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INTEGRAL MEAN ESTIMATES FOR SOME OPERATOR

PRESERVING INEQUALITIES

Shabir Ahmad Malik

Abstract. In this paper, some integral mean estimates for the polar derivative
of a polynomial with complex coefficients are proved. We will see that these type
of estimates are new in this direction and discuss their importance with respect to
existing results comparatively. In addition, the obtained results provide valuable
insights into the behavior of integrals involving operator preserving inequalities.

1. Statements of preliminary results

Let P be the class of complex polynomials P (z) =
n∑
v=0

avz
v of degree n and P ′(z)

be the derivative of P (z). For P ∈ P , we define

‖P‖0 = exp

 1

2π

2π∫
0

log |P (eiθ)|dθ

 ,

‖P‖p =

 1

2π

2π∫
0

|P (eiθ)|pdθ


1
p

for 0 < p <∞

and

‖P‖∞ = max
|z|=1
|P (z)|.

Notice that ‖P‖0 = limp→0+ ‖P‖p and ‖P‖∞ = limp→∞ ‖P‖p. For the sake of sim-
plicity, we denote ‖P‖∞ simply by ‖P‖. We begin with the Turán’s classical inequal-
ity [11], which asserts that

‖P ′‖ ≥ n

2
‖P‖(1.1)

holds for all polynomials P ∈ P having all zeros in |z| ≤ 1. This result is best possible
and the extremal polynomial for (1.1) is P (z) = zn + 1.
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An exceptional inequality for polynomials of a complex variable which consists (1.1)
as one of the special cases is due to Govil [6], and which states that the inequality

‖P ′‖ ≥ n

1 + kn
‖P‖(1.2)

holds for all polynomials P ∈ P having all zeros in |z| ≤ k, where k ≥ 1. It is easy to
see that (1.2) becomes equality when P (z) = zn + kn. Inequality (1.2) is one of the
most known polynomial inequality in the theory of polynomial inequalities and will
be beneficial as well for our results. Again, to improve the bound in (1.2), Govil [5]
under the same hypothesis as of (1.2) showed that the following inequality holds

‖P ′‖ ≥ n

1 + kn
{‖P‖+ min

|z|=k
|P (z)|}.(1.3)

Polar Derivative: Let P ∈ P , and α be any complex number, then

DαP (z) = −
[

P (z)

(z − α)n

]′
(z − α)n+1

= nP (z) + (α− z)P ′(z),

is called the polar derivative of P (z). Note that DαP (z) is a polynomial of degree at
most n− 1 and it generalizes the concept of “ordinary derivative” which is evident
and convincing from the fact that

lim
α→∞

DαP (z)

α
= P ′(z)(1.4)

uniformly with respect to z for |z| ≤ R, R > 0.
In the polar derivative contexture, all the above inequalities have been widely

investigated, even there are variety of inequalities related to the polar derivative which
include all the above mentioned inequalities as special cases ( see [7], [9], [12], [8]).
The main aim of this paper is to focus on the following result, which states that the
inequality

max
|z|=1
|DαP (z)| ≥ n(|α| − k)

1 + kn
‖P‖(1.5)

holds for all polynomials P ∈ P which have all its zeros in |z| ≤ k, k ≥ 1 and for
every α ∈ C with |α| ≥ k. This result is ascribed to Aziz and Rather [3].

Look at the following result concerning integral norm estimates due to Aziz [1] of
which the inequality (1.2) is a special case and it states that the inequality

n


2π∫
0

|P (eiθ)|pdθ


1
p

≤


2π∫
0

|1 + kneiθ|pdθ


1
p

max
|z|=1
|P ′(z)|(1.6)

holds for all polynomials P ∈ P which have all its zeros in |z| ≤ k, k ≥ 1 and for
each p ≥ 1. The result is best possible and equality in (1.6) holds for the polynomial
P (z) = αzn + βkn, where |α| = |β|. The problem of estimating the integral norm of
inequalities like (1.5) and associated results is still open and in this paper we make
an endeavor to solve some inequalities of the same type.
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2. Main results

We first prove the following result concerning integral norm to inequality (1.5) in
a slightly different style and we will see that both the inequalities have equivalent
consequences.

Theorem 2.1. If P ∈ P and P (z) has all its zeros in |z| ≤ k, k ≥ 1, then for each
r ≥ 1 and for every α ∈ C with |α| ≥ kn

n(|α| − kn)


2π∫
0

|P (eiθ)|rdθ


1
r

≤


2π∫
0

|1 + kneiθ|rdθ


1
r

max
|z|=1
|DαP (z)|.(2.1)

Remark 2.1. Dividing both sides of inequality (2.1) by |α| and letting |α| → ∞,
and taking (1.4) into consideration, we obtain inequality (1.6) as a special case.

Remark 2.2. Letting r → ∞ in (2.1), we obtain the following inequality under
the same hypothesis

max
|z|=1
|DαP (z)| ≥ n(|α| − kn)

1 + kn
‖P‖, for |α| ≥ kn.(2.2)

It seems that inequalities (2.2) and (1.5) are same but they are equivalent up to the
restrictions on α. As mentioned above, on dividing both sides of inequalities (2.2)
and (1.5) by |α| and letting |α| → ∞, and taking (1.4) into consideration, they yield
the same inequality (1.2) as a special case.

Theorem 2.2. If P ∈ P and P (z) has all its zeros in |z| ≤ k, k ≥ 1, then for each
r ≥ 1, p > 1, q > 1 with 1

p
+ 1

q
= 1 and for every α ∈ C with |α| ≥ kn

n(|α| − kn)


2π∫
0

|P (eiθ)|rdθ


1
r

≤ Cn


2π∫
0

|1 + eiθ|prdθ


1
pr


2π∫
0

|DαP (eiθ)|qrdθ


1
qr

,

(2.3)

where Cn =

{
2π∫
0

|1+kneiθ|rdθ
} 1
r

{
2π∫
0

|1+eiθ|rdθ
} 1
r
.

Remark 2.3. The limit q →∞ implies p→ 1 in Theorem 2.2. Therefore, inequal-
ity (2.3) reduces to inequality (2.1). On dividing both sides of inequalities (2.3) by
|α| and letting |α| → ∞, and taking (1.4) into consideration, it yields the following
inequality due to Aziz and Ahemad [2] as a special case.

n


2π∫
0

|P (eiθ)|rdθ


1
r

≤ Cn


2π∫
0

|1 + eiθ|prdθ


1
pr


2π∫
0

|P ′(eiθ)|qrdθ


1
qr

.(2.4)
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Theorem 2.3. Let P ∈ P and P (z) have all its zeros in |z| ≤ k, k ≥ 1, then for
each r ≥ 1, p > 1, q > 1 with 1

p
+ 1

q
= 1, |λ| < 1 and for every real or complex number

α with |α| ≥ 2kn + 1

n (|α| − kn)


2π∫
0

|P (eiθ) + λm|rdθ


1
r

≤ Cn


2π∫
0

|1 + eiθ|prdθ


1
pr

×


2π∫
0

|DαP (eiθ) +mλn|qrdθ


1
qr

,

(2.5)

where Cn =

{
2π∫
0

|1+kneiθ|rdθ
} 1
r

{
2π∫
0

|1+eiθ|rdθ
} 1
r

and m = min
|z|=k
|P (z)|.

Remark 2.4. If q → ∞, then p → 1, and so the inequality (2.5) reduces to the
following inequality

n (|α| − kn)


2π∫
0

|P (eiθ) + λm|rdθ


1
r

≤


2π∫
0

|1 + kneiθ|rdθ


1
r

|DαP (z) +mλn|,

(2.6)

where m = min
|z|=k
|P (z)|. If r →∞ and choosing an argument of λ suitably in (2.6), we

get the following result.

Corollary 2.4. Let P ∈ P and P (z) have all its zeros in |z| ≤ k, k ≥ 1, then for
every real or complex number α with |α| ≥ 2kn + 1

max
|z|=1
|DαP (z)| ≥ n

1 + kn

[
(|α| − kn)‖P‖+ {|α| − (2kn + 1)}min

|z|=k
|P (z)|

]
.(2.7)

On dividing both sides of inequality (2.6) by |α| and letting |α| → ∞, and taking
(1.4) into consideration, we obtain the following result.

Corollary 2.5. Let P ∈ P and P (z) have all its zeros in |z| ≤ k, k ≥ 1, then for
each r > 0 and |λ| < 1

n


2π∫
0

|P (eiθ) + λm|rdθ


1
r

≤


2π∫
0

|1 + kneiθ|rdθ


1
r

max
|z|=1
|P ′(z)|,(2.8)

where m = min
|z|=k
|P (z)|.

Remark 2.5. For k = 1, Corollary 2.5 reduces to result proved by Aziz [1, Theorem
3].
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3. Auxiliary results

Lemma 3.1. [6] If P ∈ P and P (z) has all its zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1
|Q′(z)| ≤ kn max

|z|=1
|P ′(z)|,(3.1)

where Q(z) = znP (1
z
).

Lemma 3.2. [4] If P ∈ P and P (z) does not vanish in |z| < 1, then for every
R ≥ 1 and r ≥ 1 

2π∫
0

|P (Reiθ)|rdθ

 ≤ Br


2π∫
0

|P (eiθ)|rdθ

 .(3.2)

where

Br =

{
2π∫
0

|1 +Rneiθ|rdθ
}

{
2π∫
0

|1 + eiθ|rdθ
} .

4. Proofs of the main results

Proof of Theorem 2.1. Let Q(z) = znP (1
z
), then it can be easily verified for

|z| = 1 that

|Q′(z)| = |nP (z)− zP ′(z)|.
Now for any real or complex number α with |α| > kn, the polar derivative of P (z)
with respect to α is

DαP (z) = nP (z) + (α− z)P ′(z).

This implies by using Lemma 3.1 for |z| = 1

|DαP (z)| ≥ |α||P ′(z)| − |nP (z)− zP ′(z)|
≥ |α||P ′(z)| − |Q′(z)|
≥ |α||P ′(z)| − kn|P ′(z)|.

This gives

|DαP (z)| ≥ (|α| − kn)|P ′(z)|.

Consequently for |z| = 1, we have

max
|z|=1
|DαP (z)| ≥ (|α| − kn) max

|z|=1
|P ′(z)|.(4.1)

From inequality (1.6), we have for r ≥ 1

max
|z|=1
|P ′(z)| ≥ n

{
2π∫
0

|P (eiθ)|rdθ
} 1

r

{
2π∫
0

|1 + kneiθ|rdθ
} 1

r

.
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Using this in (4.1), we get for each θ, 0 ≤ θ < 2π

max
|z|=1
|DαP (z)| ≥ n(|α| − kn)

{
2π∫
0

|P (eiθ)|rdθ
} 1

r

{
2π∫
0

|1 + kneiθ|rdθ
} 1

r

.

Hence

n(|α| − kn)


2π∫
0

|P (eiθ)|rdθ


1
r

≤


2π∫
0

|1 + kneiθ|rdθ


1
r

max
|z|=1
|DαP (z)|.

This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. Assume that all the zeros of polynomial P (z) lie in |z| ≤
k, k ≥ 1, it follows that all the zeros of polynomial S(z) = P (kz) lie in |z| ≤ 1. Hence

the polynomial T (z) = znS(1
z
) has all its zeros in |z| ≥ 1. If {zv : v = 1, 2, 3, ..., n} is

the set of zeros of T (z), then it is clear that |zv| ≥ 1, v = 1, 2, .., n and we have by
Fundamental theorem of algebra

zT ′(z)

T (z)
=

n∑
v=1

z

z − zv
.

Therefore for the points eiθ, 0 ≤ θ < 2π, for which T (eiθ) 6= 0, we get

<
(
eiθT ′(eiθ)

T (eiθ)

)
=

n∑
v=1

<
(

eiθ

eiθ − zv

)

≤
n∑
v=1

1

2

=
n

2
,

which implies ∣∣∣∣eiθT ′(eiθ)nT (eiθ)

∣∣∣∣ ≤ ∣∣∣∣1− eiθT ′(eiθ)

nT (eiθ)

∣∣∣∣ .
Equivalently

|T ′(eiθ)| ≤ |nT (eiθ)− eiθT ′(eiθ)|,

which is clearly true for the points eiθ, 0 ≤ θ < 2π, for which T (eiθ) = 0. Hence it
follows for |z| = 1 that

|T ′(z)| ≤ |nT (z)− zT ′(z)|.(4.2)

Since T (z) = znS(1
z
), the derivative of T (z) is

T ′(z) = nzn−1 S(1/z)− zn−2 S ′(1/z).

Since all the zeros of S(z) lie in |z| ≤ 1, by Gauss-Lucas theorem all the zeros of S ′(z)
also lie in |z| ≤ 1 and hence the polynomial

zn−1 S ′(1/z) = nT (z)− zT ′(z)
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has all its zeros in |z| ≥ 1. Therefore it follows that the function

W (z) =
zT ′(z)

nT (z)− zT ′(z)

is analytic for |z| ≤ 1 with |W (z)| ≤ 1 for |z| ≤ 1 and W (0) = 0. Thus the function
1 + W (z) is subordinate to the function 1 + z for |z| ≤ 1. Hence by subordination
property for analytic functions, we have for each r ≥ 1

2π∫
0

|1 +W (eiθ)|rdθ ≤
2π∫
0

|1 + eiθ|rdθ.(4.3)

Now

1 +W (z) =
nT (z)

nT (z)− zT ′(z)

and for |z| = 1

|S ′(z)| = |zn−1 S ′(1/z)| = |nT (z)− zT ′(z)|.

Consequently for |z| = 1

n|T (z)| = |1 +W (z)| |nT (z)− zT ′(z)|
= |1 +W (z)| |S ′(z)|.

(4.4)

Now from (4.3) and (4.4), we obtain for each r ≥ 1

nr
2π∫
0

|T (eiθ)|rdθ ≤
2π∫
0

|1 + eiθ|r |S ′(eiθ)|rdθ

≤ kr
2π∫
0

|1 + eiθ|r |P ′(keiθ)|rdθ.

(4.5)

Since T (z) does not vanish in |z| < 1, applying Lemma 3.2 with R = k ≥ 1 to the
polynomial T (z), we get for each r ≥ 1

2π∫
0

|T (keiθ)|rdθ ≤ (Cn)r
2π∫
0

|T (eiθ)|rdθ,(4.6)

where Cn =

{
2π∫
0

|1+kneiθ|rdθ
} 1
r

{
2π∫
0

|1+eiθ|rdθ
} 1
r

. Since

T (z) = znS(1/z) = znP (k/z),

it follows for 0 ≤ θ < 2π

|T (keiθ)| = kn|einθP (eiθ)| = kn|P (eiθ)|.(4.7)
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By inequality (4.5) in conjunction with (4.6) and (4.7), we get for each r ≥ 1

nrknr
2π∫
0

|P (eiθ)|rdθ ≤ nr(Cn)r
2π∫
0

|T (eiθ)|rdθ

≤ kr(Cn)r
2π∫
0

|1 + eiθ|r |P ′(keiθ)|rdθ.

(4.8)

From (4.1), we have

|DαP (z)| ≥ (|α| − kn)|P ′(z)|.
Therefore for each r ≥ 1, we get

|DαP (eiθ)|r ≥ (|α| − kn)r|P ′(eiθ)|r,

which gives

|DαP (keiθ)|r ≥ (|α| − kn)r|P ′(keiθ)|r.(4.9)

From (4.8) and (4.9), it follows that

nrknr(|α| − kn)r
2π∫
0

|P (eiθ)|rdθ ≤ kr(Cn)r
2π∫
0

|1 + eiθ|r |DαP (keiθ)|rdθ,

which gives with the help of Holder’s inequality for each r ≥ 1, p > 1, q > 1 with
p−1 + q−1 = 1

nrknr(|α| − kn)r
2π∫
0

|P (eiθ)|rdθ ≤ kr(Cn)r


2π∫
0

|1 + eiθ|prdθ


1
p


2π∫
0

|DαP (keiθ)|qrdθ


1
q

,

i.e.,

nkn(|α| − kn)


2π∫
0

|P (eiθ)|rdθ


1
r

≤ kCn


2π∫
0

|1 + eiθ|prdθ


1
pr


2π∫
0

|DαP (keiθ)|qrdθ


1
qr

.

(4.10)

Since the polar derivative DαP (z) is a polynomial of degree at most n − 1, so it is
easy to verify that for each t ≥ 1 and R ≥ 1

2π∫
0

|DαP (Reiθ)|tdθ


1
t

≤ Rn−1


2π∫
0

|DαP (eiθ)|tdθ


1
t

.(4.11)

Finally, on applying (4.11) to (4.10) with R = k and t = qr, we obtain for r ≥ 1

n(|α| − kn)


2π∫
0

|P (eiθ)|rdθ


1
r

≤ Cn


2π∫
0

|1 + eiθ|prdθ


1
pr


2π∫
0

|DαP (eiθ)|qrdθ


1
qr

.
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This proves Theorem 2.2 completely.

Proof of Theorem 2.3. Let
m = min

|z|=k
|P (z)|

then |P (z)| ≥ m on |z| = k. Therefore, for every λ with |λ| < 1

|P (z)| > |λm| on |z| = k.

If P (z) has a zero on |z| = k, then m = 0 and the result follows from Theorem 2.2.
Therefore from now onwards we will assume that P (z) has all its zeros in |z| < k,
where k ≥ 1. By Rouche’s theorem the polynomial

F (z) = P (z) + λm

also has all its zeros in |z| < k. Thus, on applying Theorem 2.2 to F (z), we obtain
for each r ≥ 1 and |α| ≥ 2kn + 1 ≥ kn

n(|α| − kn)


2π∫
0

|F (eiθ)|rdθ


1
r

≤ Cn


2π∫
0

|1 + eiθ|prdθ


1
pr


2π∫
0

|DαF (eiθ)|qrdθ


1
qr

,

i.e.,

n(|α| − kn)


2π∫
0

|P (eiθ) + λm|rdθ


1
r

≤ Cn


2π∫
0

|1 + eiθ|prdθ


1
pr


2π∫
0

|DαP (eiθ) + nλm|qrdθ


1
qr

.

This completes the proof of Theorem 2.3.

5. Conclusion

We mainly focused on estimating integral mean for operator preserving inequali-
ties of the type (1.5) and associated results by proving some of new results through
a thorough analysis and investigation. The main results provide generalizations and
refinements, and a link with some of the classical results as seen in remarks. Further-
more, the findings shed light on the interplay between various operators, their impact
on preserving inequalities and integral norm.

Conflict of Interest: No potential conflict of interest either financial or non-financial
was reported by the author.

References

[1] A. Aziz, Integral mean estimates for polynomials with restricted zeros, J. Approx. Theory, 55
(1988), 232–239.
https://dx.doi.org/10.1016/0021-9045(88)90089-5

[2] A. Aziz and N. Ahemad, Integral mean estimates for polynomials whose zeros are within a circle,
Glasnik Matematicki, 31 (1996), 229–237.

[3] A. Aziz and N.A. Rather, A refinement of a theorem of Paul Turán concerning polynomials,
Math. Inequal. Appl., 1 (1998), 231–238.
https://dx.doi.org/10.7153/mia-01-21

https://dx.doi.org/10.1016/0021-9045(88)90089-5
https://dx.doi.org/10.7153/mia-01-21


506 Shabir Ahmad Malik

[4] R.P. Boas, Jr. and Q.I. Rahman, Lp inequalities for polynomials and entire functions, Arch.
Rational Mech. Anal., 11 (1962), 34–39.

[5] N.K. Govil, Some inequalities for derivatives of polynomials, J. Approx. Theory, 66 (1991),
29–35.

[6] N.K. Govil, On the derivative of a polynomial, Proc. Amer. Math. Soc., 41 (1973), 543–546.
https://dx.doi.org/10.1090/S0002-9939-1973-0325932-8

[7] N.K. Govil and P. Kumar, On Bernstein-type inequalities for the polar derivative of a polynomial,
Progress in Approximation Theory and Applicable Complex Analysis, 117 (2017), 41–74.

[8] N.K. Govil and P. Kumar, On sharpening of an inequality of Turán, Appl. Anal. Discrete Math.,
13 (3) (2019), 711–720.
https://dx.doi.org/10.2298/AADM190326028G

[9] P. Kumar, On Zygmund-type inequalities involving polar derivative of a lacunary type polyno-
mial, Bull. Math. Soc. Sci. Math. Roumanie, 61 (110) (2019), 155–164.

[10] M. Marden, Geometry of polynomials, Second Edition, Mathematical Surveys, Amer. Math.
Soc. Providence R.I., (1966).
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