi,1, f

−1
m+1qi,2, f

−2
m+1qi,3, . . . , f

−(j−1)
m+1 qi,j)

· f i
m(f−jm pi,j, f

−j+2
m pi,j−1, . . . , f

−j+2h
m pi,j−h, . . . , f

j−2
m pi,1).

Proof. The all entries q
(3)
i,j at ithrow of Q3 are

q
(3)
i,1 = qi,1pi,12

i−13−i = (3−iqi,1)(2
i−1pi,1),

q
(3)
i,2 = qi,1pi,22

i−13−i + qi,2pi,12
i3−i−1

= (3−iqi,1, 3
−i−1qi,2) · (2i−2pi,2, 2

ipi,1) = 3−i(qi,1, 3
−1qi,2) · 2i(2−2pi,2, pi,1),

q
(3)
i,3 = qi,1pi,32

−i−33−i + qi,2pi,22
i−13−i−1 + qi,3pi,12

i+13−i−2

= (3−iqi,1, 3
−i−1qi,2, 3

−i−2qi,3) · (2i−3pi,3, 2
i−1pi,2, 2

i+1pi,1)
= 3−i(qi,1, 3

−1qi,2, 3
−2qi,3) · 2i(2−3pi,3, 2

−1pi,2, 2
1pi,1),

and for any j ≥ 1, we have

q
(3)
i,j = (3−iqi,1, 3

−i−1qi,2, . . . , 3
−i−(h−1)qi,h, . . . , 3

−i−j+1qi,j)

· (2i−jpi,j, 2
i−j+2pi,j−1, . . . , 2

i−j+2hpi,j−h, . . . , 2
i+j−2pi,1)

= 3−i(qi,1, 3
−1qi,2, . . . , 3

−(h−1)qi,h, . . . , 3
−(j−1)qi,j)

· 2i(2−jpi,j, 2
−j+2pi,j−1, . . . , 2

−j+2hpi,j−h, . . . , 2
j−2pi,1).

Similarly all entries q
(4)
i,j at ithrow of Q4 are

q
(4)
i,2 = qi,1pi,22

13i−15−i + qi,2pi,13
i5−i−1

= (21, 1) · 5−i(qi,1, 5−1qi,2) · 3i(3−2pi,2, pi,1),

q
(4)
i,3 = qi,1pi,32

23−i−35−i + qi,2pi,22
13i−15−i−1 + qi,3pi,13

i+15−i−2

= (22, 21, 1) · 5−i(qi,1, 5−1qi,2, 5−2qi,3) · 3i(3−3pi,3, 3
−1pi,2, 3

1pi,1),
and for any j ≥ 1, we have

q
(4)
i,j = (2j−1, 2j−2, . . . , 21, 1) · 5−i(qi,1, 5−1qi,2, 5−2qi,3, . . . , 5−(j−1)qi,j)
· 3i(3−jpi,j, 3

−j+2pi,j−1, . . . , 3
−j+2hpi,j−h, . . . , 3

j−2pi,1).

But since Q4v =


1

5+3x
3+2x

(5+3x)2

(3+2x)2

(5+3x)3

. . .

 and Q4 =

[
j−1∑
h=0

qi,h+1pi,j−hf
j−1−h
3 f i−j+2h

4 f−i−h5

]
, the i, jth

component in Q4 can be written as

q
(4)
i,j = (f j−1

3 , f j−2
3 , . . . , f 1

3 , f
0
3 ) · f−i5 (qi,1, f

−1
5 qi,2, . . . , f

−(j−1)
5 qi,j)

· f i
4(f
−j
4 pi,j, f

−j+2
4 pi,j−1, . . . , f

−j+2h
4 pi,j−h, . . . , f

j−2
4 pi,1).

Thus Qmv =


1

fm+1+fmx
fm+fm−1x

(fm+1+fmx)2

(fm+fm−1x)2

(fm+1+fmx)3

. . .

 and Qm =

[
j−1∑
h=0

qi,h+1pi,j−hf
j−1−h
m−1 f i−j+2h

m f−i−hm+1

]
for any m

imply

q
(m)
i,j = (f j−1

m−1, f
j−2
m−1, . . . , f

1
m−1, f

0
m−1) ·f−im+1(qi,1, f

−1
m+1qi,2, . . . , f

−(j−1)
m+1 qi,j)

· f i
m(f−jm pi,j, f

−j+2
m pi,j−1, . . . , f

−j+2h
m pi,j−h, . . . , f

j−2
m pi,1).
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Note that


1

2+x
1

(2+x)2
1

(2+x)3

. . .

 = Rv where R =


1
2 −

1
4

1
8−

1
16 . . .

1
4 −

1
4

3
16 −

1
8 . . .

1
8−

3
16

3
16−

5
32 . . .

. . .

. Let A be a matrix such

that Av =

[
1

1− x
(1− x)2
. . .

]
. Then due to Theorem 7, we have

ARv = 1
2+x

A


1
1

2+x
1

(2+x)2

. . .

 = 1
2+x

 1
1− 1

2+x

(1− 1
2+x)2

. . .

 =


1

2+x
1+x

(2+x)2

(1+x)2

(2+x)3

. . .

 = Q2v. (2)

Thus Q2 = AR. Indeed Q2 =

[
1
1−1
1−21
. . .

] 1
2 −

1
4

1
8−

1
16 . . .

1
4 −

1
4

3
16 −

1
8 . . .

1
8−

3
16

3
16−

5
32 . . .. . .

 =

 1
2−

1
4

1
8−

1
16 . . .

.14 0− 1
16

1
16 . . .

1
8

1
16−

1
16

1
32 . . .. . .

. This

can be generalized to Qm as follows.

Theorem 9. For m > 0, let R[m] and A[m] be matrices such that R[m]v =
1

fm+1+fmx
1

(fm+1+fmx)2
1

(fm+1+fmx)3
. . .

 and A[m]v =


1

fm−1+(−1)m−1x
fm

(fm−1+(−1)m−1x
fm

)2

(fm−1+(−1)m−1x
fm

)3

. . .

. Then Qm = A[m]R[m].

Proof. Clearly Q2 = A[2]R[2] by (2). When m = 3, Q3v =


1

3+2x
(2+x)

(3+2x)2

(2+x)2

(3+2x)3
. . .

 = u

 1
2+x
3+2x

( 2+x
3+2x)2
. . .



for u = 1
3+2x

by Theorem 7. Thus with R[3]v =


1

3+2x
1

(3+2x)2
1

(3+2x)3
. . .

 = u

[
1
u
u2
. . .

]
, the matrix A[3]

such that A[3]v =

 1
x+1
2

(x+1
2 )2
. . .

 satisfies

A[3]R[3]v = uA[3]

[
1
u
u2
. . .

]
= u

 1
u+1
2

(u+1
2 )2
. . .

 = 1
3+2x

 1
2+x
3+2x

( 2+x
3+2x)2
. . .

 = Q3v,

so we have Q3 = A[3]R[3]. Now let u = 1
fm+1+fmx

for m > 0. Then

Qmv =


1

(fm+1+fmx)
(fm+fm−1x)
(fm+1+fmx)2

(fm+fm−1x)2

(fm+1+fmx)3
. . .

 = u

 1
fm+fm−1x
fm+1+fmx

(fm+fm−1x
fm+1+fmx )2

. . .

 and R[m]v =


1

fm+1+fm
1

(fm+1+fmx)2
1

(fm+1+fmx)3
. . .

 = u

[
1
u
u2
. . .

]
.

Moreover let A[m]v =

 1
fm−1+(−1)m−1x

fm

(fm−1+(−1)m−1x
fm

)2

. . .

. Owing to the identity fm−1fm+1 +

(−1)m−1 = f 2
m (see [8]), we have
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fm−1+(−1)m−1u
fm

= 1
fm

f2
m+fm−1fmx
fm+1+fmx

= fm+fm−1x
fm+1+fmx

,

so it follows that

A[m]R[m]v = uA[m]

[
1
u
u2
. . .

]
= u

 1
fm−1+(−1)m−1u

fm

(fm−1+(−1)m−1u
fm

)2

. . .

 = u

 1
fm+fm−1x
fm+1+fmx

(fm+fm−1x
fm+1+fmx )2

. . .

 = Qmv.

This completes the proof Qm = A[m]R[m].

Indeed R[3]v =


1

3+2x
1

(3+2x)2
1

(3+2x)3
. . .

 =

 1
3 −

2
9

4
27 . . .

1
9−

4
27

4
27 . . .

1
27−

2
27

8
81 . . .. . .

v and A[3]v =

 1
x+1
2

(x+1
2 )2
. . .

 =

1
1
2

1
2

1
4

1
2

1
4. . .

v,

hence A[3]R[3] =

 1
3 −

2
9

4
27 . . .

2
9−

5
27

4
27 . . .

4
27−

4
27

11
81 . . .. . .

 = Q3.
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