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A STUDY OF NEGATIVE ARITHMETIC MATRIX WITH
FIBONACCI NUMBERS

JIN Jo

ABSTRACT. In this work the Pascal matrix P and the negative Pascal matrix @Q are
studied by means of certain polynomials. We investigate an LU-factorization of @
by P, and express the powers Q™ by Fibonacci numbers.

1. Introduction

The arithmetic tables of (z + 1)* and (x + 1)7* for k > 0 are the Pascal matrix

P = [p; ;] and the negative Pascal matrix Q) = [¢; ;| (i, > 1), respectively. Clearly
111 1...
pis = (1) and iy = (7)) = (<177 (557) = (<17 'pisag. Let P= 1335

be the symmetric matrix form of P ( [9]). Many research articles including [1], [2]
and [5] have been devoted to investigating properties of the matrices P, P and @, and
their interrelationships. The inverse and power matrices, as well as decompositions
of these matrices into lower and upper triangular matrices were studied in [7]. Most
of these were proved by means of binomial coefficients or certain recurrence relations
over the arithmetic matrices ( [6]). In particular, we remark that in [4], the Pascal
matrix P was studied by Fibonacci numbers.

P

Just as the matrices P, P and Q were made from (z+ 1)** we let P(m), P(m) and
Q(m) be the arithmetic matrices of the binomial polynomial (mx + 1)** respectively,
for any m > 0. A purpose of the work is to investigate powers and inverse of the

matrices P(m), P(m) and Q(m). We explore interrelationships of the matrices by
means of polynomials and Fibonacci numbers. Indeed, LU-factorizations of (m) by
P are obtained in Theorem 4, and powers Q™ in terms of Fibonacci numbers are
discussed in Theorem 7 and Theorem 9.

Our notations in this work are as follows. Given a matrix A, AT is the transpose
matrix, A? = B7'AB is a conjugate of A by a matrix B, and A, indicates the n
square matrix. Let r;(A) and ¢;(A) be the i™'row and j™column of A, respectively.

And [{0}4;7:(A)] denotes a row matrix of ¢ zeros followed by 7;(A), while [C{(()I]Z)}
j

is a column matrix of ¢ zeros followed by ¢;(A). Let di(by, bo, bs,...) be a diagonal
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matrix having diagonal entries by, by, bs, ..., in particular di[a’] is a diagonal matrix
di(1,a,a? ...). We define a multiplication - of two row matrices by (ay,as,as,...) -
(bl, bg, bg, .. ) = (CLl, ag, as, ... )dl(bl, bg, bg, . ) = (albl, a2b2, agbg, . )

2. Negative Pascal Matrix via polynomial

The arithmetic matrix P(m) of (mz + 1)* depends on whether the expansions are
1

in ascending or descending order in z, so we write P(m)" = [%Zszl and P(m)* =

m22m1

1
[ m 1 ] according to ascending or descending order expansion in x, respectively.
We study the arithmetic matrices P(m) and (m) by means of polynomials.

THEOREM 1. P™ = P(m)* and r;(P™) = ri(P) - (mi~*,...,m,1). Moreover
P(m)* = P(m)* P(m)!".

Proof. Let v = [1,z,2%,...]7 be a column matrix with an indeterminate variable

x. Then T . ) )
po= (| [B] =[] ma e p || - |2
1 1 00..T1 1 00...
P = [d,’fi >] - [n%n?:::] [ - [n”kzin?:::]v for any m.
Thus P™ = T}z (1) 8 = P(m)*. Moreover P(m)* = ;;ggg 5717)"1) shows
m227'7’.L1 ' r3(P) - (m?,m,1)

ri(P™) =ry(P)- (m"~t,m=2 ... 1) for all i > 1.
1 00... 1
Now P(m)tv = | ™ LO..., = (m+x)2 and

o 1 l+z+a2+23+...
P(m)bv = | M. 2m 3m dm. | 2\ | om(l 422+ 322 +42° + ..
m2(1+ 3z + 622 + 1023 +...)

11—z «
mmp ma?
= |09 [mzasl
1
L 1 m
where v = —. On the other hand, P(m)" = |12m m? shows
13m3m?m3
11,11 1—({—z+:172+x‘;—|—...)
T m2m om mzx(l 4 2z + 3z* + ...
Pim)" v = m23m§ V= m22?(1+3z+...)

m- m3x3(1+...)
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i s 1
= (lix); = L 1z =
((1@)3 =2 a[ﬁg._
where 3 = But since a(m + 3)* = mia’™! for all i, we have
1 1 T o
' 1T, — Lol B = gl (m+8)| — | (m+P)
P(m) P(m) v P(m) a[ﬁZ O‘[(m+5)2 [a(m—i—ﬁ)Q
e, - S
= 777;120(;3 = P(m)tv.
Thus P(m)* = P(m)*P(m)'". O
In particular Theorem 1 shows P = PPT if m = 1 (refer to [3]). Moreover

P(ms)t = P(m)¥" = P(s)!" for any m,s > 0. And the next corollary follows
immediately from Theorem 1.

COROLLARY 2. Let D = di[(—1){] be a diagonal matrix. Then P~™ = (P™)? in
particular P~' = P(—1)t = PP,

—1...
—4... N
Now for the negative Pascal matrix Q = [g; ;] = %8 ol of (zH1)7R Tet Q

.Jkool\m—t
O@OJ}—‘

1

—

1—-
1-
1—-
1—-
€ a martrix suc at eac column c; equadls

b t h that each j™col : 1

O} } for all j > 1. Then the

inverse of Pascal matrix P = [p; ;] is P~ = [(—1)(”])@]] Q (see [7]). As an analog
of Q with respect to Q, let us consider Q(m) with respect to Q(m) for any m > 0.

—— [ {0}

Note that ¢;(Q(m)) = ] for all j > 1. The next theorem shows a relation
c(Q(m)T)

of P~™ and m
THEOREM 3. Q(m) = Qdi[m] and P~™ = Q(m) for all m > 0.
Proof. Consider a column matrix v = [1,z,22,...]7. Then

(mx+1)"'=((1,-1,1,-1,...) - (I, mym?* m3,...))v

= (r(Q) - (1,m,m?, m ...))v
and (mz 4+ 1)"" = (r,(Q) - (1,m,m?,...))v for all i > 1. Thus

rl(Q)-(l,m,mZ,...)
ri(Q)~(1,.Tr'¢,m2,...)

Therefore in Q(m), each j®column q(@) = [ {03 ] with ¢;(Q(m)") =

(r:(Q) - (1,m,m?,...))T yields

1 0 0 0...

e —77% 1 0 0...
m) = m* —2m 1 0
Q( ) —m3 3m2-3m 1

m*—4m3 6m2—4m
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On the other hand, owing to Corollary 2 we have

P = (P™)P = P(m)*”
n(P); (1) S 100
=D TQ(P) (m, 1) D = m§ —277% 1 0.../.
ri(P) - i 1 ..,m, 1 -m> 3m°-3m 1
( ) ( ) m*—4m? 6m2—4m. ..
Hence it proves P~™ = Q(m). O
EREERIETR I
In fact Q(3) = Q di[3'] = [1-3 §-10.. 32 = |1 —954-270...| and
1-410-20"" 33 1-12 90540
A :1’) 1 % 1 ’ 512,1 - 3 -1
QB=1| 9-6 1 |=|1-2 1 9 61 =P, =P@3);
—9727-91 -1 3-31 272791

Let G = [¢;;] be a matrix with ¢11 = g;;-1 =1, ¢,y = —1 (i > 1), and H = [h;]
be with h;; = h;;4+1 = 1 (¢ > 1) and the other entries in G and H are zeros. An
LU-factorization of @) is investigated in the next theorem.

THEOREM 4. With the above matrices G and H, let L [resp. U] be a lower [resp.
. . s 1 0 1 0
upper]| triangular matrix satisfying GL = [OLnl], UH = |:0Un1:| for all n > 1,
and Ly = Uy = [1]. Then Q = LU = PY where Y = [(—1)7"'p;,].

Proof. With v = [1,z,22,...]7, we have

1-11—1. 1 1—a:+:§2—332+... Tto
_ | -12-3. Ll — |- — | = | Q)2
(1+a)
) (1+0)
_ ) : _ 1+z
so Yv=r 52] with v = 1+$,6— . Since Pv = (1+$)2],we have
1 :
1 (115) 1 Tz
_ 0| _ + _ LT — )2
PYv =Py 2| =7 (1+0)2 —7[72.] = (1+1)

because 1+ 9 = . On the other hand, since

1 1—xz+ 22 3+ . 4o
Tl = 1—23;—1—390 — 42?4 = | T+a)? (1)
€z 1 — 3z + 622 — 1023 + N

e
Qu= 1173 §.90."

it follows that Qv = PYw, i.e., Q = PY.

The constructions of G and H show, for instance G, =

1100 I 0 G 0
Hy = 86%(1) 3 ,and G = [ n-l } and H =
0001 0...01-1
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1
Moreover GL = (1)L 0] and UH = {(1)U O] yield Ly = [%:%1 ] and Uy =
et el 1-33-1
1T L 0
- ,s0 L = ol - — and
[ 1 _ii |:pn,17 o <_1) 1pn,i7 e (_1) pn,n—l‘(_l) lpn,n:|
(_1)n71pn,1
U= |Un (_1).71._.ipnvi for n > 1. Therefore we have
—Pnn—1
0 [ Pan
1
1 11—z + z? — x3 — o
L'UZ 1_’1"2 and U/U: .:U—Qx +3x + o (1+§)2 ,
(1—x) z? — 3% + 62" — s
thus due to (1) it follows that
! Lol [
LUv=L—| We,| == | L, = |07 | =Qu.
1+x (m)Q Iz | (1 — 1475)2 1 ; Q
S . (1+z)
It proves Q = LU. O
1-11 -1
Clearly L,U, = % % % _4] Q4. We also notice L = di[(—1)|P~, U = (P71)T
1-410-20

and Y = PTdi[(—1)?], so Theorem 4 shows
Q = di[(—1)'| P~ (P = di[(=1)"](PTP) "
and, Theorem 1 yields Q = PPTdi[(—1){] = P di[(—1)7].

THEOREM 5. For any m > 0, the power Q™ of negative Pasca] matrix satisfies

2 1 _
Q™ = 21 ... 2|1, 2m, 22, ... |7 where 2z, = T and z, 11 = 1+Z

Proof. Clearly Qu = | 142)? | = 2 j% by (1). And Q*v = 2Q i% = f1*72 i;

(1+2)3
%
and Q3v = 212923 z% with z9 = ﬁ, 23 = T Hence for some m > 0, if we assume
3
Q™ =21 ... 2|1, 2, 22, ... |T with 2z, = ﬁ then
1
1 1+12m
Q"™ =Q(Q™v) = 2. zmQ =21... 2y | Fzm)?
(¥ zm)
Zm+1
_ Z _ 2 3 T
=21 2 | BT = 20 2t L 1, 21 Bt O
Zm—l—l

3. Negative Pascal matrix via Fibonacci numbers

Let {fi|i > 1} ={1,1,2,3,5,...} be the set of Fibonacci numbers.
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1 fmtfm—rz (fmt+fm—rz) ! T
m — m m— m m— ]
THEOREM 6. Qv = Fwnn el ¢ Sy s - Ry ¢ aursray e LR for m > 0.
. _ 1 i
Proof. With z; = - and 2] = [(Fou + 5 in Theorem 5, we have
_ 1 _ 14z 1 _ (14ax)i?
%2 = 1421~ 242’ Z1%2 24w and le? (2t
1 24a 1 i (24x) !
23 = Tim T 3h200 A28 = gigp and 212923 = @+22)
_ 1 _ 3+2z (3+2x)" !
and z4 = T = 5yse) F17273%4 = 5+3 and 2292328 = G
Then by means of Fibonacci numbers f;, it shows
_ fatfa _ 1 (fatfsz)
4T o faar AP35 T R and 21222324 (f;+f;1($)z ’
. o itz o 1
Now for some j > 0, we assume the identities z; = Fihe A% T Fobne and
21 ... 2i_12F = Uitdizam)' 2 oo inductive hypothesis. Then
JT (fi+1+fiz)
Z = 1 = 1 — f~7+1+‘f1x
741 T4z, Fjr1tfe+f+f 1« fj+2+fj+1:v’
fjt1tsj=
1 fit1tfiz 1
21 2l = 21 ... 252541 = =
L A L LT it fir faetfine T fret e
and _ _
1 (fir1tfiz)'  _  (fiptfim)!

2., . 228 = - = -
1 J75+1 fivi+fiz (fjrot+fitrz)t (Fjro2t+fiprz)itlo
hence due to Theorem 5 we have

Zm
QM =21 ...2, |22
4
Zm

_ 1 (fmtfm—12) (fut far2) =1 4 —
TN\ Tnr14m®)? Gt tfme)® 0 (fmrt fm) 770 ]

Hence due to Theorem 5 and Theorem 6, we are able to express the power Q™ by
Fibonacci numbers explicitly.

2,

THEOREM 7. Let Q™ = [qu)] Then the i, j"element q(?) in Q™ is equal to
j—1 Jj—1
—1 1—-h pi— h . - —3 i—h
S (L) T it T particatar @ = {53 () } and

i—1
@ = | (G dorigx 1

h=0

T
Proof. The Q*v = [f3+1fzm’ (};2:;;15)27 Eﬁiﬁ;;z, . } in Theorem 6 shows that the

ithrow r;(Q%v) is composed of the coefficients of expansion of % (1+z) 12+
x)~%. Hence the i, j'" component qij in % is the coefficient of 27~! in the expansion
of (14 x)"*(2+ z)~". But since
(L 212+ 2)™ |
= (()+ (Dz+ ()2 +.) ()27 + (V)2 e+ ()22 + )
= ()2 + (G2 + () ()2 )=
()2 2+ () (2 + (G ()2
: (G2 + (G2 + (G2 + (50 ()27 o
the coefficient of 277! equals Ji ;) (jizit)Q_i_t. So Q? = le () (]:ih) 27i=h

Similarly the i®"row r;(Q3v) is generated by the expansion of
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(f3+faz) !
(fat+f3z)?

=(2+2)" (3 +2x)"

D2 ()2 () ()25
() (327074 () ()23 & () ()22
((zﬁ(ﬁ?)2%43*z+-(?)C;1>2%23*%*—%(;ﬁ(ﬁf)2“23*%3>x3
+ .. -
=1
Thus the coefficient of 277! equals Y (') (j:ih)Q_i_j”h?)_i_h, so it follows that
h=0
-1
@ =[S (.
) T
Now let us look at Qv = [(fm+11+fmr)’ ((J{;”;i"}:gg, E;:jfrf;g?,, .. ] with Q™ =

(M1 From the expansions
(4 p

(fm + fm—lx)ii1 = (igl)fmi_l + (izl)fmi_2fm—lx + (igl)fml ° m 11‘ +.

and
(fm+1 + fmx)l = (Bi)fm+1 + ( )fr;illfn@ + (;l) f%?ﬁfﬁlﬁ + ..

the coefficient qg;) of /71 in the expansion of (f + frn-12)"*(fins1 + fmx)" 18
-1
equal to qz-(?) = > ( Z)( LT PpimHh foich - Thus we conclude that Q™ =
-1 }
ST :
h=0
L 124 8
(o) g _ 2 A
In fact Q3v = ((?gzr?x))j = |42 ¥ % |v, and for instance we observe

ey ¥ N

81 243729 2187 -

4
qé?) = > () (2,)22n375h = 182L Moreover the i'row r;(Q*v) comes from (3 +

5
h=0
22)71(5 4 3z)~". But since
(3+2x)~1(5+ 3x)~"
= () (G2 () ()95
+( =1 1)31—4—15 i— 2) 2

22855 ()
)

0
FDE) 25+ () () (3)3%5%) 2% 1

the coefficient of /=1 in (3 + 2z)" (5 + 3z)7* is (;LZ)( o h)QJ 1=hgi=j+2hg5—i=h

s
)

1
5223
J

1 L3 o9 _xm7
(3135) s _& %P
Therefore Q4 = |G+302 | = | 8 % 98 _ %° |0 and

it | 7 g g g

(5Tf)’?) 625 312551625 78125

i1
Q4: j;()(;l)(] - h)2] 1- h32 j+2h5 i—h
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On the other hand from P = [p; ;| = [(’171)} and Q = [¢i;] = [(j )] for i, j > 1,

j—1
—1
it follows Q™ = Z Gins1Pignfi ' i gH2h g ith| - The next theorem gives an

expression of Q™ by Flbonacm numbers f; together with @) and P.

THEOREM 8. Let Qm = [qz(’j’)] Then for all i,j > 1, we have

0" = (0 B Fol)  Fo (@i, Foa i Fotaiss - s Fons i)

f’rzn(fm]p’i,j7 Fod™2Di i1y ooy Frd T2 i gy fE72ps ).

Proof. The all entries qf’j) at i"row of Q? are

qi(i) = @i1pin27 137 = (377qi,1) (2 'pi),
qi(,gz) = qi1Pi22" 7137 4 qiopin 237!
= (37";,1, 37" qi2) - (27 %pi2, 2'pin) = 371, 3 i2) - 2427 pi2, i)
qz-(? = Gi1Pi32 37 4 Giapig2 3T + qigpin 21370
= (37¢i1, 37" qi2: 37 i) - (27%pi 3, 27 i, 27 i)
=37qi,1,37 M i2, 3 2i3) - 2(27pis, 27 i 2, 2 i),
and for any 7 > 1, we have
qz(?j) _ (3—1'% ,3_i_1q2 . 3—i—(h—1)qi’h7 o 73—2‘—j+1qm)
(207 4, 2079 R sy 20Ty, 202, )
= 37(q;1, 3 Gy 3 " Vgip, ., 370 g )
S22y 5, 270 sy 27 Ry 20 ).

Similarly all entries qg;)

Qi(é) = qi10i22'37 157 4 i opi 35!

= (217 1) : 572’(%,1, 5716]1’,2) : 31’(372]71'72,]92'71),
qz-(é) = Gi1pi32237 35T 4 iopi 2237 5T g i 1 3752
=(22,21,1) - 57(qi1,5 g2, 5 2qi3) - 33 pi3s 37 i, 3'pin),
and for any 7 > 1, we have
qZ(i) (2] ! 2J 2 s 7217 1) . 571(‘]%}17 571(]@‘,27 572@5’,37 s 757(J71)Qi,j)
: 31(3 ]Pi,]w 3 J+2pi,j—1a e 737J+2hpi,j—ha e 73]721%‘,1)-

at i'"row of Q* are

But since Q*v = | 327 | and Q* = [Z Gipirpig-nf] " fT ;Z"h}, the i, jt*
h=

component in Q* can be written as
4 —1 gi=2 —i - —(j—1
ql(,]) :( g ] ) f37f3) f5 Z(qi,17f5 IQ’i,Qa"'7f5 v )qZ,J)
; —j+2h j—2
'fi(f4 pz’,j,1f4 pi,j—17~--7f4 al pz’,j—hw--:fi Pi1)-

W 7—1
Thus Qv = | Tt | and Qm = {z Giprpijn I i i }for any m
(fm+1+fmz)3
imply
o = (P e P £o) oG, sz, P Vi)

ffn(fm Dij fn_l T2 ity Frd P 2p i g fE 2. [
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T 111 1.
i P15 |
Note that | ?t2)* | = Rv where R = [ “#1 ~ 53 " '|. Let A be a matrix such
eRwmES 871676 32"
o
that Av = (11__;)2 . Then due to Theorem 7, we have
1 1 ™
1 _ 1 (2%6)2 )
ARv =gz A) P11 = g5 (- A% | = | a2 | = Q% (2)
(2+=x) 2+ (2+x)3
:1 1 _1 l_i. 11 1_ 1
S s A S
Thus Q% = AR. Indeed Q? = %:51] g T4l | = | 10—1*16 15| This
[ - 8 1616 32" 8 ﬁiﬁ 32

can be generalized to Q™ as follows.

THEOREM 9. For m > 0, let Ry, and Ap, be matrices such that Rj,v =

1
1 _ 7n—1m
fm+1+fm27 %
(fm+1'{‘fmm)2 and A[m]v = (%)2 . Then Q™ = A[m]R[m].
(fm+1+fmm)3 (fm—1+(*1)m71x)3
1
342z 1
(2+x) 2+x
Proof. Clearly Q* = ApjRjg by (2). When m = 3, Qv = ((324;295))22 =u ( g’igf)Q
(3122)3 Staw
)
3+12x 1
for u = 3+12x by Theorem 7. Thus with Rjv = (3+12a:)2 =u [52] , the matrix Ap
(3+2x)3
1
z+1 .
such that Apjv = ( % 2 satisfies
1 1 1
i ut1 1 32+2:B 3
AR = udp | 2| = U] wbip| = 5 | (3| =@V
2 3+2c
so we have Q* = A3 Rj5. Now let u = m for m > 0. Then
1
T 1 1
| el ot o P !
Qv = |Gt | = | frgifer, | and Ry = | G | =
Ui+ Fna)® Jros1 e Ut ey o

1
fm—1+(71)m_1x

Moreover let Ap,v = Owing to the identity f_1fmi1 +

fm
(fm71+(—1)m_1x)2

m

(—=1)™t = f2 (see [8]), we have
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fm—1+(_1)m71u — L f72n+fm—1fm55 — fm‘i’fm—lm
X fm fm fmi1+fme fma1+fmz?
so it follows that ) .
& fm—1+(=1)™ lu fmtfm1z
A B0 = 0y |2 | =) ey :u(ﬁﬁﬂﬁazzsz“
( m ) Frii T
This completes the proof Q™ = Apy Rjm)- m
1
SR % _4%% ' x}-l } 1
Indeed Rygv = | Ge7 | = | p=gg - |vand Ago = | B, ) = |37, |0
(3+22)3 27 2781 2 1214
1 24
3 PY
_ | 2-24 _ N3
hence A Rj3 = R =Q°.
27 2781
References

[1] L. Aceto, D. Trigiante, The matrices of Pascal and other greats, Amer. Math. Monthly 108
(2001), 232—-245.

[2] R. Brawer, M. Pirovino, The linear algebra of the Pascal matriz, Linear Algebra Appl. 175
(1992), 13-23.

[3] A. Edelman, G. Strang, Pascal Matrices, Amer. Math. Monthly 111 (2004), 189-197.

[4] S. Falcon, The k-Fibonacci matriz and the Pascal matriz, Cent. Eur. J. Math. 9 (2011), 1403
1410.

[5] S. Fallat, Bidiagonal factorization of totally nonnegative matrices, Amer. Math. Monthly 108
(2001), 697-712.

[6] P. Hilton, J. Pederson, Looking into Pascal’s triangle: Combinatorics, arithmetic, and geometry,
Math. Mag. 60 (1987), 305-316.

[7] J. Jo, Y. Oh, E. Choi, Arithmetic matriz of quadratic polynomial with negative exponent by
Pascal matriz, J. Alg. Appl. Math. 17 (2019), 67-90.

[8] R. Johnson, Fibonacci Numbers and Matrices, 2009.

[9] W. Lunnon, The Pascal matriz, Fibo. Quart. 15 (1977), 201-204.

Jiin Jo
Dept. of Math. Sciences, Hanbat National Univ., Daejeon, Korea
E-mail: jojiinin@gmail.com



	1. Introduction
	2. Negative Pascal Matrix via polynomial
	3. Negative Pascal matrix via Fibonacci numbers
	References

